AN UPPER BOUND ON THE TOTAL OUTER-INDEPENDENT DOMINATION NUMBER OF A TREE

Marcin Krzywkowski

Abstract

A total outer-independent dominating set of a graph $G=(V(G), E(G))$ is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set $V(G) \backslash D$ is independent. The total outer-independent domination number of a graph G, denoted by $\gamma_{t}^{o i}(G)$, is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order $n \geq 4$, with l leaves and s support vertices we have $\gamma_{t}^{o i}(T) \leq(2 n+s-l) / 3$, and we characterize the trees attaining this upper bound.

Keywords: total outer-independent domination, total domination, tree.

Mathematics Subject Classification: 05C05, 05C69.

1. INTRODUCTION

Let $G=(V(G), E(G))$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The path on n vertices we denote by P_{n}. Let T be a tree, and let v be a vertex of T . We say that v is adjacent to a path P_{n} if there is a neighbor of v, say x, such that the subtree resulting from T by removing the edge $v x$ and which contains the vertex x as a leaf, is a path P_{n}. By a star we mean a connected graph in which exactly one vertex has degree greater than one. By a double star we mean a graph obtained from a star by joining a positive number of vertices to one of its leaves.

We say that a subset of $V(G)$ is independent if there is no edge between every two its vertices. A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \backslash D$ has a neighbor in D, while it is a total dominating set if every vertex of G has a neighbor in D. The domination (total domination, respectively) number of G, denoted by $\gamma(G)\left(\gamma_{t}(G)\right.$, respectively), is the minimum cardinality of a dominating
(total dominating, respectively) set of G. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2], and further studied for example in [1]. For a comprehensive survey of domination in graphs, see [3,4].

A subset $D \subseteq V(G)$ is a total outer-independent dominating set, abbreviated TOIDS, of G if every vertex of G has a neighbor in D, and the set $V(G) \backslash D$ is independent. The total outer-independent domination number of G, denoted by $\gamma_{t}^{o i}(G)$, is the minimum cardinality of a total outer-independent dominating set of G. A total outer-independent dominating set of G of minimum cardinality is called a $\gamma_{t}^{o i}(G)$-set. The study of total outer-independent domination in graphs was initiated in [5].

Chellali and Haynes [1] established the following upper bound on the total domination number of a tree. For every nontrivial tree T of order n with s support vertices we have $\gamma_{t}(T) \leq(n+s) / 2$.

We prove the following upper bound on the total outer-independent domination number of a tree. For every tree T of order $n \geq 4$, with l leaves and s support vertices we have $\gamma_{t}^{o i}(T) \leq(2 n+s-l) / 3$. Moreover, we characterize the trees attaining this upper bound.

2. RESULTS

Since the one-vertex graph does not have a total outer-independent dominating set, in this paper, by a tree we mean only a connected graph with no cycle, and which has at least two vertices.

We begin with the following two straightforward observations.
Observation 2.1. Every support vertex of a graph G is in every $\gamma_{t}^{o i}(G)$-set.
Observation 2.2. For every connected graph G of diameter at least three there exists a $\gamma_{t}^{o i}(G)$-set that contains no leaf.

We show that if T is a tree of order $n \geq 4$, with l leaves and s support vertices, then $\gamma_{t}^{o i}(T)$ is bounded above by $(2 n+s-l) / 3$. For the purpose of characterizing the trees attaining this bound we introduce a family \mathcal{T} of trees $T=T_{k}$ that can be obtained as follows. Let T_{1} be a path P_{6}, and let $A\left(T_{1}\right)$ be a set containing all vertices of P_{6} which are not leaves. Let H be a path P_{3} with one of the leaves labeled u, and the support vertex labeled v. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by one of the following operations.

- Operation \mathcal{O}_{1} : Attach a copy of H by joining the vertex u to a vertex of T_{k} adjacent to a path P_{3}. Let $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$.
- Operation \mathcal{O}_{2} : Attach a copy of H by joining the vertex u to a vertex of T_{k} which is not a leaf and is adjacent to a support vertex. Let $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$.
- Operation \mathcal{O}_{3} : Attach a copy of H by joining the vertex u to a leaf of T_{k} adjacent to a weak support vertex. Let $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$.

Now we prove that for every tree T of the family \mathcal{T}, the set $A(T)$ defined above is a TOIDS of minimum cardinality equal to $(2 n+s-l) / 3$.

Lemma 2.3. If $T \in \mathcal{T}$, then the set $A(T)$ defined above is a $\gamma_{t}^{o i}(T)$-set of size $(2 n+s-l) / 3$.

Proof. We use the terminology of the construction of the trees $T=T_{k}$, the set $A(T)$, and the graph H defined above. To show that $A(T)$ is a $\gamma_{t}^{o i}(T)$-set of cardinality $(2 n+s-l) / 3$ we use induction on the number k of operations performed to construct the tree T. If $T=T_{1}=P_{6}$, then $(2 n+s-l) / 3=(12+2-2) / 3=4=|A(T)|=\gamma_{t}^{o i}(T)$. Let $k \geq 2$ be an integer. Assume that the result is true for every tree $T^{\prime}=T_{k}$ of the family \mathcal{T} constructed by $k-1$ operations. Let n^{\prime} mean the order of the tree T^{\prime}, l^{\prime} the number of its leaves, and s^{\prime} the number of support vertices. Let $T=T_{k+1}$ be a tree of the family \mathcal{T} constructed by k operations.

First assume that T is obtained from T^{\prime} by operation \mathcal{O}_{1}. We have $n=n^{\prime}+3$, $s=s^{\prime}+1$, and $l=l^{\prime}+1$. The vertex of T^{\prime} to which is attached P_{3} we denote by x. Let $a b c$ mean a path P_{3} adjacent to x, and such that $a \neq u$. It is easy to see that $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2$. Now let D be a $\gamma_{t}^{o i}(T)$-set that contains no leaf. By Observation 2.1, we have $v \in D$. Each one of the vertices v and b has to have a neighbor in D, thus $u, a \in D$. Let us observe that $D \backslash\{u, v\}$ is a TOIDS of the tree T^{\prime} as the vertex x has a neighbor in $D \backslash\{u, v\}$. Therefore $\gamma_{t}^{o i}\left(T^{\prime}\right) \leq \gamma_{t}^{o i}(T)-2$. Now we conclude that $\gamma_{t}^{o i}(T)=\gamma_{t}^{o i}\left(T^{\prime}\right)+2$. We get $\gamma_{t}^{o i}(T)=|A(T)|=\left|A\left(T^{\prime}\right)\right|+2=\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3+2=(2 n-6+s-1-l+1) / 3+2=$ $(2 n+s-l) / 3$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{2}. We have $n=n^{\prime}+3$, $s=s^{\prime}+1$, and $l=l^{\prime}+1$. The vertex of T^{\prime} to which is attached P_{3} we denote by x. Let y mean a support vertex adjacent to x. It is easy to see that $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2$. Now let D be a $\gamma_{t}^{o i}(T)$-set that contains no leaf. By Observation 2.1 we have $v, y \in D$. The vertex v has to have a neighbor in D, thus $u \in D$. Let us observe that $D \backslash\{u, v\}$ is a TOIDS of the tree T^{\prime} as the vertex x has a neighbor in $D \backslash\{u, v\}$. Therefore $\gamma_{t}^{o i}\left(T^{\prime}\right) \leq \gamma_{t}^{o i}(T)-2$. Now we conclude that $\gamma_{t}^{o i}(T)=\gamma_{t}^{o i}\left(T^{\prime}\right)+2$. In the same way as in the previous possibility we get $\gamma_{t}^{o i}(T)=(2 n+s-l) / 3$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{3}. We have $n=n^{\prime}+3$, $s=s^{\prime}$, and $l=l^{\prime}$. The leaf to which is attached P_{3} we denote by x. Let y mean a neighbor of x other than u. It is easy to see that $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2$. Now let us observe that there exists a $\gamma_{t}^{o i}(T)$-set that does not contain the vertex x, and does not contain any leaf. Let D be such a set. By Observation 2.1 we have $v \in D$. The vertex v has to have a neighbor in D, thus $u \in D$. The set $V(T) \backslash D$ is independent, thus $y \in D$. Let us observe that $D \backslash\{u, v\}$ is a TOIDS of the tree T^{\prime} as the vertex x has a neighbor in $D \backslash\{u, v\}$. Therefore $\gamma_{t}^{o i}\left(T^{\prime}\right) \leq \gamma_{t}^{o i}(T)-2$. Now we conclude $\gamma_{t}^{o i}(T)=\gamma_{t}^{o i}\left(T^{\prime}\right)+2$. We get $\gamma_{t}^{o i}(T)=|A(T)|=\left|A\left(T^{\prime}\right)\right|+2=\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3+2=(2 n-6+s-l) / 3+2=$ $(2 n+s-l) / 3$.

Now we establish the main result, an upper bound on the total outer-independent domination number of a tree together with the characterization of the extremal trees.

Theorem 2.4. If T is a tree of order $n \geq 4$, with l leaves and s support vertices, then $\gamma_{t}^{o i}(T) \leq(2 n+s-l) / 3$ with equality if and only if $T=K_{1,3}$ or $T \in \mathcal{T}$.

Proof. First assume that $\operatorname{diam}(T)=2$. Thus T is a star $K_{1, m}$ with $m \geq 3$. If $m=3$, then $T=K_{1,3}$. We have $\gamma_{t}^{o i}(T)=2=(8+1-3) / 3=(2 n+s-l) / 3$. If $m \geq 4$, then $(2 n+s-l) / 3=(2 m+2+1-m) / 3=(m+3) / 3 \geq(4+3) / 3>2=\gamma_{t}^{o i}(T)$. Now let us assume that $\operatorname{diam}(T)=3$. Thus T is a double star. We have $(2 n+s-$ $l) / 3=(2 n+2-n+2) / 3=(n+4) / 3 \geq(4+4) / 3>2=\gamma_{t}^{o i}(T)$. Now assume that $\operatorname{diam}(T)=4$. Let $v_{1} v_{2} v_{3} v_{4} v_{5}$ mean a longest path in T. If v_{3} is adjacent to a leaf, then all support vertices of T form a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq s$. Now we get $\gamma_{t}^{o i}(T) \leq s=s / 3+2 s / 3=s / 3+2(n-l) / 3=(2 n+s-2 l) / 3<(2 n+s-l) / 3$. Now assume that T is not adjacent to any leaf. It is easy to observe that all support vertices of T together with the vertex v_{3} form a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq s+1$. We have $n=l+s+1$. Now we get $\gamma_{t}^{o i}(T) \leq s+1=s / 3+2 s / 3+1=s / 3+2(n-l-1) / 3+1=$ $(2 n+s-2 l-2) / 3+1=(2 n+s-l) / 3+(1-l) / 3<(2 n+s-l) / 3$. Now let us assume that $\operatorname{diam}(T)=5$. Let $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ mean a longest path in T. If both vertices v_{3} and v_{4} are adjacent to a leaf, then all support vertices of T form a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq s$. Now we get $\gamma_{t}^{o i}(T) \leq s=s / 3+2 s / 3=s / 3+2(n-l) / 3=$ $(2 n+s-2 l) / 3<(2 n+s-l) / 3$. Now assume that exactly one of the vertices v_{3} and v_{4} is adjacent to a leaf. Without loss of generality we assume that v_{3} is adjacent to a leaf. It is easy to observe that all support vertices of T together with the vertex v_{4} form a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq s+1$. We have $n=l+s+1$. Now we get $\gamma_{t}^{o i}(T) \leq s+1=s / 3+2 s / 3+1=s / 3+2(n-l-1) / 3+1=(2 n+s-2 l-2) / 3+1=$ $(2 n+s-l) / 3+(1-l) / 3<(2 n+s-l) / 3$. Now assume that neither v_{3} nor v_{4} is adjacent to a leaf. It is easy to observe that all support vertices of T together with the vertices v_{3} and v_{4} form a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq s+2$. We have $n=l+s+2$. Now we get $\gamma_{t}^{o i}(T) \leq s+2=s / 3+2 s / 3+2=s / 3+2(n-l-2) / 3+2=$ $(2 n+s-2 l-4) / 3+2=(2 n+s-l) / 3+(2-l) / 3$. If T has exactly two leaves, then $T=P_{6}=T_{1} \in \mathcal{T}$. By Lemma 2.3 we have $\gamma_{t}^{o i}(T)=(2 n+s-l) / 3$. Now assume that T has at least three leaves. We have $\gamma_{t}^{o i}(T) \leq(2 n+s-l) / 3+(2-l) / 3<(2 n+s-l) / 3$.

Now assume that $\operatorname{diam}(T) \geq 6$. Thus the order of the tree T is an integer $n \geq 7$. The result we obtain by the induction on the number n. Assume that the theorem is true for every tree T^{\prime} of order $n^{\prime}<n$, with l^{\prime} leaves and s^{\prime} support vertices.

First assume that some support vertex of T, say x, is strong. Let y mean a leaf adjacent to x. Let $T^{\prime}=T-y$. We have $n^{\prime}=n-1, s^{\prime}=s$, and $l^{\prime}=l-1$. Let D^{\prime} be any $\gamma_{t}^{o i}\left(T^{\prime}\right)$-set. By Observation 2.1 we have $x \in D^{\prime}$. Of course, D^{\prime} is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)$. Now we get $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3=$ $(2 n-2+s-l+1) / 3=(2 n+s-l) / 3-1 / 3<(2 n+s-l) / 3$. Therefore every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, u be the parent of v, w be the parent of u, and d be the parent of w in the rooted tree. By T_{x} let us denote the subtree induced by a vertex x and its descendants in the rooted tree T.

First assume that $d_{T}(u) \geq 3$. Assume that among the descendants of u there is a support vertex, say x, different than v. Let $T^{\prime}=T-T_{v}$. We have $n^{\prime}=n-2, s^{\prime}=s-1$,
and $l^{\prime}=l-1$. Let D^{\prime} be a $\gamma_{t}^{o i}\left(T^{\prime}\right)$-set that contains no leaf. The vertex x has to have a neighbor in D^{\prime}, thus $u \in D^{\prime}$. It is easy to see that $D^{\prime} \cup\{v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+1$. Now we get $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+1 \leq\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3+1=$ $(2 n-4+s-1-l+1) / 3+1=(2 n+s-l) / 3-1 / 3<(2 n+s-l) / 3$.

Now assume that some descendant of u, say x, is a leaf. Let $T^{\prime}=T-x$. We have $n^{\prime}=n-1, s^{\prime}=s-1$, and $l^{\prime}=l-1$. Let D^{\prime} be a $\gamma_{t}^{o i}\left(T^{\prime}\right)$-set that contains no leaf. The vertex v has to have a neighbor in D^{\prime}, thus $u \in D^{\prime}$. It is easy to see that D^{\prime} is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)$. Now we get $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right) \leq$ $\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3=(2 n-2+s-1-l+1) / 3=(2 n+s-l) / 3-2 / 3<(2 n+s-l) / 3$.

Now assume that $d_{T}(u)=2$. First assume that there is a descendant of w, say k, such that the distance of w to the most distant vertex of T_{k} is three. It suffices to consider only the possibility when T_{k} is a path P_{3}, say $k l m$. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3, s^{\prime}=s-1$, and $l^{\prime}=l-1$. Let D^{\prime} be any $\gamma_{t}^{o i}\left(T^{\prime}\right)$-set. It is easy to see that $D^{\prime} \cup\{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2$. Now we get $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2 \leq\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3+2=(2 n-6+s-1-l+1) / 3+2=(2 n+s-l) / 3$. If $\gamma_{t}^{o i}(T)=(2 n+s-l) / 3$, then obviously $\gamma_{t}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3$. The tree T^{\prime} has at least seven vertices. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{1}. Thus $T \in \mathcal{T}$.

Now assume that there is a descendant of w, say k, such that the distance of w to the most distant vertex of T_{k} is two. Thus k is a support vertex. Let $T^{\prime}=T-T_{u}$. In the same way as in the previous possibility we get $\gamma_{t}^{o i}(T) \leq(2 n+s-l) / 3$. If $\gamma_{t}^{o i}(T)=(2 n+s-l) / 3$, then $\gamma_{t}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3$. The tree T^{\prime} has at least six vertices. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{2}. Thus $T \in \mathcal{T}$.

Now assume that some descendant of w, say k, is a leaf. Let $T^{\prime}=T-t-k$. We have $n^{\prime}=n-2, s^{\prime}=s-1$, and $l^{\prime}=l-1$. Let D^{\prime} be a $\gamma_{t}^{o i}\left(T^{\prime}\right)$-set that contains no leaf. By Observation 2.1 we have $u \in D^{\prime}$. The vertex u has to have a neighbor in D^{\prime}, thus $w \in D^{\prime}$. It is easy to observe that $D^{\prime} \cup\{v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+1$. Now we get $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+1 \leq\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3+1=$ $(2 n-4+s-1-l+1) / 3+1=(2 n+s-l) / 3-1 / 3<(2 n+s-l) / 3$.

Now assume that $d_{T}(w)=2$. First assume that d is adjacent to a leaf. Let $T^{\prime}=$ $T-T_{u}$. We have $n^{\prime}=n-3, s^{\prime}=s-1$, and $l^{\prime}=l$. Let D^{\prime} be any $\gamma_{t}^{o i}\left(T^{\prime}\right)$-set. It is easy to see that $D^{\prime} \cup\{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2$. Now we get $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2 \leq\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3+2=(2 n-6+s-1-l) / 3+2=$ $(2 n+s-l) / 3-1 / 3<(2 n+s-l) / 3$.

Now assume that d is not adjacent to any leaf. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3$, $s^{\prime}=s$, and $l^{\prime}=l$. Let D^{\prime} be any $\gamma_{t}^{o i}\left(T^{\prime}\right)$-set. It is easy to see that $D^{\prime} \cup\{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2$. Now we get $\gamma_{t}^{o i}(T) \leq \gamma_{t}^{o i}\left(T^{\prime}\right)+2 \leq$ $\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3+2=(2 n-6+s-l) / 3+2=(2 n+s-l) / 3$. If $\gamma_{t}^{o i}(T)=(2 n+s-l) / 3$, then $\gamma_{t}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+s^{\prime}-l^{\prime}\right) / 3$. The tree T^{\prime} has at least four vertices and is different from $K_{1,3}$ as T^{\prime} has no strong support vertex. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{3}. Thus $T \in \mathcal{T}$.

REFERENCES

[1] M. Chellali, T. Haynes, Total and paired-domination numbers of a tree, AKCE Int. J. Graphs Comb. 1 (2004), 69-75.
[2] E. Cockayne, R. Dawes, S. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219.
[3] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[4] T. Haynes, S. Hedetniemi, P. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[5] M. Krzywkowski, Total outer-independent domination in graphs, submitted.

Marcin Krzywkowski
marcin.krzywkowski@gmail.com
Gdańsk University of Technology
Faculty of Electronics, Telecommunications and Informatics ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

Received: November 23, 2010.
Revised: March 23, 2011.
Accepted: March 28, 2011.

