http://dx.doi.org/10.7494/OpMath.2012.32.1.67

NOTE ON THE STABILITY OF FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS

Florin Bojor

Abstract. In this paper, we will prove the generalized Hyers-Ulam stability of the linear differential equation of the form $y'(x)+f(x)y(x)+g(x) = 0$ under some additional conditions.

Keywords: fixed point method, differential equation, Hyers-Ulam stability.

Mathematics Subject Classification: 26D10, 47J99, 47N20, 34A40, 47E05, 47H10.

1. INTRODUCTION

The study of the stability functional equations is strongly related to Ulam's question concerning the stability of group homomorphisms. We mention that the concept of stability for a functional equation appears when we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus the stability question for functional equations shows "how the solutions of the inequality differ from those of the given functional equation." D.H. Hyers [3] excellently answered the question of Ulam and proved the following result:

Theorem 1.1 (Hyers, [3]). Let E and E' be two Banach spaces and $f : E \to E'$ a given function such that there exists $\delta \geq 0$ such that

$$
||f (x + y) - f(x) - f (y)|| \le \delta, \quad \forall x, y \in X.
$$
 (1.1)

Then the limit $L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ exists for all $x \in E$, L is an additive function and the inequality

$$
||f(x) - L(x)|| < \delta \tag{1.2}
$$

is true for all $x \in E$. Moreover, $L(x)$ is the only additive function which satisfies the inequality (1.2) .

67

Since Hyers' result, a great number of papers on the subject have been published, extending and generalizing the Ulam's problem and the Hyers' theorem in various directions (see $[3, 9, 10]$).

In [9] V. Radu proposed a new method for obtaining the existence of exact solutions and error estimations, based on the fixed point alternative and this theorem is:

Theorem 1.2 (The fixed point alternative). Suppose we are given a complete generalized metric space (Ω, d) and a strictly contractive mapping $T : \Omega \to \Omega$ with the Lipschitz constant a. Then, for each given element $x \in \Omega$, either

$$
d(T^n x, T^{n+1} x) = \infty, \ \forall n \ge 0,
$$

or there exists a natural number n_0 such that:

- (i) $d(T^n x, T^{n+1} x) < \infty$ for all $n \geq n_0$.
- (ii) The sequence $(T^n x)_{n\geq 0}$ is convergent to a fixed point y* of T.
- (iii) y* is the unique fixed point of T in the set $\Delta = \{y \in \Omega | d(T^{n_0}x, y) < \infty \}.$
- (iv) $d(y, y*) \leq \frac{1}{1-a} d(y, Ty)$ for all $y \in \Delta$.

Let $a_0, a_1, \ldots, a_{n-1}$ be real numbers and let I be an interval. For $y \in C^n (I, \mathbb{R})$, $\varepsilon > 0$ and $\varphi \in C(I, \mathbb{R}_+)$ we consider the following equation:

$$
y^{(n)}(t) = \sum_{k=0}^{n-1} a_k y^{(k)}(t), \quad t \in I
$$
\n(1.3)

and the following inequations

$$
\left| y^{(n)}(t) - \sum_{k=0}^{n-1} a_k y^{(k)}(t) \right| \le \varepsilon, \quad t \in I \tag{1.4}
$$

and

$$
\left| y^{(n)}(t) - \sum_{k=0}^{n-1} a_k y^{(k)}(t) \right| \le \varphi(t), \quad t \in I.
$$
 (1.5)

Definition 1.3. The equation (1.3) is Hyers-Ulam stable if there exists a real number $c > 0$ such that for each $\varepsilon > 0$ and for each solution $s \in C^{(n)}(I,\mathbb{R})$ of (1.4) there exists a solution $y \in C^{(n)}(I,\mathbb{R})$ of (1.3) with

$$
|s(t) - y(t)| \le c \cdot \varepsilon, \quad \forall \, t \in I.
$$

Definition 1.4. The equation (1.3) is Hyers-Ulam-Rassias stable, with respect to φ , if there exists a real number $c_{\varphi} > 0$ such that for each solution $s \in C^{(n)}(I,\mathbb{R})$ of (1.5) there exists a solution $y \in C^{(n)}(I,\mathbb{R})$ of (1.3) with

$$
|s(t) - y(t)| \le c_{\varphi} \cdot \varphi(t), \quad \forall \, t \in I.
$$

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of differential equations. In 1998, they proved in [1] the stability of differential equation

$$
y'(t) = y(t). \tag{1.6}
$$

Following the same approach as in [1], Miura [8] proved the Hyers-Ulam stability of differential equation

$$
y'(t) = \lambda y(t). \tag{1.7}
$$

S.M. Jung [4–7] applied the fixed point method for proving the Hyers-Ulam-Rassias stability of a Volterra integral equation of the second kind and for differential equations of first order. Using the same technique we prove the Hyers-Ulam-Rassias stability and Hyers-Ulam stability of differential equation

$$
y'(x) + f(x)y(x) + g(x) = 0
$$
\n(1.8)

under some conditions, others than the conditions from [4].

2. MAIN RESULTS

In this paper, by using the idea of Cădariu and Radu [2], we will prove the Hyers-Ulam-Rassias stability for the equation (1.8) on the intervals $I = [a, b)$, where $-\infty < a < b \leq \infty$.

Theorem 2.1. Let $f, g: I \to \mathbb{R}$ be continuous functions and let for a positive constant M, $|f(x)| \geq M$ for all $x \in I$. Assume that $\psi : I \to [0, \infty)$ is an integrable function with the property that there exists $P \in (0,1)$ such that

$$
\int_{a}^{x} |f(t)| \psi(t) dt \le P\psi(x)
$$
\n(2.1)

for all $x \in I$. If a continuously differentiable function $y : I \to \mathbb{R}$ verifies the relation:

$$
|y'(x) + f(x)y(x) + g(x)| \le \psi(x)
$$
\n(2.2)

for all $x \in I$, then there exists a unique solution $S: I \to \mathbb{R}$ of the equation (1.8) which verifies the following relations:

$$
|y(x) - S(x)| \le \frac{P}{M - MP}\psi(x)
$$
\n(2.3)

for all $x \in I$ and $S(a) = y(a)$.

Proof. Let us consider the set $\Omega = \{h : I \to \mathbb{R} \mid h \text{ is continuous and } h(a) = y(a)\}\$ and the generalized metric $d(h_1, h_2)$ defined on Ω as

$$
d(h_1, h_2) = d_{\psi}(h_1, h_2) = \inf \left\{ k > 0 \left| |h_1(x) - h_2(x)| \le k\psi(x), \ \forall x \in I \right. \right\}.
$$

Then (Ω, d) is a generalized complete metric space (see [4]). We define the operator $T:\Omega\to\Omega,$

$$
Th(x) = y(a) - \int_{a}^{x} (f(t)h(t) + g(t))dt \quad x \in I,
$$

for all $h \in \Omega$. Indeed Th is a continuously differentiable function on I, since f and g are continuous function and $Th(a) = y(a)$.

Now, let $h_1, h_2 \in \Omega$. Then we have

$$
|Th_1(x) - Th_2(x)| = \left| \int_a^x f(t) (h_1(t) - h_2(t)) dt \right| \leq \int_a^x |f(t)| |h_1(t) - h_2(t)| dt \leq
$$

$$
\leq d(h_1, h_2) \int_a^x |f(t)| \psi(t) dt \leq P\psi(x) d(h_1, h_2)
$$

for all $x \in I$. Therefore,

$$
d(Th_1, Th_2) \le Pd(h_1, h_2), \tag{2.4}
$$

thus the operator T is a contraction with the constant P .

Now integrating the both sides of the relation (2.2) on $[a, x]$ we obtain

$$
\left| y(x) - y(a) + \int_{a}^{x} \left(f(t)y(t) + g(t) \right) dt \right| \leq \frac{P}{M} \psi(x)
$$
\n(2.5)

for all $x \in I$, which means $d(y,Ty) \leq \frac{P}{M} < \infty$. By the fixed point alternative there exists an element $S = \lim_{n \to \infty} T^n y$ and S is unique fixed point of T in the set $\Delta = \{h \in \Omega \mid d(T^{n_0}y, h) < \infty\}.$ It may be proved that

$$
\Delta = \{ h \in \Omega \mid d(y, h) < \infty \} \, .
$$

Therefore the set Δ is independent of n_0 . To prove that the function S is a solution to the equation (1.8) , we derive with respect to x the both sides of the relation

$$
S(x) = TS(x), \quad x \in I. \tag{2.6}
$$

Thus

$$
S'(x) = -f(x)S(x) - g(x)
$$
 (2.7)

for all $x \in I$ which implies that the function S is a solution to the equation (1.8) and verifies the relation $S(a) = y(a)$.

Applying again the fixed point alternative we obtain

$$
d(h, S) \le \frac{1}{1 - P} d(h, Th)
$$
 for all $h \in \Delta$.

Since $y \in \Delta$, we have

$$
d(y,S)\leq \frac{1}{1-P}d(y,Ty)\leq \frac{P}{M\left(1-P\right)},
$$

whence

$$
|y(x) - S(x)| \le \frac{P}{M - MP} \psi(x)
$$

for all $x \in I$. This inequality proves the relation (2.3).

In the same manner it can be proved the following theorem of the Hyers-Ulam-Rassias stability of the equation (1.8) on the interval $J = (b, a]$, where $-\infty \leq b < a < \infty$.

Theorem 2.2. Let $f, g: J \to \mathbb{R}$ be continuous functions and let for some positive constant M, $|f(x)| \geq M$ for all $x \in J$. Assume that $\psi : J \to [0, \infty)$ is an integrable function with the property that there exists $P \in (0,1)$ such that

$$
\int_{x}^{a} |f(t)| \psi(t) dt \le P\psi(x)
$$
\n(2.8)

for all $x \in J$. If a continuously differentiable function $y : J \to \mathbb{R}$ verifies the relation:

$$
|y'(x) + f(x)y(x) + g(x)| \le \psi(x)
$$
\n(2.9)

for all $x \in J$, then there exists a unique solution $S : J \to \mathbb{R}$ of the equation (1.8) which verifies the following relations:

$$
|y(x) - S(x)| \le \frac{P}{M - MP}\psi(x) \tag{2.10}
$$

for all $x \in J$ and $S(a) = y(a)$.

The Hyers-Ulam-Rassias stability equation (1.8) on $\mathbb R$ will be proved by Theorem 2.1 and Theorem 2.2.

Corollary 2.3. Let $f, q : \mathbb{R} \to \mathbb{R}$ be continuous functions and let for some positive constant M, $|f(x)| \geq M$ for all $x \in \mathbb{R}$. Assume that $\psi : \mathbb{R} \to [0, \infty)$ is an integrable function with the property that there exists $P \in (0, 1)$ such that

$$
\left| \int_{0}^{x} |f(t)| \psi(t) dt \right| \le P\psi(x)
$$
\n(2.11)

for all $x \in \mathbb{R}$. If a continuously differentiable function $y : \mathbb{R} \to \mathbb{R}$ verifies the relation:

$$
|y'(x) + f(x)y(x) + g(x)| \le \psi(x)
$$
\n(2.12)

 \Box

for all $x \in \mathbb{R}$, then there exists a unique solution $S : \mathbb{R} \to \mathbb{R}$ of equation (1.8) which verifies the following relations:

$$
|y(x) - S(x)| \le \frac{P}{M - MP}\psi(x)
$$
\n(2.13)

for all $x \in \mathbb{R}$ and $S(0) = y(0)$.

Proof. By the relation (2.11) we have

$$
\int_{0}^{x} |f(t)| \psi(t) dt \le P\psi(x)
$$
\n(2.14)

for all $x > 0$. Applying Theorem 2.1, there exists a solution of equation (1.8), $S_1 : [0, \infty) \to \mathbb{R}$ which verifies the relations (2.3) and $S_1 (0) = y(0)$.

From (2.11) we also obtain

$$
\int_{x}^{0} |f(t)|\psi(t)dt \le P\psi(x)
$$
\n(2.15)

for all $x \leq 0$. Applying Theorem 2.2, there exists a solution of equation (1.8), $S_2: (-\infty,0] \to \mathbb{R}$ which verifies (2.10) and $S_2(0) = y(0)$. It is easy to check that the function

$$
S(x) = \begin{cases} S_1(x), & x \ge 0, \\ S_2(x), & x < 0, \end{cases}
$$
 (2.16)

is a continuously differentiable function on \mathbb{R} , a solution of equation (1.8) on \mathbb{R} and it verifies relation (2.13). \Box

Using Theorem 2.1 it can be shown the Hyers-Ulam stability for the equation (1.8) on $I = [a, b)$, where $-\infty < a < b \leq \infty$.

Corollary 2.4. Let ε , $M > 0$ and let $f : I \to [M, \infty)$ and $g : I \to \mathbb{R}$ be continuous. If a continuously differentiable function $y: I \to \mathbb{R}$ verifies the relation

$$
|y'(x) + f(x)y(x) + g(x)| \le \varepsilon \tag{2.17}
$$

for all $x \in I$, then there exists a unique solution $S: I \to \mathbb{R}$ of equation (1.8) which verifies the relations:

$$
|y(x) - S(x)| \le \frac{\varepsilon}{M(2q - 1)}
$$
\n(2.18)

for all $x \in I$, where $q \in \left(\frac{1}{2}, 1\right)$ and $S(a) = y(a)$.

Proof. Let $q \in (\frac{1}{2}, 1)$. Multiplying relation (2.17) by $e^{q \int_a^x f(t)dt}$, and denoting

$$
z(x) := y(x)e^{q\int_a^x f(t)dt}, \quad x \in I \tag{2.19}
$$

we have

$$
\left| z'(x) + (1-q) f(x) z(x) + g(x) e^{q \int_a^x f(t) dt} \right| \le \varepsilon \cdot e^{q \int_a^x f(t) dt} \tag{2.20}
$$

for all $x \in I$. Then the function $F(x) = (1 - q) f(x)$, where $x \in I$, is continuous on I and satisfies the relation $|F(x)| > (1 - q) M$ for all $x \in I$.

Let $\psi(x) = \varepsilon \cdot e^{q \int_a^x f(t) dt}$, when $x \in I$. We see that

$$
\int_{a}^{x} |F(t)| \psi(t)dt = (1-q)\,\varepsilon \int_{a}^{x} f(t)e^{q\int_{a}^{t} f(u)du}dt \le \frac{1-q}{q}\psi(x) \tag{2.21}
$$

for all $x \in I$, thus the function $\psi : I \to [0, \infty)$ verifies relation (2.1) with $P = \frac{1-q}{q} \in$ $(0, 1)$.

By Theorem 2.1, there exists $s \in C^1(I,\mathbb{R})$, which is a unique solution for the equation

$$
z'(x) + (1-q) f(x)z(x) + g(x)e^{q \int_a^x f(t)dt} = 0
$$
\n(2.22)

and verifies the relations

$$
|z(x) - s(x)| \le \frac{1}{M(2q - 1)} \cdot \varepsilon \cdot e^{q \int_a^x f(t)dt} \tag{2.23}
$$

for all $x \in I$ and $s(a) = z(a)$.

Then the function $S(x) = s(x)e^{-q\int_a^x f(t)dt}$ is a solution of equation (1.8) and verifies relation (2.18). \Box

Equation (1.8) is not Hyers-Ulam stable on the intervals $J = (-\infty, a]$ in general, as we can see in the following example.

Example 2.5. Let us consider equation (1.8) where $f(x) = x^2$ and $g(x) = 0$. The solution of this equation $S: J \to \mathbb{R}$ which verifies the condition $S(a) = p$ is

$$
S(x) = p \cdot e^{\frac{a^3 - x^3}{3}}.
$$
\n(2.24)

A continuously differentiable function $y: J \to \mathbb{R}$ which verifies inequality (2.17) is

$$
y(x) = p \cdot e^{\frac{a^3 - x^3}{3}} + \varepsilon \cdot e^{-\frac{x^3}{3}} \int_a^x e^{\frac{t^3}{3}} dt.
$$
 (2.25)

Considering equation (1.8) being Hyers-Ulam stable, there exists $k > 0$ such that

$$
|y(x) - S(x)| \le \varepsilon \cdot k \tag{2.26}
$$

for all $x \in J$. By substitution, we have

$$
\left| \int_{a}^{x} e^{\frac{t^3}{3}} dt \right| \leq k e^{\frac{x^3}{3}} \tag{2.27}
$$

for all $x \in J$. Now letting $x \to -\infty$ it generates a contradiction. So equation (1.8) is not Hyers-Ulam stable.

Acknowledgements

The author is thankful to anonymous reviewers for remarks and suggestions that improved the quality of the paper.

REFERENCES

- [1] C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), 373–380.
- [2] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed points approach, Grazer Math. Ber. 346 (2004), 323–350.
- [3] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222–224.
- [4] S.M. Jung, A fixed point approach to the stability of differential equations $y' = F(x, y)$, Bull. Malays. Math. Sci. Soc. (2) 33 (2010) 1, 47–56.
- [5] S.M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl. vol. 2007, Article ID 57064, 9 pp.
- [6] S.M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), 1135–1140.
- [7] S.M. Jung, Hyers-Ulam stability of linear differential equations of first order (II), Appl. Math. Lett. 19 (2006), 854–858.
- [8] T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Jpn. 55 (2002), 17–24.
- [9] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003) 1, 91–96.
- [10] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. **72** (1978), 297-300.
- [11] S.M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.
- [12] G. Wang, M. Zhou, L. Sun, Hyers-Ulam stability of linear differential equation of first order, Appl. Math. Lett. 21 (2008), 1024–1028.

Florin Bojor florin.bojor@yahoo.com

North University of Baia Mare Faculty of Sciences Department of Mathematics and Computer Sciences Str. Victoriei, nr. 76 430122 Baia Mare, Romania

Received: August 1, 2010. Revised: February 13, 2011. Accepted: February 16, 2011.