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NOTE ON THE STABILITY
OF FIRST ORDER

LINEAR DIFFERENTIAL EQUATIONS
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Abstract. In this paper, we will prove the generalized Hyers-Ulam stability of the linear
differential equation of the form y′(x)+f (x) y(x)+g(x) = 0 under some additional conditions.
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1. INTRODUCTION

The study of the stability functional equations is strongly related to Ulam’s question
concerning the stability of group homomorphisms. We mention that the concept of
stability for a functional equation appears when we replace the functional equation by
an inequality which acts as a perturbation of the equation. Thus the stability question
for functional equations shows “how the solutions of the inequality differ from those
of the given functional equation.” D.H. Hyers [3] excellently answered the question of
Ulam and proved the following result:

Theorem 1.1 (Hyers, [3]). Let E and E′ be two Banach spaces and f : E → E′

a given function such that there exists δ ≥ 0 such that

‖f (x+ y)− f(x)− f (y)‖ ≤ δ, ∀x, y ∈ X. (1.1)

Then the limit L(x) = lim
n→∞

f(2nx)
2n exists for all x ∈ E, L is an additive function and

the inequality
‖f(x)− L(x)‖ < δ (1.2)

is true for all x ∈ E. Moreover, L(x) is the only additive function which satisfies the
inequality (1.2).
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Since Hyers’ result, a great number of papers on the subject have been published,
extending and generalizing the Ulam’s problem and the Hyers’ theorem in various
directions (see [3, 9, 10]).

In [9] V. Radu proposed a new method for obtaining the existence of exact solutions
and error estimations, based on the fixed point alternative and this theorem is:

Theorem 1.2 (The fixed point alternative). Suppose we are given a complete gen-
eralized metric space (Ω, d) and a strictly contractive mapping T : Ω → Ω with the
Lipschitz constant a. Then, for each given element x ∈ Ω, either

d
(
Tnx, Tn+1x

)
=∞, ∀n ≥ 0,

or there exists a natural number n0 such that:

(i) d
(
Tnx, Tn+1x

)
<∞ for all n ≥ n0.

(ii) The sequence (Tnx)n≥0 is convergent to a fixed point y∗ of T .
(iii) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω |d (Tn0x, y) <∞}.
(iv) d (y, y∗) ≤ 1

1−ad (y, Ty) for all y ∈ ∆.

Let a0, a1, . . . , an−1 be real numbers and let I be an interval. For y ∈ Cn (I,R),
ε > 0 and ϕ ∈ C (I,R+) we consider the following equation:

y(n)(t) =
n−1∑
k=0

aky
(k)(t), t ∈ I (1.3)

and the following inequations∣∣∣∣∣y(n)(t)−
n−1∑
k=0

aky
(k)(t)

∣∣∣∣∣ ≤ ε, t ∈ I (1.4)

and ∣∣∣∣∣y(n)(t)−
n−1∑
k=0

aky
(k)(t)

∣∣∣∣∣ ≤ ϕ(t), t ∈ I. (1.5)

Definition 1.3. The equation (1.3) is Hyers-Ulam stable if there exists a real number
c > 0 such that for each ε > 0 and for each solution s ∈ C(n) (I,R) of (1.4) there
exists a solution y ∈ C(n) (I,R) of (1.3) with

|s(t)− y(t)| ≤ c · ε, ∀ t ∈ I.

Definition 1.4. The equation (1.3) is Hyers-Ulam-Rassias stable, with respect to ϕ,
if there exists a real number cϕ > 0 such that for each solution s ∈ C(n) (I,R) of (1.5)
there exists a solution y ∈ C(n) (I,R) of (1.3) with

|s(t)− y(t)| ≤ cϕ · ϕ(t), ∀ t ∈ I.
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Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of
differential equations. In 1998, they proved in [1] the stability of differential equation

y′(t) = y(t). (1.6)

Following the same approach as in [1], Miura [8] proved the Hyers-Ulam stability
of differential equation

y′(t) = λy(t). (1.7)

S.M. Jung [4–7] applied the fixed point method for proving the Hyers-Ulam-Rassias
stability of a Volterra integral equation of the second kind and for differential equa-
tions of first order. Using the same technique we prove the Hyers-Ulam-Rassias sta-
bility and Hyers-Ulam stability of differential equation

y′(x) + f(x)y(x) + g (x) = 0 (1.8)

under some conditions, others than the conditions from [4].

2. MAIN RESULTS

In this paper, by using the idea of Cădariu and Radu [2], we will prove the
Hyers-Ulam-Rassias stability for the equation (1.8) on the intervals I = [a, b), where
−∞ < a < b ≤ ∞.

Theorem 2.1. Let f, g : I → R be continuous functions and let for a positive constant
M , |f(x)| ≥ M for all x ∈ I. Assume that ψ : I → [0,∞) is an integrable function
with the property that there exists P ∈ (0, 1) such that

x∫
a

|f(t)|ψ(t)dt ≤ Pψ(x) (2.1)

for all x ∈ I. If a continuously differentiable function y : I → R verifies the relation:

|y′(x) + f(x)y(x) + g (x)| ≤ ψ(x) (2.2)

for all x ∈ I, then there exists a unique solution S : I → R of the equation (1.8) which
verifies the following relations:

|y(x)− S(x)| ≤ P

M −MP
ψ(x) (2.3)

for all x ∈ I and S (a) = y (a).

Proof. Let us consider the set Ω = {h : I → R |h is continuous andh (a) = y (a)} and
the generalized metric d (h1, h2) defined on Ω as

d (h1, h2) = dψ (h1, h2) = inf {k > 0 ||h1(x)− h2(x)| ≤ kψ(x), ∀x ∈ I} .
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Then (Ω, d) is a generalized complete metric space (see [4]). We define the operator
T : Ω→ Ω,

Th(x) = y (a)−
x∫
a

(f(t)h(t) + g(t))dt x ∈ I,

for all h ∈ Ω. Indeed Th is a continuously differentiable function on I, since f and g
are continuous function and Th (a) = y (a).

Now, let h1, h2 ∈ Ω. Then we have

|Th1(x)− Th2(x)| =

∣∣∣∣∣∣
x∫
a

f(t) (h1(t)− h2(t)) dt

∣∣∣∣∣∣ ≤
x∫
a

|f(t)| |h1(t)− h2(t)| dt ≤

≤ d (h1, h2)

x∫
a

|f(t)|ψ(t)dt ≤ Pψ(x)d (h1, h2)

for all x ∈ I. Therefore,
d (Th1, Th2) ≤ Pd (h1, h2) , (2.4)

thus the operator T is a contraction with the constant P .
Now integrating the both sides of the relation (2.2) on [a, x] we obtain

∣∣∣∣y(x)− y (a) +

x∫
a

(f(t)y(t) + g (t)) dt
∣∣∣∣ ≤ P

M
ψ(x) (2.5)

for all x ∈ I, which means d (y, Ty) ≤ P
M < ∞. By the fixed point alternative

there exists an element S = lim
n→∞

Tny and S is unique fixed point of T in the set
∆ = {h ∈ Ω | d (Tn0y, h) <∞}. It may be proved that

∆ = {h ∈ Ω | d (y, h) <∞} .

Therefore the set ∆ is independent of n0. To prove that the function S is a solution
to the equation (1.8), we derive with respect to x the both sides of the relation

S(x) = TS(x), x ∈ I. (2.6)

Thus
S′(x) = −f(x)S(x)− g (x) (2.7)

for all x ∈ I which implies that the function S is a solution to the equation (1.8) and
verifies the relation S (a) = y (a).

Applying again the fixed point alternative we obtain

d (h, S) ≤ 1
1− P

d (h, Th) for all h ∈ ∆.
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Since y ∈ ∆, we have

d (y, S) ≤ 1
1− P

d (y, Ty) ≤ P

M (1− P )
,

whence

|y(x)− S(x)| ≤ P

M −MP
ψ(x)

for all x ∈ I. This inequality proves the relation (2.3).

In the same manner it can be proved the following theorem of the
Hyers-Ulam-Rassias stability of the equation (1.8) on the interval J = (b, a], where
−∞ ≤ b < a <∞.

Theorem 2.2. Let f, g : J → R be continuous functions and let for some positive
constant M , |f(x)| ≥ M for all x ∈ J . Assume that ψ : J → [0,∞) is an integrable
function with the property that there exists P ∈ (0, 1) such that

a∫
x

|f(t)|ψ(t)dt ≤ Pψ(x) (2.8)

for all x ∈ J . If a continuously differentiable function y : J → R verifies the relation:

|y′(x) + f(x)y(x) + g (x)| ≤ ψ(x) (2.9)

for all x ∈ J , then there exists a unique solution S : J → R of the equation (1.8)
which verifies the following relations:

|y(x)− S(x)| ≤ P

M −MP
ψ(x) (2.10)

for all x ∈ J and S (a) = y (a).

The Hyers-Ulam-Rassias stability equation (1.8) on R will be proved by Theo-
rem 2.1 and Theorem 2.2.

Corollary 2.3. Let f, g : R → R be continuous functions and let for some positive
constant M , |f(x)| ≥ M for all x ∈ R. Assume that ψ : R → [0,∞) is an integrable
function with the property that there exists P ∈ (0, 1) such that

∣∣∣∣
x∫

0

|f(t)|ψ(t)dt
∣∣∣∣ ≤ Pψ(x) (2.11)

for all x ∈ R. If a continuously differentiable function y : R→ R verifies the relation:

|y′(x) + f(x)y (x) + g (x)| ≤ ψ(x) (2.12)
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for all x ∈ R, then there exists a unique solution S : R → R of equation (1.8) which
verifies the following relations:

|y(x)− S(x)| ≤ P

M −MP
ψ(x) (2.13)

for all x ∈ R and S (0) = y (0).

Proof. By the relation (2.11) we have

x∫
0

|f(t)|ψ(t)dt ≤ Pψ(x) (2.14)

for all x ≥ 0. Applying Theorem 2.1, there exists a solution of equation (1.8),
S1 : [0,∞)→ R which verifies the relations (2.3) and S1 (0) = y (0).

From (2.11) we also obtain

0∫
x

|f(t)|ψ(t)dt ≤ Pψ(x) (2.15)

for all x ≤ 0. Applying Theorem 2.2, there exists a solution of equation (1.8),
S2 : (−∞, 0]→ R which verifies (2.10) and S2 (0) = y (0). It is easy to check that
the function

S(x) =

{
S1(x), x ≥ 0,
S2(x), x < 0,

(2.16)

is a continuously differentiable function on R, a solution of equation (1.8) on R and
it verifies relation (2.13).

Using Theorem 2.1 it can be shown the Hyers-Ulam stability for the equation (1.8)
on I = [a, b), where −∞ < a < b ≤ ∞.

Corollary 2.4. Let ε, M > 0 and let f : I → [M,∞) and g : I → R be continuous.
If a continuously differentiable function y : I → R verifies the relation

|y′(x) + f(x)y(x) + g(x)| ≤ ε (2.17)

for all x ∈ I, then there exists a unique solution S : I → R of equation (1.8) which
verifies the relations:

|y(x)− S(x)| ≤ ε

M (2q − 1)
(2.18)

for all x ∈ I, where q ∈
(

1
2 , 1
)
and S (a) = y (a).

Proof. Let q ∈
(

1
2 , 1
)
. Multiplying relation (2.17) by eq

R x
a
f(t)dt, and denoting

z(x) := y(x)eq
R x

a
f(t)dt, x ∈ I (2.19)
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we have ∣∣∣z′(x) + (1− q) f(x)z(x) + g(x)eq
R x

a
f(t)dt

∣∣∣ ≤ ε · eq R x
a
f(t)dt (2.20)

for all x ∈ I. Then the function F (x) = (1− q) f(x), where x ∈ I, is continuous on I
and satisfies the relation |F (x)| > (1− q)M for all x ∈ I.

Let ψ(x) = ε · eq
R x

a
f(t)dt, when x ∈ I. We see that

x∫
a

|F (t)|ψ(t)dt = (1− q) ε
x∫
a

f(t)eq
R t

a
f(u)dudt ≤ 1− q

q
ψ(x) (2.21)

for all x ∈ I, thus the function ψ : I → [0,∞) verifies relation (2.1) with P = 1−q
q ∈

(0, 1).
By Theorem 2.1, there exists s ∈ C1 (I,R), which is a unique solution for the

equation
z′(x) + (1− q) f(x)z(x) + g(x)eq

R x
a
f(t)dt = 0 (2.22)

and verifies the relations

|z(x)− s(x)| ≤ 1
M (2q − 1)

· ε · eq
R x

a
f(t)dt (2.23)

for all x ∈ I and s (a) = z (a).
Then the function S(x) = s(x)e−q

R x
a
f(t)dt is a solution of equation (1.8) and

verifies relation (2.18).

Equation (1.8) is not Hyers-Ulam stable on the intervals J = (−∞, a] in general,
as we can see in the following example.

Example 2.5. Let us consider equation (1.8) where f(x) = x2 and g(x) = 0. The
solution of this equation S : J → R which verifies the condition S (a) = p is

S(x) = p · e
a3−x3

3 . (2.24)

A continuously differentiable function y : J → R which verifies inequality (2.17) is

y(x) = p · e
a3−x3

3 + ε · e− x3
3

x∫
a

e
t3
3 dt. (2.25)

Considering equation (1.8) being Hyers-Ulam stable, there exists k > 0 such that

|y(x)− S(x)| ≤ ε · k (2.26)

for all x ∈ J . By substitution, we have∣∣∣∣
x∫
a

e
t3
3 dt

∣∣∣∣ ≤ ke x3
3 (2.27)

for all x ∈ J . Now letting x→ −∞ it generates a contradiction. So equation (1.8) is
not Hyers-Ulam stable.
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