Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
If T or T* is an algebraically k-quasiclass A operator acting on an infinite dimensional separable Hilbert space and F is an operator commuting with T, and there exists a positive integer n such that Fn has a finite rank, then we prove that Weyl's theorem holds for ∫ (T)+F for every ∫∈ H(σ (T)), where H(σ (T)) denotes the set of all analytic functions in a neighborhood of σ (T). Moreover, if T* is an algebraically k-quasiclass A operator, then α-Weyl's theorem holds for ∫(T). Also, we prove that if T or T* is an algebraically k-quasiclass A operator then both the Weyl spectrum and the approximate point spectrum of T obey the spectral mapping theorem for every ∫∈ H(σ (T)).
Czasopismo
Rocznik
Tom
Strony
125--135
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
autor
- Henan Normal University College of Mathematics and Information Science Xinxiang, Henan 453007, China, gaofugen08@126.com
Bibliografia
- [1] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), 307–315.
- [2] II.J. An, Y.M. Han, Weyl’s theorem for algebraically quasi-class A operators, Integral Equations Operator Theory 62 (2008), 1–10.
- [3] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- [4] P. Aiena, Classes of operators satisfying Weyl’s theorem, Studia Math. 169 (2005), 105–122.
- [5] P. Aiena, O. Monsalve, Operators which do not have single valued extension property, J. Math. Anal. 250 (2000), 435–448.
- [6] S.K. Berberian, An extension of Weyl’s theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273–279.
- [7] S.K. Berberian, The Weyl’s Spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529–544.
- [8] L.A. Coburn, Weyl’s theorem for non-normal operators, Michigan Math. J. 13 (1966), 285–288.
- [9] M. Ch¯o, M. Iton, S. ¯ Oshiro, Weyl’s theorem holds for p-hyponormal operators, Glasg. Math. J. 39 (1997), 217–220.
- [10] R.E. Curto, Y.M. Han, Weyl’s theorem for algebraically paranormal operators, Integral Equations Operator Theory 47 (2003), 307–314.
- [11] N. Dunford, Spectral theory I, Pacific J. Math. 2 (1952), 559–614.
- [12] N. Dunford, Spectral operator, Pacific J. Math. 4 (1954), 321–354.
- [13] B.P. Duggal, S.V. Djordjevic, Weyl’s theorem in the class of algebraically p-hyponormal operators, Comment. Math. Prace Mat. 40 (2000), 49–56.
- [14] B.P. Duggal, Polaroid operators satisfying Weyl’s theorem, Linear Algebra Appl. 414 (2006), 271–277.
- [15] S.V. Djordjevic, Y. M. Han, Browder’s theorems and spectral continuity, Glasg. Math. J. 42 (2000), 479–486.
- [16] T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594–598.
- [17] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001.
- [18] T. Furuta, M. Ito, T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several classes, Sci. Math. 1 (1998) 3, 389–403.
- [19] J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61–69.
- [20] F.G. Gao, X.C. Fang, On k-quasiclass A operators, J. Inequal. Appl. 2009 (2009), Article ID 921634, 1–10.
- [21] H. Heuser, Functional Analysis, John Wiley and Sons, 1982.
- [22] Y.M. Han, W.Y. Lee,Weyl’s theorem holds for algebraically hyponormal operators, Proc. Amer. Math. Soc. 128 (2000), 2291–2296.
- [23] I.H. Jeon, I.H. Kim, On operators satisfying TjT2jT TjTj2T, Linear Algebra Appl. 418 (2006), 854–862.
- [24] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Math. Anal. 6 (1958), 261–322.
- [25] K.B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 323–336.
- [26] K.B. Laursen, M.M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [27] W.Y. Lee, S.H. Lee, A spectral mapping theorem for the Weyl spectral, Glasg. Math. J. 38 (1996), 61–64.
- [28] M. Oudghiri, Weyl’s theorem and purturbations, Integral Equations Operator Theory 53 (2005), 535–545.
- [29] V. Rakocevic, On the essential approximate point spectral II, Mat. Vesnik 36 (1984), 89–97.
- [30] K. Tanahashi, I.H. Jeon, I.H. Kim, A. Uchiyama, Quasinilpotent part of class A or (p; k)-quasihyponormal operators, Oper. Theory Adv. Appl. 187 (2008), 199–210.
- [31] A. Uchiyama, Weyl’s theorem for class A operators, Math. Inequal. Appl. 4 (2001), 143–150.
- [32] H. Weyl, Über beschränkte quadratische Formen, deren diffierenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373–392.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0007-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.