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INTEGRAL REPRESENTATION OF FUNCTIONS
OF BOUNDED SECOND Φ-VARIATION

IN THE SENSE OF SCHRAMM

José Giménez, Nelson Merentes, and Sergio Rivas

Abstract. In this article we introduce the concept of second Φ-variation in the sense of
Schramm for normed-space valued functions defined on an interval [a, b] ⊂ R. To that end
we combine the notion of second variation due to de la Vallée Poussin and the concept of
ϕ-variation in the sense of Schramm for real valued functions. In particular, when the normed
space is complete we present a characterization of the functions of the introduced class by
means of an integral representation. Indeed, we show that a function f ∈ X[a,b] (where X is
a reflexive Banach space) is of bounded second Φ-variation in the sense of Schramm if and
only if it can be expressed as the Bochner integral of a function of (first) bounded variation
in the sense of Schramm.
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1. INTRODUCTION

The concept of a function of bounded variation was introduced in 1881 by Camile
Jordan ([10]) who carried out a rigorous study of the proof given by Dirichlet ([8])
on the convergence of the Fourier series of a function and exploited the fact that the
concept was already implicit in the work of the latter. Ch.J. de la Vallée Poussin
introduced in 1908 ([6]) the notion of second variation of a function. A few years
later, in 1911, F. Riesz ([11]) proved that a function f is of bounded second variation
on an interval [a, b] if and only if it is the definite Lebesgue integral of a function f
of bounded variation. Then in 1983 A.M. Russell and C.J.F. Upton ([12]) obtained
a similar result for functions of bounded second variation in the sense of Wiener,
showing that a function is of bounded second p-variation (1 < p < ∞) if and only if
it is the definite Lebesgue integral of a function of bounded p-variation in the sense
of Wiener. A common aspect of all mentioned results is that the maps considered
are real valued functions. Recently (see [2]) these results were extended to the case of
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functions that take values in a Banach space X. In this article we show that the Riesz’s
result also holds for the class of functions of bounded second variation in the sense of
Schramm. More precisely, we will show that a function f : [a, b] → X, where X is a
Banach space, is of second Φ-variation in the sense of Schramm (f ∈ BV 2

Φ([a, b],X))
if and only if there exists a function F : [a, b] −→ X of bounded Φ-variation in the
sense of Schramm (F ∈ BVΦ([a, b],X)) such that

f(t) =

t∫
a

F (s)ds for all t ∈ [a, b].

The technics that we are going to use are similar to those applied by Russell and
Upton in [12] and by Bracamonte, Giménez and Merentes in [2].

2. PRELIMINARIES

There are several equivalent definitions of the notion of functions of bounded variation.
For the reader’s convenience, in this section we present a summary account of some of
the main results concerning the better known generalizations of the notion of functions
of bounded variation.

Given an interval [a, b] ⊂ R and a function f : [a, b] → R. If I = [c, d] ⊂ [a, b] we
will use the following notations:

f [I] := f(d)− f(c),

f2[I] :=
f(d)− f(c)

d− c
.

By I[a, b] we will denote the family of all sequences {In = [an, bn]}n≥0 of
non-overlapping closed intervals contained in [a, b] and such that |In| := bn − an > 0
for all n ≥ 0.

The notation π[a, b] will be used for the set of all partitions ξ = {ti}ni=1 of [a, b],
i.e., n is some positive integer and a = t0 < t1 < . . . < tn = b. When referring to such
a partition ξ we will write Ij = Ij(ξ) := [tj−1, tj ].

The notation π3[a, b] will stand for the subset of π[a, b] of all partitions containing
at least three points.

Definition 2.1. A function f : [a, b]→ R is said to be of bounded variation on [a, b]
if there is a constant M > 0 such that∑

n≥1

|f [In]| ≤M, (2.1)

where {In}n≥1 is any element of I[a, b]. The total variation of f on [a, b] is denoted as
V (f ; [a, b]) or simply by V (f), and it is the supremum of the sums (2.1) over I[a, b].

It is readily seen that Definition 2.1 is equivalent to the following more familiar,
textbook definition.
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Definition 2.2. A function f : [a, b] −→ R is of bounded variation on [a, b] if

V (f ; [a, b]) := sup
ξ∈π[a,b]

n∑
j=1

|f [Ij ]| <∞.

The class of all functions of bounded variation on [a, b] is denoted as BV [a, b].
The following results are well known.

Theorem 2.3 ([10]). f : [a, b] −→ R is of bounded variation on [a, b] if and only if it
is the difference of two monotone functions.

Theorem 2.4 ([3]). f : [a, b] −→ R is of bounded variation on [a, b] if and only
if there is a non-decreasing function ϕ : [a, b] −→ R and a Lipschitz function g :
ϕ([a, b]) −→ R with Lipschitz constant less or equal to one such that

f(t) = (g ◦ ϕ)(t), t ∈ [a, b].

In 1937 N. Wiener ([14]) introduced the concept of functions of bounded
p-variation (1 < p <∞) as follows.

Definition 2.5 ([14]). A function f : [a, b] ⊂ R → R is said to be of bounded
p-variation (1 < p <∞) in the sense of Wiener iff

V wp (f ; [a, b]) := sup
ξ∈π[a,b]

n∑
j=1

|f [Ij ]|p <∞.

The class of all functions of bounded p-variation on [a, b], in the sense of Wiener,
is denoted by BV wp [a, b]. Clearly, BV w1 [a, b] = BV [a, b]. The relation

‖f‖p := |f(a)|+ (V wp (f ; [a, b]))
1
p

defines a norm in BV wp [a, b] with respect to which it becomes a Banach algebra.
For f ∈ BV wp [a, b] and t, s ∈ [a, b] let us define

V(t) := V wp (f ; [a, t]) and υ(s) := V wp (f ; [s, b]).

Proposition 2.6. Suppose f ∈ BV wp [a, b]. Then:

1. If t, s ∈ [a, b], then |f(t)− f(s)|p ≤ w(f ; [a, b]) ≤ V wp (f ; [a, b]), where w(f ; [a, b]) :=
sup{d(f(s), f(t)) : t, s ∈ [a, b]} is the so called modulus of continuity of f on [a, b].

2. If a ≤ t ≤ s ≤ b, then:
V(t) ≤ V(s),

υ(s) ≤ υ(t),

V wp (f ; [t, s]) ≤ V wp (f ; [a, b]) (monotonicity).

3.
V wp (f ; [a, b])

2p−1
≤ V(s) + υ(t) ≤ V wp (f ; [a, b]).
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4. If ϕ : [a, b]→ [c, d] is a monotone function, then

V wp (f ;ϕ([a, b])) = V wp (f ◦ ϕ; [a, b]).

5. V wp (f ; [a, b]) := sup{V wp (f ; [t, s]) : t, s ∈ [a, b], t ≤ s}.

The next proposition highlights the relation between the norm ‖ · ‖BV[a,b] and the
functional V ( · ; [a, b]).

Proposition 2.7. For f ∈ BV [a, b] and c > 0, the estimate ‖f‖ ≤ c holds if and
only if V ( fc ) ≤ 1. In particular,

V

(
f

‖f‖
; [a, b]

)
≤ 1 (2.2)

for every f ∈ BV [a, b] with f(t) 6≡ 0.

The notion of bounded p-variation was extended by L.C. Young in [15]. The ex-
tension consisted in replacing the role played by the function |t|p (1 < p < ∞) by a
function in a more general class of convex functions, now known as Φ-functions.

Definition 2.8 (Φ-function). A function ϕ : [0,∞) → [0,∞) is called a Φ-funcition
if it satisfies the conditions:

1. ϕ is continuous on [0,∞),
2. ϕ(t) = 0 only if t = 0,
3. ϕ is non-decreasing,
4. ϕ(t)→∞ when t→∞.

If ϕ is a Φ-function, we will write ϕ ∈ Φ.

Definition 2.9 (∞1 condition). A Φ-function ϕ is said to satisfy the condition ∞1

if
lim
t→∞

ϕ(t)
t

=∞.

Definition 2.10. Let ϕ ∈ Φ. A function f : [a, b] → R is said to be of bounded
ϕ-variation in the sense of Young if

Vϕ(f ; [a, b]) := sup
ξ∈π[a,b]

n∑
j=1

ϕ (|f [Ij ]|) <∞.

The class of all functions of bounded ϕ-variation on [a, b] in the sense of Young is
denoted by Vϕ[a, b].

The following properties of the operator Vϕ(f ; [x, y]) are well known.

Proposition 2.11 ([4]). Let f : [a, b]→ R be a function and let ϕ ∈ Φ. Then:

1. ϕ(|f(t)− f(s)|) ≤ w((f ; [a, b])) ≤ Vϕ(f ; [a, b]) for all s, t ∈ [a, b] such that s < t.
2. If a ≤ t ≤ s ≤ b, then Vϕ(f ; [a, t]) ≤ Vϕ(f ; [a, s]) ≤ Vϕ(f ; [s, a]) ≤ Vϕ(f ; [t, a]) and
Vϕ(f ; [t, s]) ≤ Vϕ(f ; [a, b]).
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3. If t ∈ [a, b], then Vϕ(f ; [a, t]) + Vϕ(f ; [t, b]) ≤ Vϕ(f ; [a, b]).
4. If α : [a, b]→ [c, d] is a monotone function (not necessarily strict), then

Vϕ(f ; [a, b]) = Vϕ(f ◦ α; [a, b]).

5. Vϕ(f ; [a, b]) := sup{Vϕ(f ; [s, t]) : t, s ∈ [a, b]}.

The class Vϕ[a, b] is not necessarily a linear space. However, imposing a natural
condition on ϕ guarantees the desired linearity as shown in the following theorem.

Theorem 2.12 ([5]). Let ϕ be a Φ-function. Vϕ([a, b]) is a linear space if and only
if ϕ satisfies a δ2-condition, that is, there are constants t0 and k > 0 such that

ϕ(2t) ≤ kϕ(t) for all t ≥ t0.

On the other hand, Vϕ([a, b]) is a symmetric, balanced and convex set and
Vϕ( · ; [a, b]) is a convex functional on it. Consequently, the linear space

BVϕ[a, b] := {f : [a, b]→ R | ∃λ > 0: Vϕ(λf ; [a, b]) <∞}

can be equipped with a normed space structure by means of the norm:

‖f‖ϕ := |f(a)|+ inf
{
λ > 0 | Vϕ

(
f

λ
; [a, b]

)
≤ 1
}
.

With this norm BVϕ[a, b] actually becomes a Banach space.
As in the Wiener case the following proposition emphasizes the relation between

‖ · ‖ϕ and the functional Vϕ( · ; [a, b]).

Proposition 2.13. For f ∈ BVϕ[a, b] and c > 0, the estimate ‖f‖ϕ ≤ c holds if and
only if Vϕ( fc ) ≤ 1.

In 1908 Charles Jean de la Vallée Poussin ([6]) introduced the notion of second
variation of a real valued function defined on an interval [a, b].

Definition 2.14. A function f : [a, b] −→ R is said to be of bounded second variation
(and one writes f ∈ BV 2[a, b]) iff

V 2(f ; [a, b]) := sup
ξ∈π3[a,b]

m−1∑
j=1

|f2[Ij+1]− f2[Ij ]| <∞.

With regard to this notion, the following facts are well known.

Theorem 2.15 ([6]). f ∈ BV 2[a, b] if and only if f can be expressed as the difference
of two convex functions.

Theorem 2.16 ([11]). A function f : [a, b]→ R is of bounded second variation if and
only if there is a function F ∈ BV ([a, b]) such that

f(x) =

x∫
a

F (t)dt for all x ∈ [a, b].
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In 1983 A.M. Russell and C.J.F. Upton ([12]) introduced the class of real valued
functions of bounded second variation on [a, b], BV 2

p [a, b], in the sense of Wiener, as
follows.

Definition 2.17. f ∈ BV 2
p [a, b] (1 < p <∞) iff

V 2
p (f ; [a, b]) := sup

ξ∈π3[a,b]

n−2∑
j=0

|f2[Ij+2]− f2[Ij+1]|p <∞.

The following result ([12]) extends F. Riesz’s theorem (Theorem 2.16) to the class
BV 2

p [a, b].

Theorem 2.18 ([12]). f : [a, b]→ R is of bounded second p-variation in the sense of
Wiener if and only if it is the definite integral of a function of bounded p-variation,
in the sense of Wiener.

Theorem 2.18 was extended recently (see [2]) to the case of functions of second
bounded ϕ-variation in the sense of Young, where ϕ is a Φ-function that satisfies
condition ∞1.

Definition 2.19. Let ϕ be a Φ-function that satisfies condition ∞1. A function
f : [a, b]→ R is said to be of bounded second ϕ-variation in the sense of Young if

V 2
ϕ (f ; [a, b]) := sup

ξ∈π3[a,b]

n−2∑
j=0

ϕ (|f2[Ij+2]− f2[Ij+1]|) <∞.

Theorem 2.20 ([2]). The function f : [a, b] → X, where X is a reflexive Banach
space, is of bounded second ϕ-variation in the sense of Young if and only if it is the
(Bochner) definite integral of a function of (first) bounded ϕ-variation in the sense
of Young.

3. SCHRAMM’S VARIATION

In the following lines we generalize the concept of variation given by Schramm ([13])
to functions defined on an interval [a, b] ⊂ R and that take values on a given normed
space. To this end, we combine the Schramm’s notion with the one of second variation
due to de la Vallée Poussin in [6]. We also present some of the main properties of this
class of functions.

Remember that by I[a, b] we denote the family of all sequences {In = [an, bn]}n≥0

of non-overlapping closed intervals contained in [a, b] and such that |In| := bn−an > 0,
for all n ≥ 0.

We begin by recalling some of the main results and notations associated to the
notion of bounded Φ-variation in the sense of Schramm.
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Definition 3.1 (Φ-sequence). A sequence of Φ-functions Φ = {ϕn}n≥1 is called a
Φ-sequence if for all t > 0 :

ϕn+1(t) ≤ ϕn(t), n ≥ 1, and
∑
n≥1

ϕn(t) = +∞.

Definition 3.2. Let Φ = {ϕn}n≥1 be a Φ-sequence and [a, b] ⊂ R an interval. A func-
tion f : [a, b]→ R is said to be of bounded Φ-variation in the sense of Schramm if

V s(Φ,1)(f ; [a, b]) = V s(Φ,1)(f) := sup
{In}∈I[a,b]

∑
n≥0

ϕn (|f [In]|) <∞. (3.1)

The class of all such functions is denoted by V S(Φ,1)[a, b]. Notice that for f ≡ const.,
V S(Φ,1)(u; [a, b]) = 0 and therefore V S(Φ,1)[a, b] 6= ∅.

Remark 3.3. It is readily seen that in Definition 3.2 the sup{In}∈I[a,b] can be replaced
by the supremum over all finite collections {In}

m

n=1 in I[a, b].

The following proposition summarizes some of the properties of this class of func-
tions.

Theorem 3.4 ([13] or [9]). Let Φ = {ϕn}n≥1 be a Φ-sequence. Then:

1. V S(Φ,1)(f ; [a, b]) = 0 if and only if f ≡ const.

2. V S(Φ,1)(f ; [a, b]) <∞ ⇒ |f |∞ ≤ |f(a)|+ ϕ−1
1

(
V S(Φ,1)(f)

)
.

3. V S(Φ,1)[a, b] is a symmetric and convex subset of R[a,b]
and V S(Φ,1)( · ; [a, b]) is a convex

functional on it.
4. The linear space BV S(Φ,1)[a, b] generated by V S(Φ,1)[a, b] is{

f : [a, b]→ R
∣∣∃λ > 0: V S(Φ,1)(λf) <∞

}
.

5. BV S(Φ,1)[a, b] is a Banach algebra with the norm

‖f‖(Φ,1) = |f(a)|+ inf
{
k > 0 : V S(Φ,1)

(
f

k

)
≤ 1
}
.

6.
⋃

ΦBV
S
(Φ,1)[a, b] = R[a, b]1) and

⋂
ΦBV

S
(Φ,1)[a, b] = BV [a, b], where both, unions

and intersections, are taken over all Φ-sequences.
7. V S(Φ,1)[a, b] is a linear space if the sequence Φ = {ϕn}n≥1 satisfies a generalized

∆2-condition; namely, for all t0 > 0 there exists M(t0) > 0 such that

m∑
n=1

ϕn(2t) ≤M(t0)
m∑
n=1

ϕn(t) for all t ≥ t0, m ≥ 1.

1) The algebra of all functions in R[a,b] that possess both one-sided limits at every point of (a, b).
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8. If f ∈ BV S(Φ,1)[a, b] and c > 0, the estimate ‖f‖S(Φ,1) ≤ c holds if and only if
V S(Φ,1)(

f
c ) ≤ 1. In particular,

V SB V
S
(Φ,1)[a, b]

( f

‖f‖S(Φ,1)

; [a, b]
)
≤ 1

for every f ∈ BV S(Φ,1)[a, b] with f(t) 6≡ 0.

Now we present the mentioned extension.

Definition 3.5. Let (X, |·|) be a normed space, let Φ = {ϕn}n≥1 be a Φ-sequence
and let [a, b] ⊂ R be an interval. A function f : [a, b] → X is said to be of bounded
second Φ-variation in the sense of Schramm if

V s(Φ,2)(f ; [a, b]) = V s(Φ,2)(f) = sup
{In}∈I[a,b]

∑
n≥0

ϕn (|f2 [In+1]− f2 [In]|) <∞. (3.2)

The class of all the functions in X[a,b]
that satisfy (3.2) is not empty, for if x, y ∈ X

are fixed and f ≡ x or f(t) := tx+ y then V S(Φ,1)(f) = 0. We will denote this class by
V S(Φ,2)([a, b],X) or simply as V S(Φ,2)[a, b].

The next proposition shows some basic properties of the class V S(Φ,2)([a, b],X).

Proposition 3.6. Let Φ = {ϕn}n≥1 be a Φ-sequence and let f : [a, b] → X be a
function. Then:

1. If [c, d] ⊂ [a, b] and V s(Φ,2)(f ; [a, b]) <∞, then V s(Φ,2)(f ; [a, b]) <∞ and

V s(Φ,2)(f ; [c, d]) ≤ V s(Φ,2)(f ; [a, b]).

2. The functional V s(Φ,2) : V S(Φ,2)[a, b]→ X, defined by

V s(Φ,2)(f) := V s(Φ,2)(f ; [a, b])

is convex.
3. If λ is a complex number with |λ| ≤ 1, then V s(Φ,2)(λf) ≤ |λ|V s(Φ,2)(f).

Proof. Part 1 follows readily from the definition. In order to prove parts 2 and 3 one
uses the fact that each of the functions in Φ are convex functions.

Definition 3.7 (Absolute continuity). A mapping f : [a, b] −→ X is called abso-
lutely continuous if there exists a function δ : (0, 1) −→ (0, 1) such that for any
ε > 0, any n ∈ N and any finite collection of points {ai, bi}ni=1 ⊂ [a, b] such that
a1 < b1 ≤ a2 < b2 ≤ a3 < . . . ≤ an < bn, the condition

∑n
i=1(b1 − ai) < δ(ε) implies∑n

i=1 |f(bi)− f(ai)| < ε.
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4. MAIN RESULTS

In this section we present a generalization of Theorem 2.20 for functions of bounded
second Φ-variation in the sense of Schramm. Indeed, we will prove the following result
(see Corollary 4.6 below):

Let X be a reflexive Banach space and let Φ = {ϕn}n≥1 be a Φ-sequence. A function
f : [a, b]→ X is of bounded second Φ-variation in the sense of Schramm if and only if
it is the definite (Bochner) integral of a function of bounded Φ-variation in the sense
of Schramm.

Throughout the rest of this work X will be assumed to be a Banach space.

Lemma 4.1. Let Φ = {ϕn}n≥1 be Φ-sequence. If f ∈ V S(Φ,2)([a, b],X), then f ∈
Lip [a, b] and consequently f is absolutely continuous.

Proof. Let a ≤ t0 < t1 < t2 < t2 ≤ b. Since ϕ1 is non-decreasing and convex, by the
definition of V S(Φ,2)(f ; [a, b]) we must have

ϕ1

(
|f2[I3]− f2[I1]|

2

)
≤ 1

2
ϕ1 (|f2[I3]− f2[I2]|) +

1
2
ϕ1 (|f2[I2]− f2[I1]|) ≤

≤ V S(Φ,2)(f ; [a, b]),

where I1, I2, I3 are non-overlapping intervals (|Ij | > 0) with end points in the set
{a, t0, t1, t2, t3}. Fix a point c ∈ (a, b) and consider any two other points s, t ∈ [a, b].
The proof will follow after analyzing the location of s, t with respect to a, b and c. We
will use the notation Ixy := [x, y].

Case 1. a < s < c < t < b. Then

ϕ1

(
|f [Is,t]|

3

)
≤ 1

3
ϕ1 (|f2[Is,t]− f2[It,b]|) +

+
1
3
ϕ1 (|f2[It,b]− f2[Ia,c]|) +

1
3
ϕ1 (|f2[Ia,c]|) ≤M ′,

where M ′ := V S(Φ,2)(f ; [a, b]) + ϕ1 (|f2[Ia,c]|).

Case 2. a < s < c < t = b. Then

ϕ1

(
|f2[Is,t]|

4

)
≤ 1

4
ϕ1 (|f2[Is,t]− f2[Ia,s]|) +

1
4
ϕ1 (|f2[Ia,s]− f2[Ic,t]|) +

+
1
4
ϕ1 (|f2[Ic,t]− f2[Ia,c]|) +

1
4
ϕ1 (|f2[Ia,c]|) ≤M ′.

Case 3. a < s < t ≤ c < b. Then

ϕ1

(
|f2[Is,t]|

3

)
≤ 1

3
ϕ1 (|f2[Is,t]− f2[Ic,b]|) +

+
1
3
ϕ1 (|f2[Ic,b]− f2[Ia,c]|) +

1
3
ϕ1 (|f2[Ia,c]|) ≤M ′.
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In the cases a = s < c < t < b, a < c ≤ s < t < b or a = s < c < t = b, we
obtain

ϕ1

(
|f2[Is,t]|

4

)
≤M, where M := max {M ′, ϕ (|f2[Ia,b]|)} .

In any case we have

|f2[Is,t]| =
∣∣∣∣f(t)− f(s)

t− s

∣∣∣∣ ≤ ϕ−1 (4M) .

Therefore, f ∈ Lip [a, b].

Remark 4.2. If X is a reflexive Banach space and f ∈ V S(Φ,2)([a, b],X) then the
absolute continuity of f (Lemma 4.1) implies that f is strongly differentiable a.e.
with derivative strongly measurable (see [1]).

In what follows the integral of a normed-space valued function defined on an
interval [a, b] means the Bochner integral. It is known that if a function is absolutely
continuous then it is Bochner integrable on [a, b] ([7]). By (the normed-space version
of) property 2 of Theorem 3.4, any function in V S(Φ,1)([a, b],X) is Bochner integrable.

Theorem 4.3. Let Φ = {ϕn}n≥1 be Φ-sequence. If f ∈ V S(Φ,1)([a, b],X), and we define
U(x) :=

∫ x
a
f(t)dt, then U ∈ V S(Φ,2)[a, b] and

V S(Φ,2)(U) ≤ V S(Φ,1)(f).

Proof. Let {In = [tn−1, tn]}n≥1 be a sequence of intervals in I ([a, b]). Then∑
n≥1

ϕn (|U2[In+1]− U2[In]|) =

=
∑
n≥1

ϕn

(∣∣∣∣ 1
tn+1 − tn

tn+1∫
tn

f(t)dt− 1
tn − tn−1

tn∫
tn−1

f(t)dt
∣∣∣∣) =

=
∑
n≥1

ϕn

(∣∣∣∣
1∫

0

f(tn + s(tn+1 − tn))ds−
1∫

0

f(tn−1 + s(tn − tn−1))ds
∣∣∣∣)

and an application of Jensen inequality yields∑
n≥1

ϕn (|U2[In+1]− U2[In]|) ≤

≤
∑
n≥1

1∫
0

ϕn (|f(tn + s(tn+1 − tn))− f(tn−1 + s(tn − tn−1))|) ds =

=

1∫
0

∑
ϕ (|f(tn + s(tn+1 − tn))− f(tn−1 + s(tn − tn−1))|) ds ≤ V s(Φ,1)(f).
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Following the ideas of A.M. Russell and C.F. Upton in the proof of Lemma 6 of
[12] and of M. Bracamonte, J. Giménez and N. Merentes (Lemma 3.2 of [2]), we get
the next result.

Lemma 4.4. Let Φ = {ϕn}n≥1 be Φ-sequence, E a dense subset of [a, b] and let
f : E → X be a function such that there is a constant K > 0 with

n−1∑
k=0

ϕk (|f [Ij(ξ)]|) ≤ K, (4.1)

for any finite collection ξ : a ≤ t0 < t1 < . . . < tn ≤ b in E. Then gE(x− 0) exists for
all x ∈ (a, b]\E, where

gE(x− 0) := lim
h→0+

x−h∈E

g(x− h).

An analogous assertion holds for gE(x+ 0) (x ∈ [a, b)\E), which is similarly defined.

Proof. It suffices to show that g(x−0) exists for all t ∈ (a, b]\E. The case of gE(x+0)
is treated analogously. We will proceed via proof by contradiction. Suppose that this
is not the case, that is, suppose that there exists x ∈ (a, b]\E such that

lim
h→0+
t−h∈E

g(t− h) = lim
s→t−
s∈E

g(s) does not exist.

Let
Λ := lim sup

x→x−0
x∈E

f(x) and Γ := lim inf
x→x−0
x∈E

f(x).

Then Λ > Γ, and we can find two increasing sequences {xn}n≥0 and {yn}n≥0 such
that

xn < yn < xn+1 < yn+1 < . . . < x,

lim
n→∞

f(xn) = Λ and lim
n→∞

f(yn) = Γ.

If Λ and Γ are finite, consider ε := Λ−Γ
3 (otherwise take any ε > 0). Choose nε ∈ N

such that
|f(xn)− f(yn)| > ε, n > nε. (4.2)

Since ϕn+1 ≤ ϕn, n ≥ 0, (4.2) implies that for all p > 0

nε+p∑
k=nε+1

ϕn (|fn(xn)− fn(yn)|) >
nε+p∑
k=nε+1

ϕnε+p(ε) > pϕnε+p(ε),

which contradicts (4.1).
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Theorem 4.5. Let X be a reflexive Banach space, Φ = {ϕn}n≥1 a Φ-sequence and
suppose that U ∈ V S(Φ,2)([a, b],X). Then there exists a function f ∈ V S(Φ,1)[a, b] such
that:

(a) U ′ = f a.e.,
(b) U(x) :=

∫ x
a
f(t)dt,

(c) V S(Φ,2)(U) = V S(Φ,1)(f).

Proof. Since F is absolutely continuous (Lemma 4.1) and X is a reflexive Banach
space, f is strongly differentiable a.e., with derivative strongly measurable (see Re-
mark 4.2). Let E be a set of zero Lebesgue measure such that F ′ exists at every point of
the set D := [a, b]\E. Given m ∈ N, choose m+1 ordered points a ≤ x0 < x1 < . . . <
xm ≤ b in D. Now consider m + 2 positive numbers: h0, h1, . . . , hm and ξ such that
xm − hm, xm−1 + ξ, . . . , xk + hk, k = 0, 1, . . . ,m− 1, are in D with

x0 < x0 + h0 < x1 < x1 + h1 < . . . < xm−1 + hm−1 < xm−1 + ξ < xm − hm < xm.

Then

m−2∑
k=0

ϕk

(∣∣∣∣U(xk+1 + hk+1)− U(xk+1)
hk+1

− U(xk + hk)− U(xk)
hk

∣∣∣∣)+

+ ϕm−1

(∣∣∣∣U(xm)− U(xm − hm)
hm

− U(xm−1 + ξ)− U(xm−1 + hm−1)
ξ − hm−1

∣∣∣∣) ≤
≤ V S(Φ,2)(U).

Taking the limits, in the above inequality, as ξ → 0 and as hk → 0, k = 0, . . . ,m, we
get

m−1∑
k=0

ϕk (|U ′(xk+1)− U ′(xk)|) ≤ V S(Φ,2)(U). (4.3)

If a = x0 then we obtain U
′

+(a) instead of U ′(a) in (4.3). Thus, the derivative U ′
satisfies the conditions of Lemma 4.4. Now, let us define f : [a, b]→ X, as

f(x) =


U ′(x), when x ∈ D,
U
′

D(x− 0), when x ∈ (a, b] \ E,
U
′

D(a+ 0), if x = a /∈ D.

By construction, U ′ = f a.e. By virtue of Theorem 4.3, we just need to verify that
f ∈ V S(Φ,1)([a, b],X) and that V S(Φ,1)(f) ≤ V S(Φ,2)(U).

Let A = {Ik = [tk, sk]}mk=0 be any finite family of intervals in I[a, b]. We need to
consider several cases.
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Case 1. Suppose that there is just one Ip ∈ A such that one of its end points is in E.
Assume further that this end point is the right hand side one (sp). Choose s′p ∈ D
such that tp < s′p < sp and replace the interval Ip in A with I

′

p = [tp, s′p]. Since all
the end points of this new collection are in D and f |D = U , we get

p−2∑
k=0

ϕk (|f [Ik+1]− f [Ik]|) + ϕp−1

(∣∣∣f [I
′

p]− f [Ip−1]
∣∣∣)+

+ ϕp

(∣∣∣f [Ip+1]− f [I
′

p]
∣∣∣)+

m−1∑
k=p+1

ϕk (|f [Ik+1]− f [Ik]|) ≤ V S(ϕ,2)(U).

Keeping s′p in D and taking limit as s′p → sp, we have f(s′p)→ f(sp − 0). But in this
case f(s′p) = U ′(s′p)→ U ′(sp − 0) = f(sp). Thus

m−1∑
k=0

(|f [Ik+1]− f [Ik]|) ≤ V S(ϕ,2)(U).

Case 2. If Ip is as in Case 1, but now tp is the end point in E, then (since A ∈ I[a, b]
is finite) there is a point t′p ∈ D, t′p < tp, such that I

′

p = [t′p, sp] does not overlap the
rest of the intervals in A. Now we replace (in A) Ip with I ′p and proceed as in Case 1.
Case 3. Suppose now that just one point of E is a common end point of two intervals
in A; say Ip and Ip+1. Then tp < sp = tp+1 < sp+1. Choose s′p ∈ D such that
tp < s′p < sp and replace Ip with I ′p = [tp, s′p] and Ip+1 with I ′p+1 = [s′p, tp+1]. Since
the end points of this new collection are in D we have

p−2∑
k=0

ϕk (|f [Ik+1]− f [Ik]|) + ϕp−1

(∣∣∣f [I
′

p]− f [Ip−1]
∣∣∣)+ ϕp

(∣∣∣f [I ′p+1]− f [I
′

p]
∣∣∣)+

+ ϕp+1

(∣∣∣f [Ip+2]− f [I
′

p+1]
∣∣∣)+

m−1∑
k=p+2

ϕk (|f [Ik+1]− f [Ik]|) ≤ V S(Φ,2)(U).

Again, by considering the definition of f and passing to limit as s′p → sp (taking into
account Lemma 4.4), one gets

m−1∑
k=0

(|f [Ik+1]− f [Ik]|) ≤ V S(Φ,2)(U).

Any other situation can be treated similarly. As claimed, we conclude that

f ∈ V S(Φ,1)([a, b],X) and V S(Φ,1)(u) ≤ V S(Φ,2)(U).

The proof is complete.
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The following result, which was already stated at the beginning of this section,
now follows readily from Theorems 4.3 and 4.5.

Corollary 4.6. Let X be a reflexive Banach space and let Φ = {ϕn}n≥1 be a
Φ-sequence. A function f : [a, b]→ X is of bounded second Φ-variation in the sense of
Schramm if and only if it is the definite (Bochner) integral of a function of bounded
Φ-variation in the sense of Schramm.
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