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1. INTRODUCTION

In this note we will study a Dirichlet boundary value problem for a fourth order
discrete equation

∆2
(
p(k)∆2x(k − 2)

)
+ ∆ (q(k)∆x(k − 1)) + f (k, x(k)) = g(k), k ∈ Z[2, T ],

x(0) = x(1) = x(T + 1) = x(T + 2) = 0.
(1.1)

For fixed a, b ∈ N we define Z[a, b] = {a, a + 1, . . . , b − 1, b} as the so called discrete
interval. ∆ is the forward difference operator ∆x(k) = x(k+ 1)− x(k). By a solution
of problem (1.1) we mean such a function x : Z[0, T + 2] → R which satisfies the
difference equation on Z[2, T ] and the given boundary conditions. We note that since
we do not assume anything about the sign condition of f near 0 our results may
apply for both positone (i.e. when f(k, 0) ≥ 0, k ∈ Z[2, T ]) and non-positone (i.e.
when f(k, 0) < 0, k ∈ Z[2, T ]) problems within one approach. This is not common
within the boundary value problems, compare with [8].

Solutions are obtained in the space E of functions x : {0, T + 2} → R such that
x(0) = x(1) = x(T + 1) = x(T + 2) = 0 considered with a norm

‖x‖ =

√√√√T+2∑
k=2

(∆2x(k − 2))2.
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All functions from E are defined on a finite set, and therefore these are continuous.
The space E can be also considered with the following norms

‖x‖1 =

√√√√T+1∑
k=2

(∆x(k − 1))2

and

‖x‖0 =

√√√√ T∑
k=2

x2(k).

Since E has finite dimension these norms are equivalent, thus

β‖x‖ ≤ ‖x‖1 ≤ β1‖x‖,
‖x‖0 ≤ γ‖x‖

(1.2)

for a certain constants β, β1, γ > 0 which do not depend on x. We assume that:

(A1) f ∈ C(Z [2, T ] × R,R), p ∈ C(Z [2, T + 3] ,R), q ∈ C(Z [2, T + 2] ,R), g ∈
C(Z [2, T ] ,R);

(A2) there exists a constant α > 0 such that xf(t, x) ≤ 0 for |x| ≥ α;
(A3) M < Nβ2, where M = supt∈{2,3,...,T+3} p(t), N = inft∈{2,3,...,T+2} q(t).

Problems such as (1.1) arise when fourth order Dirichlet problems are being dis-
cretization and may be viewed as a discrete version of a simply supported elastic beam
equation, see for example [2, 5]. The approach through symmetric Green’s function
is used in [6, 7], the Krein-Rutman Theorem is applied in [10], while in [9] the crit-
ical point theory is used with some other growth conditions. In fact the variational
framework for problem (1.1) which we follow is descried in [9]. However, in the sources
mentioned, the approach is somewhat different and with different set of assumptions.
While in the literature mainly the problem of the existence of solutions and their mul-
tiplicity is considered we are going to go further and investigate also the dependence
on a functional parameter.

The paper is organized as follows. We are going first to apply a variational approach
based on the so called direct variational method in order to get the existence result
and next investigate the dependence of the solution on a functional parameter. We
think that for our problem, as far as the existence is concerned, a lower-upper solution
method introduced in [4] could also be applied. However the latter approach does not
seem to allow for the investigations of the dependence on parameters due to the
non-uniqueness of solutions and therefore we do not apply it.

For the sake of convenience, we now recall same basic tools used in our note,
see [2]. A mapping J of a real Banach X space to R will be called a functional.
A point x0 where J

′
(x0) = θ is called a critical point of J , assuming that J is

Gâteaux differentiable and that J
′
denotes the Gâteaux derivative.

J is weakly lower semi-continuous at x ∈ X if

xn ⇀ x⇒ lim inf
n→∞

J(xn) ≥ J(x)
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and J is coercive on X if
lim
‖x‖→∞

J(x) = +∞,

where ‖x‖ stands for a norm in X and “⇀” denotes weak convergence in X.

Theorem 1.1. Let E be a reflexive Banach space, D ⊂ E be weakly closed, and
J : E → R be weakly lower semi-continuous and coercive, then J has a minimum
over D.

2. THE EXISTENCE OF SOLUTIONS

Let

F (k, y(k)) =

y(k)∫
0

f(k, t)dt, y ∈ E.

The action functional J : E → R corresponding to our problem is

J(y) =
T+2∑
k=2

(−p(k)
2 (∆2y(k − 2))2)+

+
T+1∑
k=2

q(k)
2 (∆y(k − 1))2 +

T∑
k=2

(−F (k, y(k)) + g(k)y(k)).

Lemma 2.1. J is a Gâteaux differentiable functional; y ∈ E is a critical point of J
if and only if it is a solution to (1.1).

Proof. We denote by ϕ : R→ R the function ϕ(ε) = J(y+εh) for y, h ∈ E and ε ∈ R;
here y, h ∈ E are fixed. Then

ϕ(ε) =
T+2∑
k=2

(−p(k)
2 (∆2 (y + εh)(k − 2))2) +

T+1∑
k=2

q(k)
2 (∆ (y + εh)(k − 1))2 +

+
T∑
k=2

(−F (k, y(k) + εh(k)) + g(k) (y(k) + εh(k)))

and since ϕ is differentiable we get

ϕ′(0) =
T+2∑
k=2

(−p(k)∆2y(k − 2)∆2h(k − 2)) +
T+1∑
k=2

q(k)∆y(k − 1)∆h(k − 1)+

+
T∑
k=2

(−f(k, y(k))h(k) + g(k)h(k)) =
T∑
k=2

(
−∆2

(
p(k)∆2y(k − 2)

)
h(k)−

−∆
(
q(k)∆y(k − 1)

)
h(k)− f(k, y(k))h(k) + g(k)h(k)

)
.

Thus y ∈ E is critical point of J if and only if y satisfies equation (1.1).
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Theorem 2.2. Assume that (A1), (A2), (A3) hold. Then functional J is weakly lower
semi-continuous and coercive on E.

Proof. Since J is continuous it is lower semi-continuous and since E is finite di-
mensional it is weakly lower semi-continuous. We have just demonstrated that J is
Gâteaux differentiable. We show that J is coercive on E. To do this first notice that
by (A2)

T∑
k=2

F (k, y(k)) =
T∑
k=2

y(k)∫
0

f(k, t)dt ≤
T∑
k=2

α∫
−α

| f(k, t) | dt ≤ C. (2.1)

Further from (1.2), (2.1) and (A3) for any sequence {yn} ∈ E

J(yn) =
T+2∑
k=2

(−p(k)
2 (∆2yn(k − 2))2)+

+
T+1∑
k=2

q(k)
2 (∆yn(k − 1))2 +

T∑
k=2

(g(k)yn(k)− F (k, yn(k))) ≥

≥ −M2 ‖yn‖
2 + N

2 ‖yn‖
2
1 − C −

T∑
k=2

|g(k)||yn(k)| ≥

≥ −M2 ‖yn‖
2 + N

2 β
2‖yn‖2 − C −

√√√√ T∑
k=2

g2(k)‖yn‖0 ≥

≥ (−M2 + N
2 β

2)‖yn‖2 − C − γ

√√√√ T∑
k=2

g2(k)‖yn‖.

So J(yn)→ +∞ as ‖yn‖ → ∞.

The main result of this section is contained in the next theorem.

Theorem 2.3. Assume that (A1), (A2), (A3) hold. Then problem (1.1) has at least
one solution v ∈ E such that J (v) = infy∈E J(y).

Proof. We use Theorem 1.1 and Lemma 2.1. Let D = E. Then D as a closed and
convex set is weakly closed. By Theorem 2.2 J is weakly lower semi-continuous and
coercive on D. So by Theorem 1.1 it has at least one argument for a minimum. Let
us denote it by v. Since J is differentiable in the sense of Gâteaux, it follows that
J

′
(v) = 0 and the assertion follows by Lemma 2.1.

3. THE DEPENDENCE ON PARAMETERS

The usage of a variational method allows us to consider a boundary value problem
which is subject to some functional parameter and later to investigate the dependence
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of the solution on the parameter as it varies. We do not need to have uniqueness of
solutions in order to investigate their dependence on parameters. In this section we
will investigate the following Dirichlet problem

∆2
(
p(k)∆2x(k − 2)

)
+ ∆ (q(k)∆x(k − 1)) + f (k, x(k), u(k)) = g(k), k ∈ Z[2, T ],

x(0) = x(1) = x(T + 1) = x(T + 2) = 0
(3.1)

subject to parameter u ∈ LD = {u ∈ C(Z[2, T ],R) : ‖u‖C ≤ D}, where D > 0 is
fixed and ‖u‖C denotes classical maximum norm ‖u‖C = maxk∈Z[2,T ] |u(k)|.

Now we assume that:

(A4) f ∈ C(Z [2, T ] × R2,R), p ∈ C(Z [2, T + 3] ,R), q ∈ C(Z [2, T + 2] ,R), g ∈
C(Z [2, T ] ,R);

(A5) there exists α > 0 such that xf(t, x, u) ≤ 0 for |x| ≥ α, |u| ≤ D.

With these assumptions and with (A3) the action functional Ju : E → R corre-
sponding to (3.1) with a fixed function u ∈ LD reads

Ju(y) =
T+2∑
k=2

(−p(k)
2 (∆2y(k − 2))2)+

+
T+1∑
k=2

q(k)
2 (∆y(k − 1))2 +

T∑
k=2

(g(k)y(k)− F (k, y(k), u(k))),

where F (k, y(k), u(k)) =
∫ y(k)

0
f(k, t, u(k))dt, y ∈ E.

Reasoning as in the proof of Theorem 2.2 we obtain

Theorem 3.1. Assume that (A3), (A4), (A5) hold. Then for any fixed u ∈ LD the
problem (3.1) has at least one solution in Vu.

Let for any fixed u ∈ LD

Vu = {y ∈ E : Ju(y) = inf
v∈E

Ju(v) and J
′

u(y) = 0}

be the set which consists of the arguments of a minimum to Ju. Due to Theorem 3.1
Vu 6= ∅. We will investigate the behavior of the sequence {yn} of solutions to (3.1)
depending on convergence of the sequence of parameters {un}.

Theorem 3.2. Assume that (A3), (A4), (A5) hold. For any fixed u ∈ LD there
exists at least one solution y ∈ Vu to problem (3.1). Let {un} ⊂ LD be a convergent
sequence of parameters, where limn→∞ un = ū ∈ LD. For any sequence {yn} of
solutions yn ∈ Vn to the problem (3.1) corresponding to un, there exist a subsequence
{yni} ⊂ E and an element y ∈ E such that limi→∞ yni = y and Jū(y) = inf

y∈E
Jū(y).

Moreover y ∈ Vū, i.e. y satisfies

∆2
(
p(k)∆2y(k − 2)

)
+ ∆

(
q(k)∆y(k − 1)

)
+ f

(
k, y(k), ū(k)

)
= g(k),

y(0) = y(1) = y(T + 1) = y(T + 2) = 0.
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Proof. By Theorem 3.1 we get for n ∈ N the existence of solution yn ∈ Vun
to (3.1).

Notice, that for n ∈ N,

yn ∈ Vun ⊂ {y : Jun ≤ Jun(0)}.

By (A5) we get for some constant C > 0

T∑
k=2

F
(
k, yn(k), un(k)

)
=

T∑
k=2

yn(k)∫
0

f(k, t, un(k))dt ≤

≤
T∑
k=2

α∫
−α

| f(k, t, un(k)) | dt ≤ C.

(3.2)

Then (3.2) and (1.2) imply

Ju(yn) =
T+2∑
k=2

(−p(k)
2 (∆2yn(k − 2))2) +

T+1∑
k=2

q(k)
2 (∆yn(k − 1))2+

+
T∑
k=2

(g(k)yn(k)− F (k, yn(k), u(k))) ≥

≥ −M2 ‖yn‖
2 + N

2 ‖yn‖
2
1 − C −

T∑
k=2

|g(k)||yn(k)| ≥

≥ −M2 ‖yn‖
2 + N

2 β
2 ‖yn‖2 − C −

√√√√ T∑
k=2

g2(k) ‖yn‖0 ≥

≥ (−M2 + N
2 β

2) ‖yn‖2 − C − γ

√√√√ T∑
k=2

g2(k) ‖yn‖ .

We also know that F (k, 0, un(k)) = 0, so Jun(0) = 0. As a consequence for yn ∈ Vun

we see that

(−M2 + N
2 β

2) ‖yn‖2 − γ

√√√√ T∑
k=2

g2(k) ‖yn‖ ≤ C (3.3)

so {yn} is bounded in E and hence it has a convergent subsequence {yni
}. We denote

its limit by y.
In order to demonstrate that y satisfies (3.1) corresponding to ū we follow the same

steps as in the proof of Theorem 1 in [3]. However, we proceed with the reasoning
for the reader’s convenience and slightly simplify the approach of [3]. Observe that
by Theorem 3.1 there exists y0 ∈ E such that y0 solves (3.1) with u and Ju(y0) =
infy∈E Ju(y) and either Ju(y0) < Ju (y) or Ju(y0) = Ju (y). Suppose that Ju(y0) <
Ju (y). Then, for some constant δ > 0 we have

δ <
(
Juni

(yni
)− Ju (y0)

)
−
(
Juni

(yni
)− Ju (y)

)
. (3.4)
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By continuity, it follows that

lim
i→∞

(
Juni

(yni)− Ju (y)
)

= 0. (3.5)

Since yni
minimizes Juni

over E we see that Juni
(yni

) ≤ Juni
(y0) for any ni. There-

fore, we get

lim
i→∞

(
Juni

(yni
)− Ju(y0)

)
≤ lim
i→∞

(
Juni

(y0)− Ju(y0)
)

= 0. (3.6)

Using (3.5) and (3.6) we obtain δ ≤ 0 in (3.4), which is a contradiction. Thus Ju (y) =
infy∈E Ju(y) and since Ju is differentiable in the sense of Gâteaux we have y ∈ Vu.
Hence y necessarily satisfies (3.1). On the other hand, if we have Ju(y0) = Ju (y) then
the result readily follows.

4. FURTHER EXISTENCE RESULTS AND EXAMPLES

In this section we will also investigate (1.1) but our assumptions will be somewhat
different. This change forces us to use a different action functional.

(A6) there exists α1 > 0 such that xf(t, x) ≥ 0 for |x| ≥ α1;
(A7) M1 > N1β

2
1 , where M1 = inft∈{2,3,...,T+3} p(t), N1 = supt∈{2,3,...,T+2} q(t).

Now we consider the following action functional

J1(y) =
T+2∑
k=2

p(k)
2 (∆2y(k − 2))2 −

T+1∑
k=2

q(k)
2 (∆y(k − 1)) +

T∑
k=2

(F (k, y(k))− g(k)y(k)).

Theorem 4.1. Assume that (A1), (A6), (A7) hold. Then functional J1 is weakly
lower semi-continuous and coercive on E.

Proof. The fact that J1 is lower semi-continuous is obvious. We show that J1 is
coercive on E. To do this first notice that by (A6) (similar to proof of Theorem 2.2)
we get for any y ∈ E

T∑
k=2

F (k, y(k)) ≥ −C (4.1)
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for some constant C > 0. Further from (1.2), (4.1) for any sequence {yn} ∈ E

J1(yn) =
T+2∑
k=2

p(k)
2 (∆2yn(k − 2))2−

−
T+1∑
k=2

q(k)
2 (∆yn(k − 1))2 +

T∑
k=2

(F (k, yn(k))− g(k)yn(k)) ≥

≥ M1
2 ‖yn‖

2 − N1
2 ‖yn‖

2
1 − C −

T∑
k=2

|g(k)||yn(k)| ≥

≥ M1
2 ‖yn‖

2 − N1
2 β

2
1 ‖yn‖

2 − C −

√√√√ T∑
k=2

g2(k) ‖yn‖0 ≥

≥ (M1
2 −

N1
2 β

2
1) ‖yn‖2 − C − γ

√√√√ T∑
k=2

g2(k) ‖yn‖ .

So J1(yn)→ +∞ as ‖yn‖ → ∞.

The existence of a minimum for J1 follows from Theorem 1.1 (with D = E) and
Theorem 4.1. So we get the following theorem.

Theorem 4.2. Assume that (A1), (A6), (A7) hold. Then the problem (1.1) has at
least one solution.

Example 4.3. Let l be any natural number and let r ∈ C(R,R) be bounded. Define
function f (t, x) = r(t)h(x) with

h(x) =

{
x2l, x < 0,
−x2l, x ≥ 0.

For r ∈ C(R,R+) function f satisfy (A2), but it does not satisfy (A6). For r ∈
C(R,R−) it does not satisfy (A2), but it satisfies (A6).

Example 4.4. Let r ∈ C(R,R) be bounded. Define function f(t, x) = r(t)h(x) with

h(x) = arctanx.

For r ∈ C(R,R+) function f satisfies (A6), but it does not satisfy (A2). For r ∈
C(R,R−) it does not satisfy (A6), but it satisfies (A2).
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