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SOME PROPERTIES OF SET-VALUED SINE FAMILIES

Ewelina Mainka-Niemczyk

Abstract. Let {Ft : t ≥ 0} be a family of continuous additive set-valued functions defined
on a convex cone K in a normed linear space X with nonempty convex compact values in X.
It is shown that (under some assumptions) a regular sine family associated with {Ft : t ≥ 0}
is continuous and {Ft : t ≥ 0} is a continuous cosine family.
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1. INTRODUCTION

Our primary objective in this paper is to introduce some basic properties of families
of set-valued functions satisfying the functional equation

Gt+s(x) = Gt−s(x) + 2Ft(Gs(x)),

which are called here sine families and refer to the trigonometric functional equation

g(t+ s)− g(t− s) = 2f(t)g(s)

considered e.g. in [1, p. 138], [2, p. 365].
Sine families are strongly connected with cosine families, which have been consid-

ered by various authors. Cosine families of continuous linear operators were investi-
gated e.g. in [4–7] and [16], whereas the set-valued case in [14], [10, 11] and [12].

A set-valued regular sine family appeared (non-explicitly) in the paper [10] as a
Hukuhara derivative of a cosine family of continuous additive set-valued functions.

2. PRELIMINARIES

Throughout the paper, we assume that all linear spaces are real. Let X be a normed
linear space. n(X) denotes the set of all nonempty subsets of X, whereas b(X) stands
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for the set of all bounded members of n(X) and c(X) stands for the set of all compact
members of n(X). Moreover, by bcl(X) we denote all closed members of b(X), by
bccl(X) all convex members of bcl(X) and by cc(X) all convex members of c(X).

By B(x0, r) we denote the open ball of the radius r centered at a point x0.
A subset K of the space X is called a cone if tK ⊂ K for all t ∈ [0,∞). We say

that a cone is convex if it is a convex set.
Let K be a convex cone in X. Assume that {Ft : t ≥ 0} is a family of set-valued

functions Ft : K → n(X), t ≥ 0.
A family {Gt : t ≥ 0} of set-valued functions Gt : K → n(K), t ≥ 0, is called a

sine family associated with family {Ft : t ≥ 0}, if

Gt+s(x) = Gt−s(x) + 2Ft(Gs(x)) (2.1)

for 0 ≤ s ≤ t and x ∈ K, where Ft(Gs(x)) :=
⋃
{Ft(y) : y ∈ Gs(x)}.

Example 2.1. Let K = [0,∞), Gt(x) = {xsint} and Ft(x) = {xcost} for t ≥ 0. Then
{Gt : t ≥ 0} is a sine family associated with the family {Ft : t ≥ 0}.

Example 2.2. Let K = [0,∞), Gt(x) = [0, sinht]x and Ft(x) = [1, cosht]x for t ≥ 0.
Then {Gt : t ≥ 0} is a sine family associated with the family {Ft : t ≥ 0}.

A family {Ft : t ≥ 0} of set-valued functions Ft : K → n(K), t ≥ 0, is called a
cosine family, if

F0(x) = {x} (2.2)

for all x ∈ K and
Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)) (2.3)

whenever 0 ≤ s ≤ t and x ∈ K.
Take a set-valued function φ : K → n(Y ), where Y is a normed linear space. We

say that φ is lower semi-continuous at a point t0 ∈ K if for every neighbourhood V
of zero in Y there exists a neighbourhood U of zero in X such that

φ(t0) ⊂ φ(t) + V

for all t ∈ (t0 + U) ∩K. We say that φ is upper semi-continuous at a point t0 ∈ K if
for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X
such that

φ(t) ⊂ φ(t0) + V

for all t ∈ (t0 + U) ∩K. φ is continuous at t0 ∈ K if it is both lower semi-continuous
and upper semi-continuous at x0. It is continuous on K if it is continuous at each
point of K. It is easy to prove that a set-valued function φ : K → bcl(Y ) is continuous
if and only if a single valued function K 3 x 7→ φ(x) ∈ bcl(Y ) is continuous with
respect to the Hausdorff metric derived from the norm in Y .

A sine family {Gt : t ≥ 0} is continuous if the function t 7→ Gt(x) is continuous
for every x ∈ K.

A set-valued function F : K → n(X) is said to be additive if

F (x+ y) = F (x) + F (y) (2.4)
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for all x, y ∈ X. F is linear if (2.4) holds true and it is homogeneous, i.e.

F (λx) = λF (x) (2.5)

for all x ∈ K, λ ≥ 0. An additive and continuous set-valued function with values in
cc(X) is linear (cf. Theorem 5.3 in [9]). We say F is midconcave if

F
[1
2
(x+ y)

]
⊂ 1

2
[F (x) + F (y)]

for all x, y ∈ K (cf. [9]).

Proposition 2.3. Let X be a normed linear space and let K be a convex cone in
X. Assume that {Ft : t ≥ 0} is a family of set-valued functions Ft : K → n(X),
such that F0 is upper semi-continuous linear with compact values and x ∈ F0(x) for
x ∈ K. If {Gt : t ≥ 0} is a sine family associated with the family {Ft : t ≥ 0} and
G0(x) ∈ cc(K) for x ∈ K, then G0(x) = {0} for x ∈ K.

Indeed, putting t = 0 and s = 0 in (2.1), by the cancellation law (cf. [13]) we
obtain the equality {0} = F0(G0(x)), x ∈ K. Since y ∈ F0(y) for all y ∈ K, this
equality yields G0(x) = {0} for x ∈ K.

A family {Gt : t ≥ 0} is increasing if Gs(x) ⊂ Gt(x) for every x ∈ K and 0 ≤ s ≤ t.
The two following propositions are easy to prove.

Proposition 2.4. Let X be a normed linear space and let K be a convex cone in X.
Assume that {Ft : t ≥ 0} is a family of set-valued functions Ft : K → n(X), such that
x ∈ Ft(x) for x ∈ K, t ≥ 0. If {Gt : t ≥ 0} is a sine family associated with the family
{Ft : t ≥ 0}, then the inclusion

Gu(x) + 2Gv(x) ⊂ Gu+2v(x) (2.6)

holds for every u, v ≥ 0, x ∈ K.

Proposition 2.5. Let X be a normed linear space and let K be a convex cone in X.
If a family {Gt : t ≥ 0} of set-valued functions Gt : K → n(X), such that 0 ∈ Gt(x)
for t ≥ 0, x ∈ K, fulfils inclusion (2.6), then it is increasing.

Let {Ft : t ≥ 0} be a family of set-valued functions Ft : K → n(K). We write
lim
t→0+

Ft(x) = {x} if

lim
t→0+

d(Ft(x), {x}) = 0,

where d is the Hausdorff distance derived from the norm in X.
A cosine family {Ft : t ≥ 0} is regular if the above equality is satisfied for each

x ∈ K (cf. [14]).
A sine family {Gt : t ≥ 0} is regular if lim

t→0+

Gt(x)
t = {x}.

Example 2.6. Let K = (−∞,∞) and Ft(x) = [1, cosht]x for t ≥ 0. Then {Ft : t ≥ 0}
is a regular cosine family.
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The sine family from Example 2.1 is regular, whereas the sine family given in
Example 2.2 is not regular. Indeed, since lim

t→0+

sin t
t = 1 and lim

t→0+

sinh t
t = 1 we have

lim
t→0+

{x sin t}
t

= {x}

and
lim
t→0+

[0, sinh t]x
t

= [0, x].

Let A, B, C be sets of cc(X). We say that a set C is the Hukuhara difference of
A and B, i.e., C = A−B if B+C = A. If this difference exists, then it is unique (see
Lemma 1 in [13]).

The next lemma follows directly from the definition of Hukuhara difference.

Lemma 2.7. Let X be a normed linear space and let A, B, C, D be sets of cc(X).
Then:

(a) A−A exists and A−A = {0};
(b) A− {0} exists and A− {0} = A;
(c) if the differences A − C, C − D, D − B exist, then the differences A − B,

(A−B)− (C −D) exist and (A−B)− (C −D) = (A− C) + (D −B).

From the definition of a sine family we obtain

Lemma 2.8. Let X be a normed linear space, K be a convex cone in X and let
Gt : K → cc(K), Ft : K → cc(X) for t ≥ 0. If {Gt : t ≥ 0} is a sine family associated
with the family {Ft : t ≥ 0}, then for all u, v ∈ [0,∞) with u ≤ v and all x ∈ K there
exist Hukuhara differences

Gv(x)−Gu(x).
In the next section we will make use of the following lemma.

Lemma 2.9 ([15, Lemma 3]). Let X be a normed linear space and K be a convex
cone in X. Assume that F : K → cc(K) is a continuous additive set-valued function
and A,B ∈ cc(K). If there exists the difference A−B, then there exists F (A)−F (B)
and F (A)− F (B) = F (A−B).

3. MAIN RESULTS

We give some interesting properties of sine families, in particular continuity and a
connection with cosine families.

Theorem 3.1. Let X be a normed linear space and K be a convex cone in X.
Assume that {Ft : t ≥ 0} is a family of upper semi-continuous at zero set-valued
functions Ft : K → n(X), t ≥ 0, such that x ∈ Ft(x) for x ∈ K, t ≥ 0, F0 is upper
semi-continuous linear with compact values and Ft(0) = {0} for t ≥ 0. Then a sine
family {Gt : t ≥ 0} of set-valued functions Gt : K → b(K) associated with the family
{Ft : t ≥ 0}, such that G0 has convex compact values and 0 ∈ Gt(x) for x ∈ K, t ≥ 0
is continuous.
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Proof. Let us fix x ∈ K arbitrarily and put φ(t) := Gt(x). From (2.6) we have

φ(u) + 2φ(v) ⊂ φ(u+ 2v)

for u ≥ 0, v ≥ 0. Putting u = v we get

3φ(u) ⊂ φ(3u),

and therefore
φ
(u

3

)
⊂ 1

3
φ(u).

Thus
φ
( u

3n
)
⊂ 1

3n
φ(u)

for u ≥ 0 and n ∈ N. Taking u = 1 we obtain φ( 1
3n ) ⊂ 1

3nφ(1) for n ∈ N. Let ε > 0.
There exists n ∈ N such that 1

3nφ(1) ⊂ B(0, ε). By the monotonicity of φ

φ(w) ⊂ B(0, ε) (3.1)

for 0 ≤ w < 1
3n . Since φ(0) = {0} (Proposition 2.3), φ is upper semi-continuous at 0.

Let us fix u ∈ (0,∞) arbitrarily. We shall prove that φ is upper semi-continuous
at u. It is easily seen, that it suffices to show that φ is upper semi-continuous on the
right. Suppose that V is a neighbourhood of zero in X. Setting t = u in (2.1) and
using the monotonicity of φ, we obtain

φ(u+ s) = φ(u− s) + 2Fu(φ(s)) ⊂ φ(u) + 2Fu(φ(s)) (3.2)

for all s ∈ (0, u). Since Fu is upper semi-continuous at 0 and Fu(0) = {0}, there exists
ε > 0 such that

Fu(y) ⊂
1
2
V

for y ∈ B(0, ε) ∩K. By (3.1) there is some positive integer n such that

Fu(φ(s)) ⊂ 1
2
V for s ∈

[
0,

1
3n
)
.

Hence, for w ∈
(
u, u+ 1

3n

)
we have

φ(w) ⊂ φ(u) + V,

which shows that φ is upper semi-continuous at u.
Now it remains to show that φ is lower semi-continuous. Let us fix u ∈ [0,∞).

It is easily seen, that it suffices to show that φ is lower semi-continuous on the left
at u ∈ (0,∞). Let us fix a neighbourhood V of zero in X. Using (3.2) and the
monotonicity of φ, we get

φ(u) ⊂ φ(u+ s) = φ(u− s) + 2Fu(φ(s))

for all s ∈ (0, u). A similar reasoning as before shows that there is some positive integer
n such that φ(u) ⊂ φ(w) +V , for all w ∈

(
u− 1

3n , u
)
, thus φ is lower semi-continuous

in u. This completes the proof.
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Lemma 3.2. Let X be a normed linear space, K be a convex cone in X,
Gt : K → cc(K), Ft : K → cc(X), t ≥ 0 and let F0 be upper semi-continuous linear.
If {Gt : t ≥ 0} is a regular sine family associated with the family {Ft : t ≥ 0} and
x ∈ Ft(x), x ∈ K, t ≥ 0, then

x ∈ Gs(x)
s

(3.3)

for all x ∈ K and s > 0.

Proof. From (2.1), Proposition 2.3 and by x ∈ Ft(x) we have

Gs(x) = G0(x) + 2F s
2
(G s

2
(x)) ⊃ 2G s

2
(x),

thus
G s

2n (x)
s
2n

⊂ Gs(x)
s

for n ∈ N.

Regularity of {Gt : t ≥ 0} implies

G s
2n (x)
s
2n

→ {x} as n→∞,

therefore

x ∈ Gs(x)
s

for all x ∈ K and s > 0.

Theorem 3.3. Let X be a normed linear space and K be a convex cone in X. Assume
that {Ft : t ≥ 0} is a family of upper semi-continuous at zero additive set-valued
functions Ft : K → cc(X), t ≥ 0, such that x ∈ Ft(x) for x ∈ K, t ≥ 0 and F0 is upper
semi-continuous linear. If a sine family {Gt : t ≥ 0} of set-valued functions Gt : K →
cc(K) associated with the family {Ft : t ≥ 0} is regular, then it is continuous.

Proof. Let us fix x ∈ K arbitrarily and put ψ(t) := Gt(x)− tx, t ≥ 0. Then 0 ∈ ψ(x),
t ≥ 0. Indeed, by Lemma 3.2 and Proposition 2.3 we have

tx ∈ Gt(x)

for t ≥ 0. Hence
0 ∈ Gt(x)− tx = ψ(t), t ≥ 0.

From (2.6) we have

ψ(u) + 2ψ(v) = Gu(x)− ux+ 2Gv(x)− 2vx =
= Gu(x) + 2Gv(x)− (u+ 2v)x ⊂ Gu+2v(x)− (u+ 2v)x = ψ(u+ 2v),

i.e.,
ψ(u) + 2ψ(v) ⊂ ψ(u+ 2v)
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for u ≥ 0, v ≥ 0. In the same way as in the proof of Theorem 3.1 we obtain that for
each ε > 0 there is n ∈ N such that

ψ(w) ⊂ B(0, ε) (3.4)

for all w ∈ [0, 1
3n ), and that ψ is upper semi-continuous at 0.

Let us fix u ∈ (0,∞) arbitrarily. We shall prove that ψ is upper semi-continuous
at u. Since ψ is increasing (Proposition 2.5), it suffices to show that ψ is upper
semi-continuous on the right at u. Suppose that V is a symmetric convex neighbour-
hood of zero in X. Setting t = u in (2.1) we obtain

ψ(u+ s) = Gu+s(x)− (u+ s)x = [Gu−s(x)− (u− s)x] + 2Fu(Gs(x))− 2sx =
= ψ(u− s) + 2Fu(ψ(s) + sx)− 2sx =
= ψ(u− s) + 2Fu(ψ(s)) + 2Fu(sx)− 2sx

i.e.,
ψ(u+ s) = ψ(u− s) + 2Fu(ψ(s)) + 2Fu(sx)− 2sx (3.5)

for all s ∈ (0, u). Hence, by the monotonicity of ψ

ψ(u+ s) ⊂ ψ(u) + 2Fu(ψ(s)) + 2Fu(sx)− 2sx

for s ∈ (0, u). Since Fu is upper semi-continuous at zero and Fu(0) = {0}, there exists
ε > 0 such that

Fu(y) ⊂
1
6
V

for y ∈ B(0, ε) ∩K. By (3.4) there is some positive integer n such that

Fu(ψ(s)) ⊂ 1
6
V for s ∈

[
0,

1
3n
)
.

Moreover, we can assume that n is large enough in order that

Fu(sx) ⊂
1
6
V, sx ∈ 1

6
V

for s ∈
[
0, 1

3n

)
. Hence, for w ∈

(
u, u+ 1

3n

)
we have

ψ(w) ⊂ ψ(u) + V,

which shows that ψ is upper semi-continuous at u.
It remains to show that ψ is lower semi-continuous. Let us fix u ∈ [0,∞). It is

easily seen, that it suffices to show that ψ is lower semi-continuous on the left at
u ∈ (0,∞). Let us fix a symmetric convex neighbourhood V of zero in X. Using the
monotonicity of ψ and (3.5), we get

ψ(u) ⊂ ψ(u+ s) = ψ(u− s) + 2Fu(ψ(s)) + 2Fu(sx)− 2sx

for all s ∈ (0, u). A similar reasoning as before shows that there is a positive integer n
such that ψ(u) ⊂ ψ(w)+V for all w ∈

(
u− 1

3n , u
)
. Therefore ψ is lower semi-continuous

in u, which completes the proof.
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Remark 3.4. Let X be a normed linear space, K be a convex cone in X, Gt : K →
cc(K), Ft : K → cc(X) for t ≥ 0. If {Gt : t ≥ 0} is a regular sine family associated
with the family {Ft : t ≥ 0} and all Ft are continuous and additive, then the family
{Ft : t ≥ 0} is unique.

Assume that {Ft : t ≥ 0} and {Ht : t ≥ 0} are two families of continuous and
additive set-valued functions such that

Gt+s(x) = Gt−s(x) + 2Ft(Gs(x))

and
Gt+s(x) = Gt−s(x) + 2Ht(Gs(x)).

Then
Gt−s(x) + 2Ft(Gs(x)) = Gt−s(x) + 2Ht(Gs(x))

and by the cancellation law Ft(Gs(x)) = Ht(Gs(x)) for all 0 ≤ s ≤ t. Using (2.5) we
get

Ft

(Gs(x)
s

)
= Ht

(Gs(x)
s

)
.

Letting s tend to 0 from the right, by regularity of {Gt : t ≥ 0} we obtain

Ft(x) = Ht(x).

Example 3.5. Let K = [0,∞), Gt(x) = t[0, x], Ft(x) = {x} and Ht(x) = [0, x] for
t ≥ 0, x ∈ K. Then {Gt : t ≥ 0} is a sine family associated with the family {Ft : t ≥ 0}
and with the family {Ht : t ≥ 0}.

Indeed, we have

Gt+s(x) = (t+ s)[0, x] = (t− s)[0, x] + 2s[0, x] =
= Gt−s(x) + 2Gs(x) = Gt−s(x) + 2Ft(Gs(x))

and

Gt+s(x) = (t+ s)[0, x] = (t− s)[0, x] + 2s[0, x] =
= Gt−s(x) + 2Ht(s[0, x]) = Gt−s(x) + 2Ht(Gs(x)).

Observe that all Ft and Ht are continuous and additive, but the sine family {Gt : t ≥
0} is not regular, since

lim
t→0+

Gt(x)
t

= [0, x].

Theorem 3.6. Let X be a real normed additive space, K a convex cone in X and let
{Ft : t ≥ 0} be a family of continuous additive set-valued functions Ft : K → cc(K),
such that F0(x) = {x}, x ∈ K. Assume that {Gt : t ≥ 0} is a regular sine family of
set-valued functions Gt : K → cc(K) associated with the family {Ft : t ≥ 0}. Then:

(a) {Ft : t ≥ 0} is a cosine family,
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(b) if moreover
x ∈ Ft(x) (3.6)

for x ∈ K and t ≥ 0, then {Ft : t ≥ 0} is a continuous cosine family. In particular
it is regular.

Proof. (a) Let us take s, u, v such that 0 ≤ s ≤ v−u, 0 ≤ s ≤ u and 0 ≤ u ≤ v. From
(2.1) we get

Gv+u+s(x) = Gv+u−s(x) + 2Fv+u(Gs(x)), (3.7)
Gv−u+s(x) = Gv−u−s(x) + 2Fv−u(Gs(x)), (3.8)
Gv+u+s(x) = Gv−u−s(x) + 2Fv(Gu+s(x)), (3.9)
Gv+u−s(x) = Gv−u+s(x) + 2Fv(Gu−s(x)), (3.10)

for all x ∈ K. By Lemma 2.7 and Lemma 2.9, we have therefore

2Fv(2Fu(Gs(x))) = 2Fv[Gu+s(x)−Gu−s(x)] = 2Fv(Gu+s(x))− 2Fv(Gu−s(x)) =
= [Gv+u+s(x)−Gv−u−s(x)]− [Gv+u−s(x)−Gv−u+s(x)] =
= [Gv+u+s(x)−Gv+u−s(x)] + [Gv−u+s(x)−Gv−u−s(x)] =
= 2Fv+u(Gs(x)) + 2Fv−u(Gs(x)).

Since Ft are linear, we can write

2Fv
(
Fu

(Gs(x)
s

))
= Fv+u

(Gs(x)
s

)
+ Fv−u

(Gs(x)
s

)
.

Letting s tend to 0 we obtain from continuity of Ft

2Fv(Fu(x)) = Fv+u(x) + Fv−u(x).

(b) The proof will be divided into three steps.
Step 1. From (2.3) and (3.6) follows the inclusion

Ft+s(x) + Ft−s(x) ⊃ 2Ft(x)

for 0 ≤ s ≤ t, which implies that set-valued functions u 7→ Fu(x) (x ∈ K) are
midconcave in [0,∞) (cf. [11, the proof of Theorem 3]).

For fixed s > 0 and t > 0 from (2.1) and Lemma 3.2 we obtain

Ft(x) ⊂ Ft
(Gs(x)

s

)
=
Gt+s(x)−Gt−s(x)

2s

for all x ∈ K. Since set-valued functions

t 7→ Gt+s(x)−Gt−s(x)
2s

are continuous in (s,∞) (cf. Theorem 3.3), from Theorem 4.3 in [9] set-valued func-
tions

t 7→ Ft(x)
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for x ∈ K are continuous in (s,∞), thus also in (0,∞). Continuity and midconcavity
of set-valued functions t 7→ Ft(x) imply their concavity, i.e.,

Fλt+(1−λ)s(x) ⊂ λFt(x) + (1− λ)Fs(x), λ ∈ [0, 1], s, t > 0, x ∈ K

(cf. Theorem 4.1 in [9]). We get therefore convexity of functions

ψ(t) := diam(Ft(x))

in (0,∞) for all x ∈ K.
Indeed, let λ ∈ [0, 1] and s, t ∈ (0,∞). By the concavity of the functions t 7→ Ft(x)

we have

ψ(λt+ (1− λ)s) = diam[Fλt+(1−λ)s(x)] ≤ diam[λFt(x) + (1− λ)Fs(x)] ≤
≤ diam[λFt(x)] + diam[(1− λ)Fs(x)] =
= λdiam[Ft(x)] + (1− λ)diam[Fs(x)] = λψ(t) + (1− λ)ψ(s).

Step 2. For t > 0 and x ∈ K we have

Ft(x) + x = 2F 2
t
2
(x).

From (3.6) we obtain

Ft(x) + x = F 2
t
2
(x) + F 2

t
2
(x) ⊃ F t

2
(x) + x,

and therefore
F t

2
(x) ⊂ Ft(x).

Hence the sequence (F t
2n

(x)) is descending. Put

Ht(x) :=
∞⋂
n=0

F t
2n

(x).

From the inclusion

F t
2n

(x) + x = 2F 2
t

2n+1
(x) ⊃ F t

2n+1
(x) + F t

2n+1
(x) ⊃ 2Ht(x)

and Lemma 2 in [8] it follows that

Ht(x) + x =
∞⋂
n=0

F t
2n

(x) + x =
∞⋂
n=0

[F t
2n

(x) + x] ⊃ 2Ht(x).

Therefore, by the cancellation law we get

Ht(x) = {x}
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for t > 0 and x ∈ K. Thus limn→∞ F t
2n

(x) = {x} (cf. Lemma 3 in [8]), whence

limn→∞ ψ
(
t

2n

)
= 0. Since ψ is convex, we have

lim
s→0+

ψ(s) = 0.

Step 3. Fix ε > 0. There is η > 0 such that

ψ(s) < ε for s ∈ (0, η).

Let s ∈ (0, η) and y ∈ Fs(x). We have then

‖y − x‖ ≤ diam(Fs(x)) = ψ(s) < ε.

Hence
Fs(x) ⊂ B(x, ε)

and
lim
s→0+

Fs(x) = {x}.
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