SOME PROPERTIES OF SET-VALUED SINE FAMILIES

Ewelina Mainka-Niemczyk

Abstract

Let $\left\{F_{t}: t \geq 0\right\}$ be a family of continuous additive set-valued functions defined on a convex cone K in a normed linear space X with nonempty convex compact values in X. It is shown that (under some assumptions) a regular sine family associated with $\left\{F_{t}: t \geq 0\right\}$ is continuous and $\left\{F_{t}: t \geq 0\right\}$ is a continuous cosine family.

Keywords: set-valued sine and cosine families, continuity of sine families, Hukuhara differences, concave set-valued functions.

Mathematics Subject Classification: 26E25, 47H04, 47D09, 39 B 52.

1. INTRODUCTION

Our primary objective in this paper is to introduce some basic properties of families of set-valued functions satisfying the functional equation

$$
G_{t+s}(x)=G_{t-s}(x)+2 F_{t}\left(G_{s}(x)\right),
$$

which are called here sine families and refer to the trigonometric functional equation

$$
g(t+s)-g(t-s)=2 f(t) g(s)
$$

considered e.g. in [1, p. 138], [2, p. 365].
Sine families are strongly connected with cosine families, which have been considered by various authors. Cosine families of continuous linear operators were investigated e.g. in $[4-7]$ and [16], whereas the set-valued case in [14], [10, 11] and [12].

A set-valued regular sine family appeared (non-explicitly) in the paper [10] as a Hukuhara derivative of a cosine family of continuous additive set-valued functions.

2. PRELIMINARIES

Throughout the paper, we assume that all linear spaces are real. Let X be a normed linear space. $n(X)$ denotes the set of all nonempty subsets of X, whereas $b(X)$ stands
for the set of all bounded members of $n(X)$ and $c(X)$ stands for the set of all compact members of $n(X)$. Moreover, by $b c l(X)$ we denote all closed members of $b(X)$, by $b c c l(X)$ all convex members of $b c l(X)$ and by $c c(X)$ all convex members of $c(X)$.

By $B\left(x_{0}, r\right)$ we denote the open ball of the radius r centered at a point x_{0}.
A subset K of the space X is called a cone if $t K \subset K$ for all $t \in[0, \infty)$. We say that a cone is convex if it is a convex set.

Let K be a convex cone in X. Assume that $\left\{F_{t}: t \geq 0\right\}$ is a family of set-valued functions $F_{t}: K \rightarrow n(X), t \geq 0$.

A family $\left\{G_{t}: t \geq 0\right\}$ of set-valued functions $G_{t}: K \rightarrow n(K), t \geq 0$, is called a sine family associated with family $\left\{F_{t}: t \geq 0\right\}$, if

$$
\begin{equation*}
G_{t+s}(x)=G_{t-s}(x)+2 F_{t}\left(G_{s}(x)\right) \tag{2.1}
\end{equation*}
$$

for $0 \leq s \leq t$ and $x \in K$, where $F_{t}\left(G_{s}(x)\right):=\bigcup\left\{F_{t}(y): y \in G_{s}(x)\right\}$.
Example 2.1. Let $K=[0, \infty), G_{t}(x)=\{x \sin t\}$ and $F_{t}(x)=\{x \cos t\}$ for $t \geq 0$. Then $\left\{G_{t}: t \geq 0\right\}$ is a sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$.
Example 2.2. Let $K=[0, \infty), G_{t}(x)=[0, \sinh t] x$ and $F_{t}(x)=[1, \cosh t] x$ for $t \geq 0$. Then $\left\{G_{t}: t \geq 0\right\}$ is a sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$.

A family $\left\{F_{t}: t \geq 0\right\}$ of set-valued functions $F_{t}: K \rightarrow n(K), t \geq 0$, is called a cosine family, if

$$
\begin{equation*}
F_{0}(x)=\{x\} \tag{2.2}
\end{equation*}
$$

for all $x \in K$ and

$$
\begin{equation*}
F_{t+s}(x)+F_{t-s}(x)=2 F_{t}\left(F_{s}(x)\right) \tag{2.3}
\end{equation*}
$$

whenever $0 \leq s \leq t$ and $x \in K$.
Take a set-valued function $\phi: K \rightarrow n(Y)$, where Y is a normed linear space. We say that ϕ is lower semi-continuous at a point $t_{0} \in K$ if for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$
\phi\left(t_{0}\right) \subset \phi(t)+V
$$

for all $t \in\left(t_{0}+U\right) \cap K$. We say that ϕ is upper semi-continuous at a point $t_{0} \in K$ if for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$
\phi(t) \subset \phi\left(t_{0}\right)+V
$$

for all $t \in\left(t_{0}+U\right) \cap K . \phi$ is continuous at $t_{0} \in K$ if it is both lower semi-continuous and upper semi-continuous at x_{0}. It is continuous on K if it is continuous at each point of K. It is easy to prove that a set-valued function $\phi: K \rightarrow b c l(Y)$ is continuous if and only if a single valued function $K \ni x \mapsto \phi(x) \in b c l(Y)$ is continuous with respect to the Hausdorff metric derived from the norm in Y.

A sine family $\left\{G_{t}: t \geq 0\right\}$ is continuous if the function $t \mapsto G_{t}(x)$ is continuous for every $x \in K$.

A set-valued function $F: K \rightarrow n(X)$ is said to be additive if

$$
\begin{equation*}
F(x+y)=F(x)+F(y) \tag{2.4}
\end{equation*}
$$

for all $x, y \in X . F$ is linear if (2.4) holds true and it is homogeneous, i.e.

$$
\begin{equation*}
F(\lambda x)=\lambda F(x) \tag{2.5}
\end{equation*}
$$

for all $x \in K, \lambda \geq 0$. An additive and continuous set-valued function with values in $c c(X)$ is linear (cf. Theorem 5.3 in [9]). We say F is midconcave if

$$
F\left[\frac{1}{2}(x+y)\right] \subset \frac{1}{2}[F(x)+F(y)]
$$

for all $x, y \in K$ (cf. [9]).
Proposition 2.3. Let X be a normed linear space and let K be a convex cone in X. Assume that $\left\{F_{t}: t \geq 0\right\}$ is a family of set-valued functions $F_{t}: K \rightarrow n(X)$, such that F_{0} is upper semi-continuous linear with compact values and $x \in F_{0}(x)$ for $x \in K$. If $\left\{G_{t}: t \geq 0\right\}$ is a sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$ and $G_{0}(x) \in c c(K)$ for $x \in K$, then $G_{0}(x)=\{0\}$ for $x \in K$.

Indeed, putting $t=0$ and $s=0$ in (2.1), by the cancellation law (cf. [13]) we obtain the equality $\{0\}=F_{0}\left(G_{0}(x)\right), x \in K$. Since $y \in F_{0}(y)$ for all $y \in K$, this equality yields $G_{0}(x)=\{0\}$ for $x \in K$.

A family $\left\{G_{t}: t \geq 0\right\}$ is increasing if $G_{s}(x) \subset G_{t}(x)$ for every $x \in K$ and $0 \leq s \leq t$.
The two following propositions are easy to prove.
Proposition 2.4. Let X be a normed linear space and let K be a convex cone in X. Assume that $\left\{F_{t}: t \geq 0\right\}$ is a family of set-valued functions $F_{t}: K \rightarrow n(X)$, such that $x \in F_{t}(x)$ for $x \in K, t \geq 0$. If $\left\{G_{t}: t \geq 0\right\}$ is a sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$, then the inclusion

$$
\begin{equation*}
G_{u}(x)+2 G_{v}(x) \subset G_{u+2 v}(x) \tag{2.6}
\end{equation*}
$$

holds for every $u, v \geq 0, x \in K$.
Proposition 2.5. Let X be a normed linear space and let K be a convex cone in X. If a family $\left\{G_{t}: t \geq 0\right\}$ of set-valued functions $G_{t}: K \rightarrow n(X)$, such that $0 \in G_{t}(x)$ for $t \geq 0, x \in K$, fulfils inclusion (2.6), then it is increasing.

Let $\left\{F_{t}: t \geq 0\right\}$ be a family of set-valued functions $F_{t}: K \rightarrow n(K)$. We write $\lim _{t \rightarrow 0^{+}} F_{t}(x)=\{x\}$ if

$$
\lim _{t \rightarrow 0^{+}} d\left(F_{t}(x),\{x\}\right)=0
$$

where d is the Hausdorff distance derived from the norm in X.
A cosine family $\left\{F_{t}: t \geq 0\right\}$ is regular if the above equality is satisfied for each $x \in K$ (cf. [14]).

A sine family $\left\{G_{t}: t \geq 0\right\}$ is regular if $\lim _{t \rightarrow 0^{+}} \frac{G_{t}(x)}{t}=\{x\}$.
Example 2.6. Let $K=(-\infty, \infty)$ and $F_{t}(x)=[1, \cosh t] x$ for $t \geq 0$. Then $\left\{F_{t}: t \geq 0\right\}$ is a regular cosine family.

The sine family from Example 2.1 is regular, whereas the sine family given in Example 2.2 is not regular. Indeed, since $\lim _{t \rightarrow 0^{+}} \frac{\sin t}{t}=1$ and $\lim _{t \rightarrow 0^{+}} \frac{\sinh t}{t}=1$ we have

$$
\lim _{t \rightarrow 0^{+}} \frac{\{x \sin t\}}{t}=\{x\}
$$

and

$$
\lim _{t \rightarrow 0^{+}} \frac{[0, \sinh t] x}{t}=[0, x] .
$$

Let A, B, C be sets of $c c(X)$. We say that a set C is the Hukuhara difference of A and B, i.e., $C=A-B$ if $B+C=A$. If this difference exists, then it is unique (see Lemma 1 in [13]).

The next lemma follows directly from the definition of Hukuhara difference.
Lemma 2.7. Let X be a normed linear space and let A, B, C, D be sets of $c c(X)$. Then:
(a) $A-A$ exists and $A-A=\{0\}$;
(b) $A-\{0\}$ exists and $A-\{0\}=A$;
(c) if the differences $A-C, C-D, D-B$ exist, then the differences $A-B$, $(A-B)-(C-D)$ exist and $(A-B)-(C-D)=(A-C)+(D-B)$.

From the definition of a sine family we obtain
Lemma 2.8. Let X be a normed linear space, K be a convex cone in X and let $G_{t}: K \rightarrow c c(K), F_{t}: K \rightarrow c c(X)$ for $t \geq 0$. If $\left\{G_{t}: t \geq 0\right\}$ is a sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$, then for all $u, v \in[0, \infty)$ with $u \leq v$ and all $x \in K$ there exist Hukuhara differences

$$
G_{v}(x)-G_{u}(x) .
$$

In the next section we will make use of the following lemma.
Lemma 2.9 ([15, Lemma 3]). Let X be a normed linear space and K be a convex cone in X. Assume that $F: K \rightarrow c c(K)$ is a continuous additive set-valued function and $A, B \in c c(K)$. If there exists the difference $A-B$, then there exists $F(A)-F(B)$ and $F(A)-F(B)=F(A-B)$.

3. MAIN RESULTS

We give some interesting properties of sine families, in particular continuity and a connection with cosine families.

Theorem 3.1. Let X be a normed linear space and K be a convex cone in X. Assume that $\left\{F_{t}: t \geq 0\right\}$ is a family of upper semi-continuous at zero set-valued functions $F_{t}: K \rightarrow n(X), t \geq 0$, such that $x \in F_{t}(x)$ for $x \in K, t \geq 0, F_{0}$ is upper semi-continuous linear with compact values and $F_{t}(0)=\{0\}$ for $t \geq 0$. Then a sine family $\left\{G_{t}: t \geq 0\right\}$ of set-valued functions $G_{t}: K \rightarrow b(K)$ associated with the family $\left\{F_{t}: t \geq 0\right\}$, such that G_{0} has convex compact values and $0 \in G_{t}(x)$ for $x \in K, t \geq 0$ is continuous.

Proof. Let us fix $x \in K$ arbitrarily and put $\phi(t):=G_{t}(x)$. From (2.6) we have

$$
\phi(u)+2 \phi(v) \subset \phi(u+2 v)
$$

for $u \geq 0, v \geq 0$. Putting $u=v$ we get

$$
3 \phi(u) \subset \phi(3 u),
$$

and therefore

$$
\phi\left(\frac{u}{3}\right) \subset \frac{1}{3} \phi(u) .
$$

Thus

$$
\phi\left(\frac{u}{3^{n}}\right) \subset \frac{1}{3^{n}} \phi(u)
$$

for $u \geq 0$ and $n \in \mathbb{N}$. Taking $u=1$ we obtain $\phi\left(\frac{1}{3^{n}}\right) \subset \frac{1}{3^{n}} \phi(1)$ for $n \in \mathbb{N}$. Let $\varepsilon>0$. There exists $n \in \mathbb{N}$ such that $\frac{1}{3^{n}} \phi(1) \subset B(0, \varepsilon)$. By the monotonicity of ϕ

$$
\begin{equation*}
\phi(w) \subset B(0, \varepsilon) \tag{3.1}
\end{equation*}
$$

for $0 \leq w<\frac{1}{3^{n}}$. Since $\phi(0)=\{0\}$ (Proposition 2.3), ϕ is upper semi-continuous at 0 .
Let us fix $u \in(0, \infty)$ arbitrarily. We shall prove that ϕ is upper semi-continuous at u. It is easily seen, that it suffices to show that ϕ is upper semi-continuous on the right. Suppose that V is a neighbourhood of zero in X. Setting $t=u$ in (2.1) and using the monotonicity of ϕ, we obtain

$$
\begin{equation*}
\phi(u+s)=\phi(u-s)+2 F_{u}(\phi(s)) \subset \phi(u)+2 F_{u}(\phi(s)) \tag{3.2}
\end{equation*}
$$

for all $s \in(0, u)$. Since F_{u} is upper semi-continuous at 0 and $F_{u}(0)=\{0\}$, there exists $\varepsilon>0$ such that

$$
F_{u}(y) \subset \frac{1}{2} V
$$

for $y \in B(0, \varepsilon) \cap K$. By (3.1) there is some positive integer n such that

$$
F_{u}(\phi(s)) \subset \frac{1}{2} V \quad \text { for } \quad s \in\left[0, \frac{1}{3^{n}}\right) .
$$

Hence, for $w \in\left(u, u+\frac{1}{3^{n}}\right)$ we have

$$
\phi(w) \subset \phi(u)+V
$$

which shows that ϕ is upper semi-continuous at u.
Now it remains to show that ϕ is lower semi-continuous. Let us fix $u \in[0, \infty)$. It is easily seen, that it suffices to show that ϕ is lower semi-continuous on the left at $u \in(0, \infty)$. Let us fix a neighbourhood V of zero in X. Using (3.2) and the monotonicity of ϕ, we get

$$
\phi(u) \subset \phi(u+s)=\phi(u-s)+2 F_{u}(\phi(s))
$$

for all $s \in(0, u)$. A similar reasoning as before shows that there is some positive integer n such that $\phi(u) \subset \phi(w)+V$, for all $w \in\left(u-\frac{1}{3^{n}}, u\right)$, thus ϕ is lower semi-continuous in u. This completes the proof.

Lemma 3.2. Let X be a normed linear space, K be a convex cone in X, $G_{t}: K \rightarrow c c(K), F_{t}: K \rightarrow c c(X), t \geq 0$ and let F_{0} be upper semi-continuous linear. If $\left\{G_{t}: t \geq 0\right\}$ is a regular sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$ and $x \in F_{t}(x), x \in K, t \geq 0$, then

$$
\begin{equation*}
x \in \frac{G_{s}(x)}{s} \tag{3.3}
\end{equation*}
$$

for all $x \in K$ and $s>0$.
Proof. From (2.1), Proposition 2.3 and by $x \in F_{t}(x)$ we have

$$
G_{s}(x)=G_{0}(x)+2 F_{\frac{s}{2}}\left(G_{\frac{s}{2}}(x)\right) \supset 2 G_{\frac{s}{2}}(x),
$$

thus

$$
\frac{G_{\frac{s}{2^{n}}}(x)}{\frac{s}{2^{n}}} \subset \frac{G_{s}(x)}{s} \quad \text { for } \quad n \in \mathbb{N} .
$$

Regularity of $\left\{G_{t}: t \geq 0\right\}$ implies

$$
\frac{G_{\frac{s}{2^{n}}}(x)}{\frac{s}{2^{n}}} \rightarrow\{x\} \text { as } n \rightarrow \infty
$$

therefore

$$
x \in \frac{G_{s}(x)}{s}
$$

for all $x \in K$ and $s>0$.
Theorem 3.3. Let X be a normed linear space and K be a convex cone in X. Assume that $\left\{F_{t}: t \geq 0\right\}$ is a family of upper semi-continuous at zero additive set-valued functions $F_{t}: K \rightarrow c c(X), t \geq 0$, such that $x \in F_{t}(x)$ for $x \in K, t \geq 0$ and F_{0} is upper semi-continuous linear. If a sine family $\left\{G_{t}: t \geq 0\right\}$ of set-valued functions $G_{t}: K \rightarrow$ $c c(K)$ associated with the family $\left\{F_{t}: t \geq 0\right\}$ is regular, then it is continuous.

Proof. Let us fix $x \in K$ arbitrarily and put $\psi(t):=G_{t}(x)-t x, t \geq 0$. Then $0 \in \psi(x)$, $t \geq 0$. Indeed, by Lemma 3.2 and Proposition 2.3 we have

$$
t x \in G_{t}(x)
$$

for $t \geq 0$. Hence

$$
0 \in G_{t}(x)-t x=\psi(t), \quad t \geq 0
$$

From (2.6) we have

$$
\begin{aligned}
\psi(u)+2 \psi(v) & =G_{u}(x)-u x+2 G_{v}(x)-2 v x= \\
& =G_{u}(x)+2 G_{v}(x)-(u+2 v) x \subset G_{u+2 v}(x)-(u+2 v) x=\psi(u+2 v)
\end{aligned}
$$

i.e.,

$$
\psi(u)+2 \psi(v) \subset \psi(u+2 v)
$$

for $u \geq 0, v \geq 0$. In the same way as in the proof of Theorem 3.1 we obtain that for each $\varepsilon>0$ there is $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\psi(w) \subset B(0, \varepsilon) \tag{3.4}
\end{equation*}
$$

for all $w \in\left[0, \frac{1}{3^{n}}\right)$, and that ψ is upper semi-continuous at 0 .
Let us fix $u \in(0, \infty)$ arbitrarily. We shall prove that ψ is upper semi-continuous at u. Since ψ is increasing (Proposition 2.5), it suffices to show that ψ is upper semi-continuous on the right at u. Suppose that V is a symmetric convex neighbourhood of zero in X. Setting $t=u$ in (2.1) we obtain

$$
\begin{aligned}
\psi(u+s) & =G_{u+s}(x)-(u+s) x=\left[G_{u-s}(x)-(u-s) x\right]+2 F_{u}\left(G_{s}(x)\right)-2 s x= \\
& =\psi(u-s)+2 F_{u}(\psi(s)+s x)-2 s x= \\
& =\psi(u-s)+2 F_{u}(\psi(s))+2 F_{u}(s x)-2 s x
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\psi(u+s)=\psi(u-s)+2 F_{u}(\psi(s))+2 F_{u}(s x)-2 s x \tag{3.5}
\end{equation*}
$$

for all $s \in(0, u)$. Hence, by the monotonicity of ψ

$$
\psi(u+s) \subset \psi(u)+2 F_{u}(\psi(s))+2 F_{u}(s x)-2 s x
$$

for $s \in(0, u)$. Since F_{u} is upper semi-continuous at zero and $F_{u}(0)=\{0\}$, there exists $\varepsilon>0$ such that

$$
F_{u}(y) \subset \frac{1}{6} V
$$

for $y \in B(0, \varepsilon) \cap K$. By (3.4) there is some positive integer n such that

$$
F_{u}(\psi(s)) \subset \frac{1}{6} V \quad \text { for } \quad s \in\left[0, \frac{1}{3^{n}}\right)
$$

Moreover, we can assume that n is large enough in order that

$$
F_{u}(s x) \subset \frac{1}{6} V, \quad s x \in \frac{1}{6} V
$$

for $s \in\left[0, \frac{1}{3^{n}}\right)$. Hence, for $w \in\left(u, u+\frac{1}{3^{n}}\right)$ we have

$$
\psi(w) \subset \psi(u)+V
$$

which shows that ψ is upper semi-continuous at u.
It remains to show that ψ is lower semi-continuous. Let us fix $u \in[0, \infty)$. It is easily seen, that it suffices to show that ψ is lower semi-continuous on the left at $u \in(0, \infty)$. Let us fix a symmetric convex neighbourhood V of zero in X. Using the monotonicity of ψ and (3.5), we get

$$
\psi(u) \subset \psi(u+s)=\psi(u-s)+2 F_{u}(\psi(s))+2 F_{u}(s x)-2 s x
$$

for all $s \in(0, u)$. A similar reasoning as before shows that there is a positive integer n such that $\psi(u) \subset \psi(w)+V$ for all $w \in\left(u-\frac{1}{3^{n}}, u\right)$. Therefore ψ is lower semi-continuous in u, which completes the proof.

Remark 3.4. Let X be a normed linear space, K be a convex cone in $X, G_{t}: K \rightarrow$ $c c(K), F_{t}: K \rightarrow c c(X)$ for $t \geq 0$. If $\left\{G_{t}: t \geq 0\right\}$ is a regular sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$ and all F_{t} are continuous and additive, then the family $\left\{F_{t}: t \geq 0\right\}$ is unique.

Assume that $\left\{F_{t}: t \geq 0\right\}$ and $\left\{H_{t}: t \geq 0\right\}$ are two families of continuous and additive set-valued functions such that

$$
G_{t+s}(x)=G_{t-s}(x)+2 F_{t}\left(G_{s}(x)\right)
$$

and

$$
G_{t+s}(x)=G_{t-s}(x)+2 H_{t}\left(G_{s}(x)\right) .
$$

Then

$$
G_{t-s}(x)+2 F_{t}\left(G_{s}(x)\right)=G_{t-s}(x)+2 H_{t}\left(G_{s}(x)\right)
$$

and by the cancellation law $F_{t}\left(G_{s}(x)\right)=H_{t}\left(G_{s}(x)\right)$ for all $0 \leq s \leq t$. Using (2.5) we get

$$
F_{t}\left(\frac{G_{s}(x)}{s}\right)=H_{t}\left(\frac{G_{s}(x)}{s}\right) .
$$

Letting s tend to 0 from the right, by regularity of $\left\{G_{t}: t \geq 0\right\}$ we obtain

$$
F_{t}(x)=H_{t}(x) .
$$

Example 3.5. Let $K=[0, \infty), G_{t}(x)=t[0, x], F_{t}(x)=\{x\}$ and $H_{t}(x)=[0, x]$ for $t \geq 0, x \in K$. Then $\left\{G_{t}: t \geq 0\right\}$ is a sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$ and with the family $\left\{H_{t}: t \geq 0\right\}$.

Indeed, we have

$$
\begin{aligned}
G_{t+s}(x) & =(t+s)[0, x]=(t-s)[0, x]+2 s[0, x]= \\
& =G_{t-s}(x)+2 G_{s}(x)=G_{t-s}(x)+2 F_{t}\left(G_{s}(x)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
G_{t+s}(x) & =(t+s)[0, x]=(t-s)[0, x]+2 s[0, x]= \\
& =G_{t-s}(x)+2 H_{t}(s[0, x])=G_{t-s}(x)+2 H_{t}\left(G_{s}(x)\right) .
\end{aligned}
$$

Observe that all F_{t} and H_{t} are continuous and additive, but the sine family $\left\{G_{t}: t \geq\right.$ $0\}$ is not regular, since

$$
\lim _{t \rightarrow 0^{+}} \frac{G_{t}(x)}{t}=[0, x] .
$$

Theorem 3.6. Let X be a real normed additive space, K a convex cone in X and let $\left\{F_{t}: t \geq 0\right\}$ be a family of continuous additive set-valued functions $F_{t}: K \rightarrow c c(K)$, such that $F_{0}(x)=\{x\}, x \in K$. Assume that $\left\{G_{t}: t \geq 0\right\}$ is a regular sine family of set-valued functions $G_{t}: K \rightarrow c c(K)$ associated with the family $\left\{F_{t}: t \geq 0\right\}$. Then:
(a) $\left\{F_{t}: t \geq 0\right\}$ is a cosine family,
(b) if moreover

$$
\begin{equation*}
x \in F_{t}(x) \tag{3.6}
\end{equation*}
$$

for $x \in K$ and $t \geq 0$, then $\left\{F_{t}: t \geq 0\right\}$ is a continuous cosine family. In particular it is regular.

Proof. (a) Let us take s, u, v such that $0 \leq s \leq v-u, 0 \leq s \leq u$ and $0 \leq u \leq v$. From (2.1) we get

$$
\begin{align*}
& G_{v+u+s}(x)=G_{v+u-s}(x)+2 F_{v+u}\left(G_{s}(x)\right), \tag{3.7}\\
& G_{v-u+s}(x)=G_{v-u-s}(x)+2 F_{v-u}\left(G_{s}(x)\right), \tag{3.8}\\
& G_{v+u+s}(x)=G_{v-u-s}(x)+2 F_{v}\left(G_{u+s}(x)\right), \tag{3.9}\\
& G_{v+u-s}(x)=G_{v-u+s}(x)+2 F_{v}\left(G_{u-s}(x)\right), \tag{3.10}
\end{align*}
$$

for all $x \in K$. By Lemma 2.7 and Lemma 2.9, we have therefore

$$
\begin{aligned}
2 F_{v}\left(2 F_{u}\left(G_{s}(x)\right)\right) & =2 F_{v}\left[G_{u+s}(x)-G_{u-s}(x)\right]=2 F_{v}\left(G_{u+s}(x)\right)-2 F_{v}\left(G_{u-s}(x)\right)= \\
& =\left[G_{v+u+s}(x)-G_{v-u-s}(x)\right]-\left[G_{v+u-s}(x)-G_{v-u+s}(x)\right]= \\
& =\left[G_{v+u+s}(x)-G_{v+u-s}(x)\right]+\left[G_{v-u+s}(x)-G_{v-u-s}(x)\right]= \\
& =2 F_{v+u}\left(G_{s}(x)\right)+2 F_{v-u}\left(G_{s}(x)\right) .
\end{aligned}
$$

Since F_{t} are linear, we can write

$$
2 F_{v}\left(F_{u}\left(\frac{G_{s}(x)}{s}\right)\right)=F_{v+u}\left(\frac{G_{s}(x)}{s}\right)+F_{v-u}\left(\frac{G_{s}(x)}{s}\right) .
$$

Letting s tend to 0 we obtain from continuity of F_{t}

$$
2 F_{v}\left(F_{u}(x)\right)=F_{v+u}(x)+F_{v-u}(x) .
$$

(b) The proof will be divided into three steps.

Step 1. From (2.3) and (3.6) follows the inclusion

$$
F_{t+s}(x)+F_{t-s}(x) \supset 2 F_{t}(x)
$$

for $0 \leq s \leq t$, which implies that set-valued functions $u \mapsto F_{u}(x)(x \in K)$ are midconcave in $[0, \infty)$ (cf. [11, the proof of Theorem 3]).

For fixed $s>0$ and $t>0$ from (2.1) and Lemma 3.2 we obtain

$$
F_{t}(x) \subset F_{t}\left(\frac{G_{s}(x)}{s}\right)=\frac{G_{t+s}(x)-G_{t-s}(x)}{2 s}
$$

for all $x \in K$. Since set-valued functions

$$
t \mapsto \frac{G_{t+s}(x)-G_{t-s}(x)}{2 s}
$$

are continuous in (s, ∞) (cf. Theorem 3.3), from Theorem 4.3 in [9] set-valued functions

$$
t \mapsto F_{t}(x)
$$

for $x \in K$ are continuous in (s, ∞), thus also in $(0, \infty)$. Continuity and midconcavity of set-valued functions $t \mapsto F_{t}(x)$ imply their concavity, i.e.,

$$
F_{\lambda t+(1-\lambda) s}(x) \subset \lambda F_{t}(x)+(1-\lambda) F_{s}(x), \quad \lambda \in[0,1], s, t>0, x \in K
$$

(cf. Theorem 4.1 in [9]). We get therefore convexity of functions

$$
\psi(t):=\operatorname{diam}\left(F_{t}(x)\right)
$$

in $(0, \infty)$ for all $x \in K$.
Indeed, let $\lambda \in[0,1]$ and $s, t \in(0, \infty)$. By the concavity of the functions $t \mapsto F_{t}(x)$ we have

$$
\begin{aligned}
\psi(\lambda t+(1-\lambda) s) & =\operatorname{diam}\left[F_{\lambda t+(1-\lambda) s}(x)\right] \leq \operatorname{diam}\left[\lambda F_{t}(x)+(1-\lambda) F_{s}(x)\right] \leq \\
& \leq \operatorname{diam}\left[\lambda F_{t}(x)\right]+\operatorname{diam}\left[(1-\lambda) F_{s}(x)\right]= \\
& =\lambda \operatorname{diam}\left[F_{t}(x)\right]+(1-\lambda) \operatorname{diam}\left[F_{s}(x)\right]=\lambda \psi(t)+(1-\lambda) \psi(s)
\end{aligned}
$$

Step 2. For $t>0$ and $x \in K$ we have

$$
F_{t}(x)+x=2 F_{\frac{t}{2}}^{2}(x) .
$$

From (3.6) we obtain

$$
F_{t}(x)+x=F_{\frac{t}{2}}^{2}(x)+F_{\frac{t}{2}}^{2}(x) \supset F_{\frac{t}{2}}(x)+x
$$

and therefore

$$
F_{\frac{t}{2}}(x) \subset F_{t}(x)
$$

Hence the sequence $\left(F_{\frac{t}{2^{n}}}(x)\right)$ is descending. Put

$$
H_{t}(x):=\bigcap_{n=0}^{\infty} F_{2^{n}}(x) .
$$

From the inclusion

$$
F_{\frac{t}{2^{n}}}(x)+x=2 F_{\frac{t}{2^{n+1}}}^{2}(x) \supset F_{\frac{t}{2^{n+1}}}(x)+F_{\frac{t}{2^{n+1}}}(x) \supset 2 H_{t}(x)
$$

and Lemma 2 in [8] it follows that

$$
H_{t}(x)+x=\bigcap_{n=0}^{\infty} F_{\frac{t}{2^{n}}}(x)+x=\bigcap_{n=0}^{\infty}\left[F_{\frac{t}{2^{n}}}(x)+x\right] \supset 2 H_{t}(x) .
$$

Therefore, by the cancellation law we get

$$
H_{t}(x)=\{x\}
$$

for $t>0$ and $x \in K$. Thus $\lim _{n \rightarrow \infty} F_{\frac{t}{2^{n}}}(x)=\{x\}$ (cf. Lemma 3 in [8]), whence $\lim _{n \rightarrow \infty} \psi\left(\frac{t}{2^{n}}\right)=0$. Since ψ is convex, we have

$$
\lim _{s \rightarrow 0^{+}} \psi(s)=0
$$

Step 3. Fix $\varepsilon>0$. There is $\eta>0$ such that

$$
\psi(s)<\varepsilon \quad \text { for } \quad s \in(0, \eta) .
$$

Let $s \in(0, \eta)$ and $y \in F_{s}(x)$. We have then

$$
\|y-x\| \leq \operatorname{diam}\left(F_{s}(x)\right)=\psi(s)<\varepsilon
$$

Hence

$$
F_{s}(x) \subset B(x, \varepsilon)
$$

and

$$
\lim _{s \rightarrow 0^{+}} F_{s}(x)=\{x\} .
$$

Acknowledgements

The author thanks Dr Magdalena Piszczek for her remarks which improved Theorem 3.6.

REFERENCES

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York and London, 1966.
[2] J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
[3] C. Berge, Topological Spaces, Including a Treatment of Multi-valued Functions, Vector Spaces and Convexity, Oliver and Boyd, Edinburgh and London, 1963.
[4] H.O. Fattorini, Ordinary differential equations in linear topological spaces, I, J. Differential Equations 5 (1968), 72-105.
[5] J. Kisyński, On operator-valued solutions of d'Alembert's functional equation, I, Colloq. Math. 23 (1971), 107-114.
[6] J. Kisyński, On operator-valued solutions of d'Alembert's functional equation, II, Studia Math. 42 (1972), 43-66.
[7] B. Nagy, On cosine operator functions in Banach spaces, Acta Sci. Math. 36 (1974), 281-289.
[8] K. Nikodem, On Jensen's functional equation for set-valued functions, Rad. Mat. 3 (1987), 23-33.
[9] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Łódz., Mat. 559, Rozprawy Nauk. 144, 1989.
[10] M. Piszczek, Second Hukuhara derivative and cosine family of linear set-valued functions, Ann. Acad. Pedagog. Crac. Stud. Math. 5 (2006), 87-98.
[11] M. Piszczek, On multivalued cosine families, J. Appl. Anal. 13 (2007), 57-76.
[12] M. Piszczek, On cosine families of Jensen set-valued functions, Aequationes Math. 75 (2008), 103-118.
[13] H. Rådström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[14] A. Smajdor, On regular multivalued cosine families, Ann. Math. Sil. 13 (1999), 271-280.
[15] A. Smajdor, Hukuhara's derivative and concave iteration semigroups of linear set-valued functions, J. Appl. Anal. 8 (2002), 297-305.
[16] M. Sova, Cosine operator functions, Dissertationes Math. 49 (1966), 1-47.
Ewelina Mainka-Niemczyk
ewelina.mainka@polsl.pl
Silesian University of Technology
Institute of Mathematics
Kaszubska 23, 44-100 Gliwice, Poland
Received: November 2, 2010.
Revised: February 2, 2011.
Accepted: March 5, 2011.

