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ON THE EXISTENCE
OF POSITIVE CONTINUOUS SOLUTIONS
FOR SOME POLYHARMONIC ELLIPTIC SYSTEMS
ON THE HALF SPACE

Zagharide Zine El Abidine

Abstract. We study the existence of positive continuous solutions of the nonlinear poly-
harmonic system (—A)™u + Agg(v) = 0,(—A)™v + pupf(u) = 0 in the half space R} :=
{z = (z1,...,2,) € R" : , > 0}, where m > 1 and n > 2m. The nonlinear term is required
to satisfy some conditions related to the Kato class Ky, (R} ). Our arguments are based
on potential theory tools associated to (—A)™ and properties of functions belonging to
K5 (RY).
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1. INTRODUCTION

Let m be a positive integer and R} = {(z1,22,...,2,) € R" : 2, > 0}, where n > 2m.
An explicit expression for the Green function Gy, of (—A)™ on R, with Dirichlet
boundary conditions (%)ju =0,0<j<m—1 was given in [4] by

= =7

lz—yl ( 9 1)m—1

2m— U7 —
Gm,n(xay) = k’m,n| r—y | e / Tdvv T,y € Ri7

1

Em n is a positive constant and ¥ = (y1, Y2, - - -, Yn—1, —Yn)-
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Since the Green function G, is positive and based on the potential theory ap-
proach, we investigate in this paper the existence of positive continuous solutions (in
the sense of distributions) for the following polyharmonic elliptic system

(=A)™u+ Apf(v) =0 in R,
(=A)™v + pgg(u) = 0 in RY,

lim, . (¢.0) 52 = ap(€),¥ € € R,
i) _, (1.1)

lim,, . (e.0) S5 = b(€),V & € R,

limzngﬂroo o) — 57

m
Ty

lim,, 400

where A, p are nonnegative constants, a, b, @ and [ are nonnegative constants such
that a + « > 0, b+ 8 > 0 and the functions ¢ and @ are non-trivial nonnegative
bounded continuous functions on IR := {(x1,22,...,2,—1,0) € R"} which we iden-
tify to R~ 1.

In a recent paper [14], we have treated a similar polyharmonic problem in the unit
ball B={z € R": |z| < 1} of R (n > 2).

For the case m = 1, the existence of solutions for nonlinear elliptic systems has
been extensively studied for both bounded and unbounded C'''domains in R" (n > 3)
see for example [7-13,16,18|.

For our study we use closely the following interesting estimates for G, ,, which
were established in [4]. For each z, y € R”}

min (17 M) (1.2)

G T,y) ~
ml @)~ oyl

T — y‘n—Zm

Here and throughout the paper for nonnegative functions f and g on a set .S, the
notation f ~ g means that there exists a constant ¢ > 0 such that %g <f<cgonsS.
From (1.2), Bachar et al. [4] derived the following 3G-inequality.

Theorem 1.1. There exists Cp, > 0 such that for each x,y,2 € R

Gm,n(x7 z)Gm,n(27 y)
Gmn (z,y)

Using these estimates, the authors in [4] introduce a large class of functions called

the Kato class and denoted by K7, (R%) := K¥ ., defined as follows.

m,n?’

< Conn[(2) " Gl 2) + () Gl 2)]. (13)

Ln Yn

Definition 1.2 ([4]). A Borel measurable function ¢ in R’} belongs to the Kato class
K, if g satisfies

m%<sup [ (&) Gm,n<x,y>|q<y>|dy>=o (1.4)
RYNB(z,a)
and

. yn m B
i <f§5 / (g) Gm,n(%y)lq(y)dy> =0. (1.5)

+ pn
R} N(ly|=M)



On the existence of positive continuous solutions. . . 93

To illustrate, we cite as a typical example of functions belonging to the class K77,
the following example.

Example 1.3 ([4]). Let A, 4 € R and ¢(x)
function ¢ € K2°, if and only if A < 2m < pu.

m,n

We note that for m = 1, the corresponding elliptic class K (]Ri) = K75, (Ri)
has been studied by Bachar and Maagli in [1] for n > 3 and by Bachar et al. in [2]
for n = 2.

The class K7, was fully developed and exploited to study the existence of positive
continuous solutions for some polyharmonic nonlinear elliptic problems (see [4,5]).

Before presenting our main results, we give some notations and terminology to
be used throughout the paper. We set 6 the harmonic function defined on R’ by
0(z) = x,. For any nonnegative continuous bounded function ¢ on R"~!, we denote
by H¢ the unique harmonic bounded function in R’} satisfying

lim Ho(r) = 9(6), VEeR (1.6)

= m for x € RS’L_ Then the

We remark that the function z — (0(z))™ ' He(z) is a classical solution of the
problem

(—A)™u =0 in R,
lim,, . (0) 245 = p(¢), VE R

We also refer to V f the m-potential of a measurable nonnegative function f on R,
defined by

Vf(z)= /Gm,n(:c,y)f(y)dy for x € RY}.
R}

As in the classical case the following assertions are equivalent for each nonnegative
measurable function f on R’:

(i) Vf # oo, and consequently V f € L}, (R%),

loc
(ii) f (1f@|)nf(y)dy < 00.
K}

Hence for each nonnegative measurable function f on R’} such that V f € L}OC(RZ}_),
we have
(=A)™(V f) = f (in the distributional sense).

As usual, we denote

C (R}) ={w:R} — R, w is continuous},

Co(RY}) = {w € C(RY), limow(x) =0and lim w(x)= 0}

|#]—o00

and
Cy(R}) ={w € C (R}) ,w is bounded in R’} }.
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Our paper is organized as follows. In Section 2 we recall some properties of func-
tions belonging to the Kato class K7, developed in [4]. Next, we present a subclass
of m-potential functions which allows us to establish the following result which is a
key tool in our study.

Theorem 1.4. Let 3 € [m —1,m), q € K. The function v defined on R’} by

o@) = [ () Gunlen)awiy
7}

is in Co(R7).

Remark 1.5. For 8 = m, the authors in [4] showed that the function v given in
Theorem 1.4, is continuous in R% and satisfies | l‘im v(z) = 0.
T |—00
As mentioned above, the main goal of this paper is to prove two existence results
for the system (1.1), stated in Theorem 1.6 and Theorem 1.7 below and proved in
Sections 3 and 4. Section 5 is reserved to examples.
For our first existence result, we assume the following hypotheses:

(Hy) The functions f, g : (0,00) — [0,00) are continuous and nondecreasing.
(Hz) The functions p, ¢ are nonnegative measurable on R’} and for each ¢ > 0, the
functions

p m— q m—
Pe = Gy f(ed™ O +1)), q.:= emilg(ce Lo+ 1))

belong to the Kato class K7 ..
(H3) We suppose that

. oz + axy ' Ho(x)
w2 V(pf (BO™ + bOm—1H)) ()

>0,

op BT+ b e (x)
vek? V(qg(ad™ + abd™ =1 Hop))(z)

o = > 0.

Using an iterative scheme, we obtain the following theorem.

Theorem 1.6. Assume (Hy)—(Hs). Then for each X € [0, \g) and u € [0, o), problem
(1.1) has a positive continuous solution (u,v) such that

(1= ) (@b™ + a6 Hep) < u < af™ + af™ ' Hep,
(1= £)(80™ + g™~ Hp) < v < 0™ + b6~ Hp.

Our second existence result deals with problem (1.1) when the functions f, g are
continuous and nonincreasing, A = y = a = b = 1 and «, [ are nonnegative constants.

More precisely, we fix a non-trivial nonnegative bounded continuous function ®
on R*~! and we need the following assumptions:
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(H4) The functions f, g : (0,00) — [0, 00) are continuous and nonincreasing.
(Hs) The functions p, ¢ are nonnegative measurable on R’} such that the functions

_FOMTUH®) g0l H®)
P=P=gm=Tge » 1791 gm-1Ho

belong to the Kato class K7 .
Using a fixed point argument, we obtain the following theorem.

Theorem 1.7. Assume that A = p = a = b =1 and that (Hy)—(Hs) are satisfied.
Suppose that there exists v > 1 such that ¢ > v® and 1 > v® on R"~1. Then problem
(1.1) has a positive continuous solution (u,v) satisfying
ald™ + "I HO <u < o™+ 0" T Hep, (17)
BO™ + 0L H® < u < B0™ + 6m L Hp. '

Throughout the paper the letter ¢ denotes a generic positive constant which may
vary from line to line.

2. MODULUS OF CONTINUITY

We collect in the following some preliminary results useful for our study. For the
proofs we refer to [4,5].

Proposition 2.1. Let g € K7,,. Then:

2m—1
(i) The function x — Wg(m) is in L*(R').
In particular the function x — x2™ 1q(z) is in L, (R7T).
. Gm,n sy Gm,n )
(i) = sup e, Sl jg(2)| ds < .
YERL

Moreover, for each nonnegative harmonic function h in R} we have for x € R,

/ G (2, 1)5™ Rl () dy < g™ h(z). (2.1)

R}

Proposition 2.2. Let zqg € M , then for each q € K7, we have

lim ( sup / (&)mam,n(x,ynq(y)uy) —0. (2.2)

a—0 rER™ :L’n
R} NB(zo,)

Now, we provide a subclass of m-potential functions.
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Proposition 2.3. Let g be the function defined on R by
q():—1 <A<m+1
x m .
z)’

Then there exists a constant ., x > 0 such that for each x € R}

V() = cman x,%m_’\.

Proof. Let A € (m,m + 1) and z € R7}..

|z —7|
z—y|

|$ _ y|2m—n ! _ 1)m—1

2
v
R? En " 1

Putting
=g =2 = y/|* + (@n + yn)”

and , )
lz —yl" = 2" = /|” + (&0 — yn)*.

Then, by the change of variable r = |2’ — y’|, we obtain

( r24(zntyn)? ) 3

+o00 400 2m—n T2 (zn—yn)2
2 2 2 2 m—1
(4 (@ —ya)?) 7 s (2 - 1)
Vq(l‘):k'»m’n/ / y}\ T / Tdvdyndr,
0 0 " 1

which implies, by using the transformations ¢t = = and s = =, that

(s2+(1+t)2 )%

o0 400 e s24+(1-t)2 ( 9 1)m 1
_ s 2m—n Ve — -
Vq(x) = km,nxim A / / o~ (32 + (1 — t)Q) 2 / Tdvdtds
0 0 1
Finally, making the change of variable u = v? — 1, we obtain
4t
400 +00 s24+(1-t)2
kmn 2m—A / sn72 ( 2 + (1 t)2) 2m2_n ot dudtd
1% = — S - ———dudtds.
q(z) = 5~ A 1+u)s
0 0 0

To achieve the desired result, we claim that

4t
oo +oo 2+ (112

Sn72 5 ) 2,,,,2_7,, umfl dudtd
1-—t —_— t
// ) (8 +( )) / (+u)s udtds

0 0 0
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converges. Indeed, we note that for 0 <m < 4

at
s24(1—t)2

um1 4t m
—  du~minil,(—M —
/ (Ttus mm{ (ﬁ%%l—ﬂ» }
0

and for m < A < m+ 1, we have

+o0 +00o

n—2 2m-—n
S 9 9 m—n . 4t m
/ / t)\ (S +(1 7t) ) 2 mln{l, (m) }dtds
0 0
converges. Then the claim is proved. This ends the proof. O

Proposition 2.4. Let m—1 < <m,xg € M Then for each q € K37,

. Yn \?
i (s [ () Gualmalaly ) =0, (23
a—0 zERY T
R NB(zo,)
. Yn )P
1 — =0. 2.4
Mg%<i$ @)(%M%mmw@> 0 (2.4)

+
R} {ly|=M}

Proof. For 8 = m — 1, the results were proved in [4]. For 8 € (m — 1, m), we deduce
from Proposition 2.3, that there exists a constant ¢, .3 > 0 such that

G T,z
2P =cmng / %_g)dz, z € RY.
Zn
RZ
Now, let a > 0, then by Fubini’s theorem and (1.3), we have

/“ Y3 G ()| a(y)ldy =

R% NB(z0,0)

= Crnp /’ /Qﬂﬁﬁamwmmwwwz

2m—(
Zn
R% NB(zo,0) RY

m,n\L, m,n\Y, G )
R’”/

Gmm(x’ Z) Zn
RzﬂB(.iKo,Ot)

< c( sup / (yl)nLGm,n(ﬁ,y)lq(y)ldy)wﬁ,

€ER? &n
R NB(zo,0)

which implies (2.3) by dividing by 2 and using (2.2).
Using (1.3) and (1.5), we obtain (2.4) by similar arguments. O
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Proof of Theorem 1.4. Let 8 € [m —1,m), xg € M and ¢ > 0. By Proposition 2.4,
there exist a > 0 and M > 0 such that

B
sup / (y) o€ 9)la(y)ldy < € (2.5)
geR &n
R NB(z0,2c)
and 5
sup y) G (€ 9)la(9)Idy < <. (2.6)
EERN gn

n
Ry N{ly|=M}

First, we aim to prove that v € C (Rﬁ) We fix x9 € R Let 2,z € R} N B(xo, a). It
follows from (2.5) and (2.6) that

Gm,n T,y Gm,n 2%
lu(z) — v(2)] g/‘ Ié ) _ Zé ) ynla(y)ldy <
Ri " "
P
< 25up <> Gonon (€, 9)la(v) dy+
EERi fn
RﬁiﬁB(wo,Qa)
y B8
2w ( G (€ 9)]a(v) |y +
£ER™ &n

+
R N (ly|=M)

- yola(y)ldy <

) P

+

R NB<(z0,20)NB(0,M)

‘Gm,n(x, Y)  Gmn(z,y)

y2la(y)|dy.

<4e+

R7NBe(20,20)NB(0,M)

a P

‘ Gm,n(xay) Gm7n(z7y)

If |y — xo| > 2c, then |y — x| > v and |y — 2| > a.
So applying (1.2) for y € R} N B°(xo,2c) N B(0, M), we have

B <
Ynla(y)l < c (x T P

< cyi™ Ha(y)l.

m—L m—_
:I:TL Z’I’L

Grn(®,y)  Gmanl(2,y)
5 5

Tn Zn

) Y Pla(y)| <

On the other hand for y € R} N B¢(x¢, 2a) N B(0, M), the function x — Gié“’) is
continuous in R’ N B(xg, a). Since ¢ € Ko we deduce by Proposition 2.1 (i) that
the function z — x2™ '¢(x) is in L},, (R7) and so by the dominated convergence

loc
theorem, we obtain that

Gm,n €,y Gm,n 2,1
In e

R NB¢(zo,20)NB(0,M)
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Thus we deduce that v is continuous on R} .
Now, let 2o = (£,0),& € R"~1. We shall show that

lim w(z) =0.
z—(£,0) (@)

Let © € B(xg,«) "R}, then we have by (2.5) and (2.6)

ooz [ (1) Gnacniwias

g
Yn
+ sup () Gm.n(&9)]a(y)|dy+
€ER? &n
R7 ((Jy|>M)

y B
. / 2 Gl lalds <

R” N B¢ (20,20)NB(0,M)

<2t / (y)ﬂ G, 9) a(y)ldy.

Ln
R™ NB*(z0,20)NB(0,M)

For y € R} N B®(xo,2a) we have |y — | > a. So from (1.2) we get

Tn

(yn) 5 Gmn(z,y)]a(y)ldy <

R% NBe(x0,20)NB(0,M)

ygw+ﬁ

< m—_
= |z —y|"

lq(y)|dy <
R NB<(z0,20)NB(0,M)

< cxm=b / y2 ()| dy,

R7 N B¢ (x0,20)NB(0,M)

which implies by Proposition 2.1 (i) that

i\
$> G (2,9)|a(y)|dy < el =P

R NB<(x0,20)NB(0,M)

Hence, we get

3
(y"> Gmn(z,9)|q(y)|dy — 0 as x — (&,0).

LTn
R NB<(z0,20)NB(0,M)

So, we deduce that v(x) — 0 as z — (£,0).
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Finally, we intend to show that

lim v(z) =0.
|#]—o00

Let x € R such that |z| > M + 1. By (2.6), we have

B

v <sp [ (y) G (&, ) a()ldy+
EeR™ &n

RE (Y1 M)

" / (yTL)BGm’"(%y)q(y)ldy <

Ln

Yn
Tn

5]
) G (2, 9)]a(4) |y

R} NB(0,M)

Now, for y € Rt N B(0, M), we obtain by (1.2)

yn )\’ apBym+s
ald G < e/ <
(%) man (@, y)]a(y)| < c o=y lq(y)| <
e — |z| 2m—1
<ozt m < c—21r m A
< Ol Ay la(y)] < “Ual—any la(y)]

Hence, using Proposition 2.1 (i), we get that v(z) — 0 as |z| — oo.
This ends the proof. O

By similar arguments as in the proof of Theorem 1.4, we prove the following
proposition.

Proposition 2.5. Let m — 1 < 8 < m. For any nonnegative function g € K2°, , the

family of functions myns
y B
{ / (x) G, 9)E()dy, €|<q}
]Rn

+

is relatively compact in Co(R7}).

3. PROOF OF THEOREM 1.6

An important property about potential functions is given in the following lemma.

Lemma 3.1. If f and g are nonnegative measurable functions defined on R} such
that g < f and V f is continuous in R}. Then Vg is also continuous in R} .
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Proof. Let 0 be a nonnegative measurable function on R’} such that f = g+ 6. It
is obvious that V6 and Vg are lower semi-continuous in R} and V0 is finite. Thus,
since Vg =V f — V0, we conclude that Vg is continuous in R’}. O

Proof of Theorem 1.6. Assume that the hypotheses (H;)—(Hs) are satisfied. Then for
each x € R’} , we have

AoV (pf(B0™ + 0™ Hep)) (z) < o (0(x)™ +a (0(z))" " Ho(z)  (3.1)
and
poV (q9(al™ + a0™ " He)) () < B (0(x)™ +b(0(x)™ ™" Hip(). (3:2)

Let A € [0, o) and p € [0, uo). We define the sequences (uk)sq and (vg),>qo by

vo = BO™ + O™ L Hp > 0,
up = af™ +ab™ Ho — AV (pf(vi)),
Vpg1 = BO™ + DO HY — 1V (qg(ug)).

We intend to prove that for all k € N,

0< (1 - ;;) (@™ +ab™ ' He) < up < upyr < af™ +ab™ ' He, (3.3)
and

0< (1 - /’;‘0) (BO™ + b HY) < vy < vp < BO™ 4 b0 Hp. (3.4)
For k =0,

ug = ad™ +ad™  Ho — AV (pf(vo))-
From (3.1) we have

A
ug > ab™ 4 ad™ T Hep — )\—O(aem +ad™ 1 Hy) >

S )
0

So,
v1 —vg = —pV(qg(uo)) < 0.
On the other hand, since f is nondecreasing we have
ur —up = AV [p(f(vo) — f(v1))] > 0.
Now, since vg > 0, then ug < af™ +af™ ' Hyp and using that ¢ is nondecreasing and

inequality (3.2) we get,

vy = B0 + 0™ Hyp — iV (qg(ug)) > (1 - :) (BO™ + O™ Hep) > 0.
0
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This together with the fact that f is nondecreasing imply that
uy < ab™ +ad™ He.
Finally, we deduce
0<(1- % (af™ 4+ af™ THyp) <ug <uy < ™ +ad™ 1Hep,
0<(1- ﬁ (BO™ + b0 L Hp) < vy < g < B0™ + b0 L Hp.

By induction, we suppose that (3.3) and (3.4) hold for k € N.
Then since g is nondecreasing, we have

k2 = V1 = pV[q(g(uk) — g(ur1))] < 0. (3-5)

From the fact that f is nondecreasing and using inequality (3.5), we have
U2 — uk1 = AVIP(f(ve41) — f(vr42))] = 0. (3.6)
Furthermore vy > 0 implies that
U < 0™ + ab™ T He.
Taking into account the fact that g is nondecreasing and using (3.2) and (3.3), we get

Uptz = BO™ +b0™ T H — 1V (qg(upi1)) >
> B0 + 00" Hp — uV (qg(ad™ + a0™ " Hp)) >

> <1 - “) (BO™ + b~ H ).

Ho

Hence (3.3) and (3.4) hold. Therefore, the sequences (ug);~, and (v),~, converge
respectively to two functions u and v satisfying - a

0< (1— %O)(ozem—i—a@m_lH(p) <u<afdm+adm 1 He, (37)
0< (1= o) (B0™ + 0™ Hyp) < v < S0™ + b0 Hep. '
Now we claim that
u=abd™+ad™ " Hp — \V(pf(v)) (3.8)
and
v = B0+ b0"  Hep — uV (qg(u)). (3.9)

It follows from the fact that f is nondecreasing and H1 is bounded, that for each
y €RY and k €N

Fo@))p(y) < fF(By + by Hip(y))p(y) <
< fleyy ™ yn + 1))p(y) =y 'pe(y).
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Moreover, since p. € K7, we have by (2.1) that for each x € R}

y— Gon(@,y)yn 'pe(y) € L'(RY).

So using the continuity of f and the dominated convergence theorem we deduce that
lim V(pf(vx)) = V(pf(v)).
k—o0
This implies (3.8) by letting k¥ — oo in
up = af™ + ad™  Hep — AV (pf(vr)).

Similarly we have (3.9).
Next, we aim to prove that (u,v) satisfies (in the distributional sense)

{(—A)mu +Afp(v) =0 in RY,
(=A)™u+ pgg(u) =0 in R7.
From (3.8), we have obviously that
(=A)"u = =A(=A)"V(pf(v)).
Now, combining (3.7) and the fact that f is nondecreasing, we get
V(pf(v) <V (pf(cd™ (0 +1) =V (6" 'pe).

Since ¢q. € K2°_, then by Theorem 1.4 for § = m — 1, we have

m,n?’

T = n}_l V(0" 'pe)(x) € Co(RY). (3.10)

Tn

We conclude due to Lemma 3.1 that

V(pf(v)) € C(RY) (3.11)
and consequently
V(pf(v)) € Li,(R}).
Hence V (pf(v)) satisfies (in the distributional sense) the elliptic differential equation
(~A)"V (pf () = pf(v) in BRI

It follows immediately from (3.8) and (3.11) that u is continuous. Similarly, we have
(=A)"V (gg(u)) = qg(u) in RL.

and v is continuous in R%.
Furthermore, since for z € R} we have
Vipf(v)(x) 1

0< < V(6™ p, .
< — e _x’ffl( pe) (x)
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We deduce from (3.10) that

lim M:o, Ve e RML

a—(€0)  ap!
Hence by (3.8) we obtain

- u(z) . »
lim = lim (ax,+aHp(z))=a0a . VeEeR™L
IH(E’O) 33;1”_1 CD"(E,O) ( 80( )) ‘P(f) f

Similarly
v(z) -1
=b , VEeR" .
i e = (), Ve
On the other hand, we have for z € R’}

Vi) _ 1 (0™ 'pe) (x).

Ty ooy
So, using (3.10), we get
i VOI)@) _
Ty —00 Ty
this yields
lim @ =
Lp —00 :Enm
By similar arguments, we obtain
lim L(x) =0
Tp—00 T
The proof is complete. O

4. PROOF OF THEOREM 1.7

Proof of Theorem 1.7. Assume that \=pu=a=5b=1, o, > 0 and the hypotheses
(Hy4) and (Hs) are satisfied. Let v = 1 + ap + az where ap and g are the constants
defined in Proposition 2.1 (ii) and associated respectively to the functions p and ¢
given in hypothesis (Hs).

We recall that ® is a non-trivial nonnegative bounded continuous function on
R”~!. Let us consider two nonnegative bounded continuous functions ¢ and v on
R™! such that ¢ > v® and ¢ > y®.

It follows that for each = € R}, we have

Ho(z) > vH®(x) and Hy(x) > yHO(x). (4.1)
We consider the non-empty closed convex set S given by

S={weCR}): H> <w < Hp}.
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We define the operator T on S by
— _ L m m—1 _ m m—1
Tw=Hyp amilV(pf [ﬁ@ + 6 Hyp —V(gg(ad™ + 6 w))]) .

We aim to prove that T has a fixed point in S.
First we show that T'S is relatively compact in Cy(R"). Let w € S, then since g
is nonincreasing we deduce that

V(gg(ad™ + 0™~ w)) < V(qg(6™ ' H®)) = V(g™ HY).
Which implies by (Hs) and (2.1) that
V(gg(ad™ + 0™ 1w)) < agd™ ' HO. (4.2)
This together with (4.1) yields

BO™ + 0™ Hy — V(gg(ad™ + 0™ w) > 40" T H® — agf™ T HO =
=(1+ap)0™ 'H® > 0" 'HD > 0.

Hence, by the monotonicity of f, we get
pf (BO™ + 0" Heyp — V(qg(ab™ + Gm_lw)) <pf("rH®) = 0" H®p.  (4.3)
Since H® is bounded, we obtain
pf (BO™ + 6™ H — V(qg(ab™ + 6™ w)) < | H| 6™,

which implies by using Proposition 2.5 for § = m — 1, that the family of functions

{ ! V [pf (B + 60" Hy — V(gg(ad™ + 0™ 'w))] 1w € S}

Qm—l

is relatively compact in Cy(R"}) and since Hy € Cy,(R’), we conclude that the family
T'S is relatively compact in Cy(R").
Next we prove that T'S C S. Let w € S, we have

T (w) < Ho.
Furthermore by (4.3) and (2.1) we obtain
V [pf (B0 + 60" Hy — V(gg(ad™ + 0™ 'w))| <V (0" 'pH®) < apd™ 'HO.

Then
T(w)>Hp—azH® > (y—az) H® > HO.

Now, let us show the continuity of the operator T" in .S for the supremum norm. Let
(wg)ken be a sequence in S which converges uniformly to a function w in S. Since g
is nonincreasing we deduce that

qg(ad™ 4+ 0™ 1wy) < qg(0" T H®) = 0" HOg.
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Now, it follows from (Hs) and (2.1), that for each = € R,
y = Gz, y)0" (Y HO(y)q(y) € L' (RY).
We conclude by the continuity of g and the dominated convergence theorem that

klim V(gg(ad™ + 0™ twy,)) = V(gg(ad™ 4 0™ 1w)) (4.4)

and so from the continuity of f, we get
Jim pf (B0 + 6" Hy — V(qg(ad™ + 0™ wy,))] =
= pf[B0™ + 0™ Hy — V(qg(ad™ + 0™ w))].

Using (4.3), for wy, k € N, we obtain for each z,y in R7}

Gz, )pW) f [Byn + yi ™ " Hip(y) — Vgg(ad™ + 0™ wyi)) (y)] <
< G (@, y)yn " HO (y)p(y).

)
Then combining (Hs) and (2.1), we get by the dominated convergence theorem that
for each x € RY,
Twg(z) — Tw(xz) as k — +oo.

Consequently, as T'S is relatively compact in Cy(R"}), we deduce that the pointwise
convergence implies the uniform convergence, namely,

|Twy — Tw||,, —» 0 as k— +oo.

Therefore, T' is a continuous mapping from S to itself and so it is a compact mapping
on S. Finally, the Schauder fixed-point theorem implies the existence of a function
w € S such that w = Tw. We put for z € R}

u(z) = ax™ + 2 (), (4.5)
and
v(z) = g + 2 T Hy(x) = Vigg(w))(@). (4.6)
Then
u(w) = axy + oy~ Ho(z) = V(pf(v))(@). (4.7)

It remains to prove that (u,v) is a positive continuous solution of the problem (1.1)
with A = i = a = b = 1 and satisfying for each x € R"}

ar™ 4+ 2" H®(2) < u(r) < ax™ 4 2™ Ho(z) (4.8)

and
™ 4 ™ P H®(z) < v(z) < Bz 4 2™ Hap(x). (4.9)

Since w € S, we have clearly from (4.5) that u satisfies (4.8).
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On the other hand by (4.6), we have that for each € R,
v() < fay + o H(x).
Now, since g is nonincreasing and using that u > 6™ 'H® we obtain
qg(u) < 0™ 'gH®,
which implies by (Hs) and (2.1) that
V(qg(u)) < agd™ ' H®.
So we get from (4.6)
v > B0+ 0" HyY — azd™ T HO,

which yields the claim (4.9) by using (4.1).
Using (4.7) we obtain

(=A)"u = —(=A)"V(pf(v)).
On the other hand, we have from (4.9) and the monotonicity of f that
pf(v) <OMTTH®D < |HP||oo6™ ',

which implies that
V(pf(v)) < V([H®|0™"P).

Since we have from Theorem 1.4 that

X —

=t VIH®[ 8™ 'p)(2) € Co(RY),

we conclude due to Lemma 3.1 that

Vipf(v)) € C(RL).

(4.10)

(4.11)

(4.12)

Therefore V(pf(v)) € Lj,.(R%?) and we have in the distributional sense that
(=A)™u = —pf(v). Next, combining (4.7) and (4.12) we get obviously that u is

continuous.
Similarly, since (—A)™v = —(—=A)™V (qg(u)), we obtain that

(=A)"v = —qg(u)

and v is continuous. Finally let £ € R"~!. From (4.10), we have for z € R’}

0< V(pfmli)1 (@) _ V(IIHCPH?;?T’I@(SU)’
In Tn

this yields by (4.11) that
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Thus by (4.7) we have

wz) _ Vpf)(@) _
Jim S5 =l a4+ Holr) — oS = 0(6)
Simirlary
IC V(gg(u))(x)
w—l}(rgm amt L_lf(r? Ban + Hip(z) Tl =Y(&).

Now, (4.10) and (4.11) imply that V(]fnf(l)) is bounded, so using (4.7) and taking into
account that Hy is also bounded we get

i 0 = i [ - (ot - TR <o

Similarly, by (4.6) we have

L ou() 1 Vigg(u))(x)\1 _
This ends the proof. O
5. EXAMPLES

To illustrate Theorem 1.6, we give the following two examples.

Example 5.1. Let « = b =1 and a = § = 0. Let ¢ and ¥ be two non-trivial
nonnegative bounded continuous functions on R"~! such that there exists ¢y > 0,
satisfying v(x) > ¢ for all z € R"~ 1.

We consider the functions f, g : (0,00) — [0,00) continuous and nondecreasing
such that there exists n > 0 satisfying for each ¢ > 0

0< f(t)<nt and 0<g(t) <nt.
We assume that p and g are nonnegative measurable functions on R’} such that

p
p=g p2=01+0p, a=q¢0 and ¢=(1+60)qg
are in K7 .
For each positive constant ¢, we have

D
De = gm—1

f(c@m_l(ﬁ +1)) <neps and ¢.= cﬁm_l(ﬁ +1)) <nego.

q
Qm—lg(

So, it is clear that (Hy) and (Hsy) are satisfied.
Moreover, we have

V(pf(0™ "Hy) < V(n™ 'pHvp) < nl|H|o V(0™ p) < nl|HY ||V (p16™).
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Since p; € K°

m,n

and 6 is harmonic in R’ , we deduce by (2.1) that

V(pf(ﬂm_le)) < nl[Hy|[oc0p, 0™
So for each x € R}, we have

m m
xy xy 1

Vo O TH) (@) ~ nlHlooma — nHE oop’

which implies that Ay > 0.
On the other hand, we have

Vigg(6™)) <0V (g8™) < nV (6™ ),
which implies by (2.1) that
V(gg(0™)) < nag, 0™
So, we obtain for x € R}

™ Ha(z) coxm—1 co

> — > > 0.
(qg(G’”))(w) nagen~t T nag,

This proves that g > 0. Hence (Hs) is satisfied.

Example 5.2. Let m > 2, a =b=1,a = =0 and ¢, 9 be non-trivial nonnegative
bounded continuous functions on R"~'. We consider f and g two continuous and
nondecreasing functions on (0, c0) such that there exists > 0 satisfying

0<f#)<n(1+t¢t) and 0<g(t)<n(l+t), Vt>0.

We take p and ¢ two nonnegative measurable functions in R’} satisfying for each
r e R

C .
p(l‘) S m with A <m and W > 2m + 1,

and

First, let ¢ > 0 and x € R?}, we have

_ @) m—1 U ne
pC(l')* (0($))m 1f( ct (0+1)>( ) (‘.’L’l—f—l)“ )\x/\er 1 + <‘x|+1)u_1_)\$$\l.

Since A <m+1 < pand A < 2m + 1 < p, we deduce by using Example 1.3, that
pe € K37, Similarly g. = zalrg(c0™ (0 + 1) € K7,
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Hence (H;) and (Hy) are satisfied.
Next, observe that

V(pf(0" T Hy)) <V (p(0™ " Hy + 1)) < nl|HY[|oV (™) + 1V (p)-

Using again Example 1.3, we have p; = § and py = 75 are in K77 .- Therefore, as in
Example 5.1, we get

V(pf(0" H)) < 0 (| HY oy, + ap,) 0™,

which implies for each z € R7,

m m
X X
n n > 0.

Vol 0 HO) @) ~ 7 ([H g, T opg) 2

This yields A\g > 0.
To show that pg > 0, we claim the following

xm
om <ec—2t—— R”. 1
Vi(gg(60™))(x) S TR (5.1)
Indeed, we have for each z € R}
GTYln($7y)
Vigg(8™))(x) < c/ : 5.2
(q9(6™))(z) <n | Tl (5.2)
+

To estimate the above integral, we consider v : R} — B the Mdbius transformation

defined by v(z) = e — Azte) where e = (0,0,...,0,1). Then a simple computation

|z+e|??
shows that for z,y € R, we have

n—2m n—2m

/ 2 / 2

G y) =@ T @] T Haa@), @), (5.3)
where "y'(x)‘ = ﬁ and H,, »is the Green function of the operator (—A)™ on
B with Dirichlet boundary conditions u = a%u = ... = %u = 0on 0B =

{zr eR": |z| = 1}.

On the other hand, it is easy to see that

|t +el~|z|+1, xeRl, (5.4)

which implies that
'y/(x)’ N ——, wER]. (5.5)

(lz| +1)

Since for x € R’} , we have 1 — Iy(z)|> = 222 then by (5.4) we obtain

[z+el2

T~ (1= |y())) (|| +1)%, =€ R%. (5.6)
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Combining this with (5.3) and (5.5), we get for z € R’

Gm,n(may) c Hm,n(v(m)w(y))
L. ! / w

p— Y= - -
)Ty (L fepr=zm ) (gl =sm (1 =y (y)l)
+

Put z = y(y), then we have dy = e|2” dz and 1+ |y| =~ ‘ Thus, for € R}, we
arrive at
/ G (2, y) (v(z),2) dz
( )s r—my r (]_ + |{L‘| n 2m |Z n+3m s—r (1 B ‘ZD

Using that n + 3m — s — r < 0, we have for x € RY}

: dz.
/ T i S TR |

+

Since r < m, then by [3, Proposition 3.10] and (5.6) we deduce that

Grnn(2,y) c () < o T
[ T < Gt " < e

"
which gives (5.1).
Finally taking into account that

Ln

H’(/)(l‘)2077 J,‘ER”,
(lz] + )" "
we get by (5.1), that for z € R}
m—1
zy— Hy(x)
—————>c>0.
Vigg(6™))(x)

So po > 0. Hence (Hj) is satisfied.
We end this section by an example as an application of Theorem 1.7.

Example 5.3. Let § > 0,7 >0, f(t) =t"° and g(t) =¢".
Let p and ¢ be two nonnegative measurable functions on R’} such that

C

p(z) <

and
c

q(z) <
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Let ® be a non-trivial nonnegative bounded continuous function on R"*~!. Since for
x € R} we have

T
Hd(z) > c—.
)2 Tl 1
We obtain
~ o LH®)(x c n
p(z) = p(z) m - g < T () z e RY.
(0(x)) H®(z) ~ (|Ja| + 1)r-A—n(+8) g
Similarly

Cc

z) < , rEeRY.

)< (|| + 1)r—s—n(tn) g tmd+n *
Hence, by Example 1.3 we deduce that (Hy4) is satisfied. So there exists a constant
v =1+ ay+ ag > 1 such that if ¢ and 1 are two nonnegative bounded continuous
functions on R"~! satisfying ¢ > v® and 1y > v® on R"~!, then for each a > 0,
8 > 0, problem

m -5 _0N; n

(=A)"u+pv=° =0in RY,
(=A)"™v +qu™" =0 in R7,
hmw%(f,o) u'rr(xm)l = (P(f), v g € ]Rn_la

“i(x)

limxn_,_,_oo zm = Q,
lim, (¢ 0) o = $(€), VEERM

limmn*,+oo v(z) = ,8

m
Ty

has a positive continuous solution (u,v) satisfying (1.7).
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