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ANALYSIS
OF INTEGRODIFFERENTIAL CONTROL SYSTEM
WITH PULSE-WIDTH MODULATED SAMPLER

ON BANACH SPACES
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Abstract. This paper studies steady-state control and stability for a class of integrodiffer-
ential control system with pulse-width modulated sampler on Banach spaces. The existence
and stability of the steady-state for the integrodifferential control system with pulse-width
modulated sampler are given. An example is given to illustrate the theory.
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1. INTRODUCTION

In design of distributed parameter control systems, one of the important problems
is to choose controller and actuator. As the dimension of an industrial controller
in actual applications is finite, it restricts us to consider the distributed parameter
system with a finite dimensional output. In industrial process control systems on-off
actuators have been in engineer’s good graces because of the cheap price and the high
reliability.

The interest in the pulse-width sampler control systems was aroused as early as
1960s. It was motivated by applications to engineering problems and neural nets
modeling. In modern times, the development of neurocomputers promises a rebirth of
interest in this field. The theory of pulse-width sampler control systems is treated as
a very important branch of engineering and mathematics. Nevertheless, it can supply
a technical-minded mathematician with a number of new and interesting problems of
mathematical nature. There are some results such as steady-state control, stability
analysis, robust control of pulse-width sampler systems [1–9], integral control by vari-
able sampling based on steady-state data and adaptive sampled-data integral control
[10–15].
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However, to our knowledge, integrodifferential control systems with pulse-width
modulated sampler on infinite dimensional spaces have not been investigated exten-
sively. In this paper, we will be concerned with control system governed by a class of
integrodifferential equation{

ẋ(t) = Ax(t) + f (t, x(t), (Sx)(t)) + Cu(t),
z(t) = K1x(t),

(1.1)

where state variable x(·) takes value in a reflexive Banach space X, A is the in-
finitesimal generator of an exponentially stable C0-semigroup {T (t) : t ≥ 0} on
X. f : [0,∞) × X × X → X is continuous and bounded on bounded subsets of
[0,∞)×X ×X, S is a nonlinear integral operator given by

(Sx)(t) =

t∫
0

k(t, s)g(s, x(s))ds.

The function g : [0,+∞)×X → X is continuous in t, k ∈ C ([0,+∞)× [0,+∞),R).
Control variable u(t) is a q dimensional vector, u(t) ∈ Rq, C : Rq → X is a bounded
linear operator. K1 : X → Rp is a linear operator, z(t) is a p dimensional output of
the system (1.1).

Suppose that control signal u(t) is the output of the q dimensional pulse-width
sampler controller. v(t) is the input of the q dimensional pulse-width sampler con-
troller, which is the output of some dynamical controller

v̇(t) = Jv(t) +K2z(t), (1.2)

where J is a q × q matrix, K2 is a q × p matrix. J is determined by the dynamic
characteristics of the controller, K2 called to be feedback matrix will be chosen and
tuned by the designer. The output signal u(t) = (u1(t), u2(t), . . . , uq(t))T and the
input signal v(t) = (v1(t), v2(t), . . . , vq(t))T of the pulse-width sampler satisfy the
following dynamic relation:

ui(t) =

{
sign αni , nT0 ≤ t < (n+ |αni |)T0, i = 1, 2, . . . , q;
0, (n+ |αni |)T0 ≤ t < (n+ 1)T0, n = 0, 1, . . . .

(1.3)

and

αni =

{
vi(nT0), |vi(nT0)| ≤ 1, i = 1, 2, . . . , q;
sign vi(nT0), |vi(nT0)| ≥ 1, n = 0, 1, . . . ,

(1.4)

where αni are numbers, T0 > 0 is the sampling period of the pulse-width sampler.
We end this introduction by giving some definitions.

Definition 1.1. The closed-loop system (1.1)–(1.4) is called to be a pulse-width
sampling integrodifferential control system.
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Definition 1.2. In the closed-loop system (1.1)–(1.4), the q dimensional vector ~αn =
(αn1 , αn2 , . . . , αnq )

T defined by (1.4) is called the duration ratio of the pulse-width
sampler in the n-th sampling period, n = 0, 1, . . ..

We defined a closed cube Ω in Rq as

Ω = {~αn = (αn1 , αn2 , . . . , αnq )
T ∈ Rq | |αni | ≤ 1, i = 1, 2, . . . , q},

then we have ~αn ∈ Ω, for n = 0, 1, . . ..

Definition 1.3. In the closed-loop system (1.1)–(1.4), if there exists a q dimensional
vector

~α = (α1, α2, . . . , αq)T ∈ Ω,

and a corresponding periodicity rectangular-wave control signal u(t) = u(t, ~α) defined
by

ui(t) = ui(t, ~α) =

{
sign αi, nT0 ≤ t < (n+ |αi|)T0, i = 1, 2, . . . , q;
0, (n+ |αi|)T0 ≤ t < (n+ 1)T0, n = 0, 1, . . . .

(1.5)

such that the closed-loop system (1.1)–(1.4) has a corresponding T0-periodic trajec-
tory x(·) = x(·, ~α): x(t + T0, ~α) = x(t, ~α), t ≥ 0, then the control signal (1.5) is
called to be a steady-state control with respect to the disturbance f . The T0-periodic
trajectory x(·) is called a steady-state corresponding to the steady-state control u(·)
and the constant vector ~α ∈ Ω of defining steady-state control (1.5) is called to be a
steady-state duration ratio.

Definition 1.4. In the closed-loop system (1.1)–(1.4), if there exist some ~α ∈ Ω such
that

lim
n→∞

~αn = ~α, where ~αn = (αn1 , αn2 , . . . , αnq )
T , ~α = (α1, α2, . . . , αq)T .

Then system (1.1)–(1.4) is called to be stead-state stable with respect to the distur-
bance f .

System (1.1)–(1.4) is called stead-state stabilizability if we can choose a suitable
T0 > 0 and K2 such that system (1.1)–(1.4) is stead-state stable with respect to the
disturbance f .

2. PRELIMINARIES

In order to study system (1.1)–(1.4), we introduce the following assumptions:

[H1] A is the infinitesimal generator of a C0-semigroup {T (t) : t ≥ 0} on X with
domain D(A).

[H2] {T (t) : t ≥ 0} is exponentially stable, that is, there exist K0 > 0 and ν0 > 0
such that

‖T (t)‖ ≤ K0e
−ν0t, t > 0.
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Here, we renorm the space X using the semigroup T (t) and eν0t, t ≥ 0. Define

‖x‖0 = sup
s≥0
‖eν0sT (s)x‖. (2.1)

It is obvious that
‖x‖ ≤ ‖x‖0 ≤ K0‖x‖.

Thus, (X, ‖ · ‖0) is topologically equivalent to (X, ‖ · ‖). Clearly for all t ≥ 0,

‖T (t)x‖0 = sup
0≤s,t

‖e−ν0teν0(t+s)T (t+ s)x‖ ≤ sup
0≤s
‖e−ν0teν0(s)T (s)x‖ ≤ e−ν0t‖x‖0.

Let £b(Rq, (X, ‖ · ‖0)) be the space of linear operators from Rq to X (with
norm ‖ · ‖0), £b((X, ‖ · ‖0),Rp) be the space of bounded linear operators from X
(with norm ‖ · ‖0) to Rp.

[H3] (1) f : [0,∞) × X × X → X is continuous and bounded on bounded subsets
of [0,∞) × X × X, and for any x1, x2, y1, y2 ∈ X, there exists a positive
constant Lf > 0 such that

‖f(t, x1, y1)− f(t, x2, y2)‖0 ≤ Lf (‖x1 − x2‖0 + ‖y1 − y2‖0).

(2) f(t, x, y) is T0-periodic in t, i.e.,

f(t+ T0, x, y) = f(t, x, y), t ≥ 0.

[H4] Control signal u(t) is a rectangular wave signal u(t, ~α) with a period T0 defined
by (1.5) for a given ~α ∈ Ω.

[H5] (1) g : [0,+∞) ×X → X is continuous in t on [0,+∞) and for all x1, x2 ∈ X,
there exists a constant Lg > 0 such that

‖g (t, x1)− g (t, x2)‖0 ≤ Lg ‖x1 − x2‖0 .

(2) k ∈ C ([0,+∞)× [0,+∞),R), are T0-periodic in t and s, i.e.,

k(t+ T0, s+ T0) = k(t, s),

and g(s, x) is T0-periodic in s, i.e.,

g(s+ T0, x) = g(s, x), s ≥ 0,

with
T0∫
0

k(t, s)g(s, x)ds = 0, t > T0 ≥ s ≥ 0.
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By assumption [H5], it is not difficult to verify the following result.

Lemma 2.1. Operator S has the following properties:

(1) S : C ([0, T0], X)→ C ([0, T0], X).
(2) For all x1, x2 ∈ C ([0, T0], X), we have

‖(Sx1)(t)− (Sx2)(t)‖0 ≤ Lg ‖k‖T0 ‖(x1)t − (x2)t‖0,B .

(3) For all x ∈ C ([0, T0], X),

(S(t+ T0))x(t) = (S(t))x(t).

Remark 2.2. The above results remain true by supposing that the kernel k(t, s) of
the Volterra operator S is continuous in the domain {(t, s) ∈ R2

+ : 0 ≤ s ≤ t}.

It will need the following generalized Gronwall’s inequality.

Lemma 2.3. Let x ∈ C ([0, T0], X) and satisfy the following result:

‖x(t)‖0 ≤ a+ b

t∫
0

‖x (s)‖0 ds+ c

t∫
0

‖xs‖0,B ds, t ∈ [0, T0], (2.2)

where a, b, c ≥ 0 are constants and

‖xs‖0,B = sup
0≤ξ≤s

{
sup
ξ≥0
‖eν0ξT (ξ)x(ξ)‖

}
.

Then
‖x(t)‖0 ≤ ae(b+c)t.

Proof. Using (2.2), we obtain

‖x(t)‖0,B ≤ a+ (b+ c)

t∫
0

‖xs‖0,B ds.

Define

h(t) = a+ (b+ c)

t∫
0

‖xs‖0,B ds,

we have
ḣ(t) = (b+ c)‖xt‖0,B ≤ (b+ c)h(t), with h(0) = a.

Thus,
h(t) ≤ ae(b+c)t.

As a result,
‖x(t)‖0 ≤ ‖xt‖0,B ≤ h(t) ≤ ae(b+c)t.
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3. STEADY-STATE CONTROL AND STABILITY

Lemma 3.1. Let assumptions [H1]–[H5] hold and suppose that

ν0 > Lf + LfLg ‖k‖T0.

For every u(t, ~α), system (1.1) has a unique T0-periodic mild solution given by

x(t, ~α) = T (t)x0 +

t∫
0

T (t− θ)
[
f
(
θ, x(θ),

θ∫
0

k(θ, s)g(s, x(s))ds
)

+Cu(θ, ~α)
]
dθ, (3.1)

where x(T0, ~α) = x0 and x(·, ~α) is exponentially stable.

Proof. We define a map HS(t) : X → X given by

HS(t)(x0) = T (t)x0 +

t∫
0

T (t− θ)
(
f (θ, x(θ), (Sx)(θ)) + Cu(θ, ~α)

)
dθ.

For every x1, x2 ∈ X, it is easy to see that

‖HS(t)(x1)−HS(t)(x2)‖0 ≤

≤ ‖T (t)(x1 − x2)‖0 + Lf

t∫
0

‖T (t− θ)(x1(θ)− x2(θ))‖0dθ+

+ Lf

t∫
0

‖T (t− θ)
(
(Sx1)(θ)− (Sx2)(θ)

)
‖0dθ ≤

≤ e−ν0t‖x1 − x2‖0 + Lf

t∫
0

‖x1(θ)− x2(θ)‖0dθ+

+ LfLg ‖k‖T0

t∫
0

‖(x1)θ − (x2)θ‖0,Bdθ.

By Lemma 2.3, we have

‖HS(t)(x1)−HS(t)(x2)‖0 ≤ e(Lf+LfLg‖k‖T0−ν0)t‖x1 − x2‖0, t ∈ [0, T0]. (3.2)

Thus,

‖HS(T0)(x1)−HS(T0)(x2)‖0 ≤ e(Lf+LfLg‖k‖T0−ν0)T0‖x1 − x2‖0.

It comes from the condition

ν0 > Lf + LfLg ‖k‖T0



Analysis of integrodifferential control system with pulse-width modulated sampler. . . 185

that HS(T0) is a contraction map on Banach space (X, ‖ · ‖0). Thus, HS(T0) has a
unique fixed point x∗ ∈ X:

HS(T0)x∗ = x∗. (3.3)

Define y(t, ~α) = x(t+ T0, ~α), for t ≥ 0,

y(t, ~α) = x(t+ T0, ~α) = HS(t+ T0)(x∗) =
= T (t)(HS(T0)x∗)+

+

t+T0∫
T0

T (t+ T0 − θ)
[
f
(
θ, x(θ),

θ∫
0

k(θ, s)g(s, x(s))ds
)

+ Cu(θ, ~α)
]
dθ =

= T (t)x∗+

+

t∫
0

T (t+ T0 − θ + T0)
[
f
(
θ + T0, x(θ + T0),

θ+T0∫
0

k(θ + T0, s)g(s, x(s))ds
)

+

+ Cu(θ + T0, ~α)
]
d(θ + T0) =

= T (t)x∗+

+

t∫
0

T (t− θ)
[
f
(
θ, x(θ),

θ+T0∫
0

k(θ + T0, s)g(s, x(s))ds
)

+ Cu(θ + T0, ~α)
]
d(θ + T0) =

= T (t)x∗+

+

t∫
0

T (t+ T0 − θ − T0)
[
f
(
θ + T0, x(θ + T0),

θ+T0∫
0

k(θ + T0, s)g(s, x(s))ds
)

+

+ Cu(θ + T0, ~α)
]
d(θ + T0) =

= T (t)x∗+

+

t∫
0

T (t− θ)
[
f
(
θ, x(θ + T0),

θ∫
0

k(θ + T0, s+ T0)g(s+ T0, x(s+ T0))d(s+ T0)
)

+

+ Cu(θ + T0, ~α)
]
d(θ + T0) =

= T (t)x∗+

+

t∫
0

T (t− θ)
[
f
(
θ, y(θ),

θ∫
0

k(θ, s)g(s, y(s))ds
)

+ Cu(θ, ~α)
]
dθ =

= HS(t)(x∗),
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which implies that y is also a solution. Then, the uniqueness implies that x(·, ~α) =
x(·, x∗) is just the T0-periodic mild solution of system (1.1). Note that (3.1) and
condition (3.2), we know x(·) is exponentially stable.

By Lemma 3.1, we have the following results.

Theorem 3.2. Under the assumptions of Lemma 3.1, if the sampler periodic T0 has
the following properties:

iωn ∈ ρ(J), ωn =
2nπ
T0

, n = 0,±1,±2, . . . , (3.4)

where ρ(J) is the resolvent set of the matrix J , i satisfies i2 = −1, then the following
open-loop control system

ẋ(t, ~α) = Ax(t, ~α) + f (t, x(t), (Sx)(t)) + Cu(t, ~α),
z(t) = K1x(t),
v̇(t, ~α) = Jv(t, ~α) +K2z(t, ~α),

(3.5)

has a unique T0-periodic mild solution v(t, ~α) given by

v(t, ~α) = eJt
[
(I − eJT0)−1

T0∫
0

eJ(T0−s)K2z(s, ~α)ds
]

+

t∫
0

eJ(t−s)K2z(s, ~α)ds.

Proof. By (3.4), we know that eiωnT0 = ei2nπ = 1, that is 1 ∈ ρ(eJT0). Thus
(I − eJT0)−1 exists and is bounded. It is not difficult to see that

v(t, ~α) = eJtv0 +

t∫
0

eJ(t−s)K2z(s, ~α)ds, (3.6)

where v0 = v(0, ~α). Consider

y = (I − eJT0)−1

T0∫
0

eJ(T0−s)K2z(s, ~α)ds,

which is the unique solution of the following equation

y = eJty +

t∫
0

eJ(t−s)K2z(s, ~α)ds.

Let

v0 = y = (I − eJT0)−1

T0∫
0

eJ(T0−s)K2z(s, ~α)ds,
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it comes from Lemma 3.1 that

z(t+ T0, ~α) = z(t, ~α), t ≥ 0.

It is easy to verify that

v(t, ~α) = eJt
[
(I − eJT0)−1

T0∫
0

eJ(T0−s)K2z(s, ~α)ds
]

+

t∫
0

eJ(t−s)K2z(s, ~α)ds

is just the T0-periodic mild solution v(t, ~α) of the open-loop control system (3.5).
In order to discuss existence of steady-state for system (1.1), we define a map

G : Ω ∈ Rq → Rq given by

G(~α) = (I − eJT0)−1

T0∫
0

eJ(T0−s)K2K1x(s, ~α)ds, ~α ∈ Ω,

where x(·, ~α) is the T0-periodic mild solution of system (1.1) corresponding to ~α ∈ Ω.

Lemma 3.3. Under the assumptions of Theorem 3.2, if

1− e(Lf+LfLg‖k‖T0)T0
Lf (1 + Lg‖k‖T0)

1− e−ν0T0
T0 > 0, (3.7)

there exists a constant M > 0 such that

‖G(~α)−G(~̄α)‖ ≤M‖K2‖‖~α− ~̄α‖, ~α, ~̄α ∈ Ω.

Proof. Let x1(t, ~α) and x2(t, ~̄α) be the T0-periodic mild solution of system (1.1) cor-
responding to ~α and ~̄α ∈ Ω respectively, then

x1(0)− x2(0) = x1(T0)− x2(T0) =
= T (T0)(x1(0)− x2(0))+

+

T0∫
0

T (T0 − θ)(f(θ, x1(θ), (Sx1)(θ))− f(θ, x2(θ), (Sx2)(θ)))dθ+

+

T0∫
0

T (T0 − θ)C(u(θ, ~α)− u(θ, ~̄α))dθ.
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Thus,

‖x1(0)− x2(0)‖0 ≤

≤ ‖[I − T (T0)]−1‖Lf
[ T0∫

0

‖x1(θ)− x2(θ)‖0dθ +

T0∫
0

‖(Sx1)(θ)− (Sx2)(θ)‖0dθ
]
+

+ ‖[I − T (T0)]−1‖‖C‖£b(Rq,(X,‖·‖0))

T0∫
0

‖u(θ, ~α)− u(θ, ~̄α)‖Rqdθ ≤

≤ 1
1− e−ν0T0

Lf

[ T0∫
0

‖x1(θ)− x2(θ)‖0dθ + Lg‖k‖T0

T0∫
0

‖(x1)θ − (x2)θ‖0,Bdθ
]
+

+
1

1− e−ν0T0
‖C‖£b(Rq,(X,‖·‖0))

T0∫
0

‖u(θ, ~α)− u(θ, ~̄α)‖Rqdθ.

For 0 ≤ t ≤ T0, we obtain

‖x1(t, ~α)− x2(t, ~̄α)‖0 ≤
≤ ‖x1(0)− x2(0)‖0+

+ Lf

t∫
0

‖x1(θ)− x2(θ)‖0dθ + LfLg‖k‖T0

t∫
0

‖(x1)θ − (x2)θ‖0,Bdθ+

+ ‖C‖£b(Rq,(X,‖·‖0))

t∫
0

‖u(θ, ~α)− u(θ, ~̄α)‖Rqdθ ≤

≤ 1
1− e−ν0T0

Lf

[ T0∫
0

‖x1(θ)− x2(θ)‖0dθ + Lg‖k‖T0

T0∫
0

‖(x1)θ − (x2)θ‖0,Bdθ
]
+

+ ‖C‖£b(Rq,(X,‖·‖0))

(
1

1− e−ν0T0
+ 1
) T0∫

0

‖u(θ, ~α)− u(θ, ~̄α)‖Rqdθ+

+ Lf

t∫
0

‖x1(θ)− x2(θ)‖0dθ + LfLg‖k‖T0

t∫
0

‖(x1)θ − (x2)θ‖0,Bdθ.
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By Lemma 2.3 again, we have

‖x1(t, ~α)− x2(t, ~̄α)‖0 ≤

≤ e(Lf+LfLg‖k‖T0)T0

{
1

1− e−ν0T0
Lf

[ T0∫
0

‖x1(θ)− x2(θ)‖0dθ+

+ Lg‖k‖T0

T0∫
0

‖(x1)θ − (x2)θ‖0,Bdθ
]
+

+ ‖C‖£b(Rq,(X,‖·‖0))

(
1

1− e−ν0T0
+ 1
) T0∫

0

‖u(θ, ~α)− u(θ, ~̄α)‖Rqdθ
}
.

Integrating from 0 to T0, we obtain

T0∫
0

‖x1(t, ~α)− x2(t, ~̄α)‖0dt ≤
M2

M1

T0∫
0

‖u(θ, ~α)− u(θ, ~̄α)‖Rqdθ ≤

≤ M2

M1

T0∫
0

q∑
l=1

|ul(θ, αl)− ul(θ, ᾱl)|dθ,

where

M1 = 1− e(Lf+LfLg‖k‖T0)T0T0
Lf (1 + Lg‖k‖T0)

1− e−ν0T0
> 0,

M2 = e(Lf+LfLg‖k‖T0)T0‖C‖£b(Rq,(X,‖·‖0))

(
1

1− e−ν0T0
+ 1
)
.

For αlᾱl > 0, without loss of any generality, we suppose that 0 < αl < ᾱl, then we
have

T0∫
0

|ul(θ, αl)− ul(θ, ᾱl)|dθ ≤
ᾱlT0∫
αlT0

|ul(θ, αl)− ul(θ, ᾱl)|dθ ≤ T0|αl − ᾱl|.

For αlᾱl < 0, for example, αl < 0 < ᾱl, |ᾱl| > αl, we have

T0∫
0

|ul(θ, αl)− ul(θ, ᾱl)|dθ ≤
|ᾱl|T0∫
αlT0

|ul(θ, αl)− ul(θ, ᾱl)|dθ ≤ 2T0|αl − ᾱl|.



190 JinRong Wang

By elementally computation,

‖G(~α)−G(~̄α)‖ ≤

≤ ‖(I − eJT0)−1‖‖eJT0‖‖K2‖‖K1‖£b((X,‖·‖0),Rp)

T0∫
0

‖x1(s, ~α)− x2(s, ~̄α)‖0ds ≤

≤ ‖(I − eJT0)−1‖‖eJT0‖‖K2‖‖K1‖£b((X,‖·‖0),Rp)
M2

M1

T0∫
0

‖u(θ, ~α)− u(θ, ~̄α)‖Rqdθ ≤

≤ 2‖(I − eJT0)−1‖‖eJT0‖‖K2‖‖K1‖£b((X,‖·‖0),Rp)
M2

M1
T0‖~α− ~̄α‖.

By virtue of (3.7),

M = 2‖(I − eJT0)−1‖‖eJT0‖‖K1‖£b((X,‖·‖0),Rp)
M2

M1
T0 > 0,

then
‖G(~α)−G(~̄α)‖ ≤M‖K2‖‖~α− ~̄α‖, ~α, ~̄α ∈ Ω.

By Lemma 3.3, we have the following result.

Theorem 3.4. Under the assumptions Lemma 3.3, we can choose a suitable ‖K2‖ > 0
such that system (1.1)–(1.4) has a unique steady-state for any given f ∈ X and the
fixed point of G is just the steady-state duration ratio.

Proof. Let x(t, ~α) be the T0-periodic mild solution of system (1.1) corresponding to
~α ∈ Ω, then

x(0) = x(T0) = T (T0)x(0) +

T0∫
0

T (T0 − θ)
(
f (θ, x(θ), (Sx)(θ)) + Cu(θ, ~α)

)
dθ,

that is,

x(0) = [I − T (T0)]−1

T0∫
0

T (T0 − θ)
(
f (θ, x(θ), (Sx)(θ)) + Cu(θ, ~α)

)
dθ.

It is obvious that

‖x(0)‖0 ≤
1

1− e−ν0T0

1
ν0

(1− e−ν0T0)(MT0 + q‖C‖£b(Rq,(X,‖·‖0))T0) =

=
1
ν0

(MT0 + q‖C‖£b(Rq,(X,‖·‖0))T0) ≡M3.
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It comes from

G(~α) =

= (I − eJT0)−1

T0∫
0

eJ(T0−s)K2K1T (t)x(0)ds+

+ (I − eJT0)−1

T0∫
0

eJ(T0−s)K2K1

( t∫
0

T (t− θ)
(
f (θ, x(θ), (Sx)(θ)) + Cu(θ, ~α)

)
dθ

)
ds

that
‖G(~α)‖ ≤M4‖K2‖,

where

M4 = ‖(I − eJT0)−1‖‖eJT0‖‖K1‖£b(X,Rp)T0(M3 + T0‖C‖£b(Rq,(X,‖·‖0))q +MT0).

It is not difficult to see that G : Ω→ Ω is a contraction map when

0 < ‖K2‖ <
1

max(M,M4)
.

By Banach fixed point theorem, G has a unique fixed point ~α∗ ∈ Ω. Obviously,
the T0-periodic mild solution of system (1.1) corresponding to ~α∗ is just the unique
steady-state.

We end this section by discussing the steady-state stability. The following notations
and assumptions are needed.

Denote two q × q matrices

g(t, η) =

t∫
s

eJ(t−s)K2K1T (s− η)ds,

g(t) = g(t, 0) =

t∫
0

eJ(t−s)K2K1T (s)ds.

[H6] g(t) is q × q matrices function continuously on [0,∞) and satisfies

‖g(t)‖ ≤Mge
−νgt, t ≥ 0, where Mg > 0 and νg > 0.

[H7] (1) There exists an inverse matrix [I −
∫∞

0
g(t)dt]−1, I is identity matrix, and

[
I −

∞∫
0

g(t)dt
]−1

J−1K2K1A
−1f ∈ Int Ω, f ∈ X.
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(2) There exists some constant δ > 0 such that∥∥∥∥∥∥J−1K2K1A
−1f +

( ∞∫
0

g(t)dt
)
~α− v

∥∥∥∥∥∥ ≥ δ, v ∈ Rq − Ω,

where ~α = ProjΩ(v) is the projection of v on the closed convex set Ω.
[H8] There exist MJ > 0, νJ > 0 such that ‖eJt‖ ≤MJe

−νJ t, t > 0.

Theorem 3.5. System (1.1)–(1.4) is steady-state stable under the assumptions [H1],
[H2], [H4], [H6], [H7] and [H8], that is, there exists a ~α ∈ Ω given by

~α = [I −
∞∫

0

g(t)dt]−1J−1K2K1A
−1f,

such that
lim
n→∞

~αn = ~α,

where

~αn = v(nT0) = eJnT0v0 +

nT0∫
0

eJ(nT0−θ)K2K1x(θ)dθ.

Proof. The output v(t) of dynamical controller (1.2) is

v(t) = ve(t) + vK1(t), (3.8)

where

ve(t) = eJtv0 +

t∫
0

eJ(t−τ)K2K1[T (τ)(x0) +A−1f)−A−1f ]dτ,

vK1(t) =

t∫
0

g(t, η)u(η)dη.

From [H6], [H8], it is easy to see that

lim
t→∞

ve(t) = J−1K2K1A
−1f.

From (3.8), after some calculation one can arrive at

∞∑
n=0

[ve(nT0) +
∞∑
k=1

T0g(kT0 − ~βnT0)~αn − v(nT0)] = 0, (3.9)

where ~βn = (~βn1 , . . . ,
~βnq )

T , 0 ≤ βnj ≤ |αnj | ≤ 1, j = 1, 2, . . . , q.
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By Lemma 3.3 of [4], there exists some q × q matrix E(T0, n) such that

∞∑
k=1

T0g(kT0 − ~βnT0) =

∞∫
0

g(t)dt+ E(T0, n),

and
lim
T0→0

‖E(T0, n)‖ = 0 uniformly for n = 0, 1, 2, . . . . (3.10)

From (3.9), we have

J−1K2K1A
−1f + lim

n→∞

{[ ∞∫
0

g(t)dt+ E(T0, n)
]
~αn − v(nT0)

}
. (3.11)

Let δ > 0 be the positive number in [H7]. It is not difficult to prove that there exists
some T ∗ > 0 and N∗(T ∗, δ) > 0 such that

v(nT0) = ~αn, 0 < T0 < T ∗, n ≥ N∗(T ∗, δ). (3.12)

Combined (3.11) and (3.12), we obtain

lim
n→∞

[
I −

∞∫
0

g(t)dt− E(T0, n)
]
~αn = J−1K2K1A

−1f, 0 < T0 < T ∗.

Note that by (3.10) and [H7], one can complete the rest of the proof.

4. EXAMPLE

Consider a heat conduction temperature control system with an one dimensional
control and an one dimensional output

∂
∂tx(t, y) = ∂2x(t,y)

∂2y + bu(t)+

+ Lfx(t, y) + Lf
t∫

0

ψ(s) sin(t− s)Lgx(s, y)ds, y ∈ (0, 2π), t > 0,

x(t, 0) = x(t, 2π) = 0, t ≥ 0,

z(t) =
2π∫
0

k1x(t, y)dy, t ≥ 0,

(4.1)
and the output v(t) satisfies

v̇ =
1
m
v(t) + k2z(t), (4.2)

where m, b, bk, k1 and k2 are positive constants.
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Let X = L2(0, 2π). Define

(Ax)(y) = x′′(y), for arbitrary x ∈ D(A),

D(A) = {x ∈ L2(0, 2π) | x, x′′ ∈ L2(0, 2π), x(0) = x(2π) = 0}.

Then A can generate an exponentially stable C0-semigroup {T (t), t ≥ 0} in X =
L2(0, 2π), has the form

(T (t)x)(y) =
∞∑
n=1

e−λnt〈x, φn〉φn(y),

where

λn =
(n

2

)2

, φn(y) =

√
1
π

sin
ny

2
, 〈x, φn〉 =

2π∫
0

x(y)φn(y)dy.

Obviously,
‖T (t)‖ ≤ e− 1

4 t, t ≥ 0.

Define x(·)(y) = x(·, y), C(·)u(·)(y) = bu(·, y), k(t, s) = ψ(s) sin(t − s), g(t, x(s)) =
Lgx(s),

f (·, x(·), (Sx)(·)) (y) = Lfx(·)(y) + Lf

·∫
0

k(·, s)g(·, x(s))ds(y),

where

ψ(·+ 2π) = ψ(·) ∈ L1
loc([0,+∞);X),

2π∫
0

ψ(s) sin(t− s)x(t)ds = 0

and

K1x(·)(y) = K1x(·, y) =

2π∫
0

k1x(·, y)dy.

Thus problem (4.1) can be rewritten as
ẋ(t) = Ax(t) + f (t, x(t), (Sx)(t)) + Cu(t),
x(0) = x(2π) = 0,
z(t) = K1x,

and the output v(t) satisfies

dv(t)
dt

= Jv(t) +K2z(t),

where J = 1
m , K2 = k2.
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(1) For the condition of the stead-state control, we choose Lf and ψ such that

Lf <
1
4

and 1−e2πLf
2πLf

1− e−π2
2π > 0, ‖ψ‖ = min

{
o
( 1

2LfLgπ
)
, o
( 1

2Lgπ
)}

.

Then all the assumptions given in Theorem 3.4, our results can be used to system
(4.1), (4.2), (1.3), (1.4).

(2) For the condition of the stead-state stability, take into account that

∞∫
0

g(t)dt = mk2

∞∑
i=1

4
i2
〈b, φi〉〈k1, φi〉 = mk2

∞∑
i=1

4
i2

[
4k1b

i2
1
π

(1− cos iπy)2

]
,

where cos iπy 6= 1, and

J−1K2K1A
−1f = mk2

∞∑
i=1

4
i2

[
2k1

i

√
1
π

(1− cos iπy)|〈f, φi〉|
]
,

where 〈f, φi〉 6= 0.

We can choose m and k2 such that

mk2

∞∑
i=1

4
i2

[
2k1

i

√
1
π

(1− cos iπy)(|〈f, φi〉|+ b)
]
< 1.

Then

mk2

∞∑
i=1

4
i2
(
|〈f, φi〉〈k1, φi〉|+ |〈b, φi〉〈k1, φi〉|

)
< 1.

Obviously,

∣∣∣∣mk2

∞∑
i=1

4
i2
〈f, φi〉〈k1, φi〉

∣∣∣∣ ≤ ∣∣∣∣1−mk2

∞∑
i=1

4
i2
〈b, φi〉〈k1, φi〉

∣∣∣∣ =
∣∣∣∣1−

∞∫
0

g(t)dt
∣∣∣∣,

mk2

∞∑
i=1

4
i2
[(
〈f, φi〉〈k1, φi〉+ 〈b, φi〉〈k1, φi〉signv

)
− v
]
≥ δ, where |v| > 1.

Thus, all the assumptions given in Theorem 3.5, our results can be used to system
(4.1), (4.2), (1.3), (1.4).
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