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NOTE ON THE STABILITY
OF FIRST ORDER
LINEAR DIFFERENTIAL EQUATIONS
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Abstract. In this paper, we will prove the generalized Hyers-Ulam stability of the linear
differential equation of the form y'(z)+f (x) y(x)+g(x) = 0 under some additional conditions.
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1. INTRODUCTION

The study of the stability functional equations is strongly related to Ulam’s question
concerning the stability of group homomorphisms. We mention that the concept of
stability for a functional equation appears when we replace the functional equation by
an inequality which acts as a perturbation of the equation. Thus the stability question
for functional equations shows “how the solutions of the inequality differ from those
of the given functional equation.” D.H. Hyers [3] excellently answered the question of
Ulam and proved the following result:

Theorem 1.1 (Hyers, [3]). Let E and E’ be two Banach spaces and f : E — E’
a given function such that there exists 6 > 0 such that

If (z+y) = flx) = fWI <6, Va,yeX. (1.1)

Then the limit L(x) = lim w exists for all x € E, L is an additive function and
the inequality
1f(2) = Lz)| <6 (1.2)

is true for all x € E. Moreover, L(x) is the only additive function which satisfies the
inequality (1.2).
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Since Hyers’ result, a great number of papers on the subject have been published,
extending and generalizing the Ulam’s problem and the Hyers’ theorem in various
directions (see [3,9,10]).

In [9] V. Radu proposed a new method for obtaining the existence of exact solutions
and error estimations, based on the fixed point alternative and this theorem is:

Theorem 1.2 (The fixed point alternative). Suppose we are given a complete gen-
eralized metric space (Q,d) and a strictly contractive mapping T : Q — Q with the
Lipschitz constant a. Then, for each given element x € §2, either

d (T”x, T"'Hx) =00, Vn >0,

or there exists a natural number ng such that:

(i) d(T"z, T"z) < 0o for all n > ny.

(i) The sequence (T"x),,~, is convergent to a fized point y* of T.

(iii) yx is the unique fized point of T in the set A ={y € Q|d (T™z,y) < co}.
(iv) d(y, y*) < ﬁd(y, Ty) for all y € A.

Let ag, a1, ...,an,—1 be real numbers and let I be an interval. For y € C™ (I,R),
e>0and ¢ € C(I,R) we consider the following equation:

n—1
y ) =Y ay®(t), tel (1.3)
k=0

and the following inequations

n—1
y ) =D ay®(t)| <6, tel (1.4)
k=0
and
n—1
y ") =Y ay® ()| <), tel (1.5)
k=0

Definition 1.3. The equation (1.3) is Hyers-Ulam stable if there exists a real number
¢ > 0 such that for each ¢ > 0 and for each solution s € C™ (I,R) of (1.4) there
exists a solution y € C™ (I,R) of (1.3) with

|s(t) —y(t)| <c-e, Vtel.
Definition 1.4. The equation (1.3) is Hyers-Ulam-Rassias stable, with respect to ¢,
if there exists a real number ¢, > 0 such that for each solution s € C(™ (I, R) of (1.5)

there exists a solution y € C(™ (I,R) of (1.3) with

ls(t) —y(t)| < cp-p(t), Vtel.
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Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of
differential equations. In 1998, they proved in [1] the stability of differential equation

y'(t) = y(t). (1.6)

Following the same approach as in [1], Miura [8] proved the Hyers-Ulam stability
of differential equation

y'(t) = Ay(t). (1.7)

S.M. Jung [4-7] applied the fixed point method for proving the Hyers-Ulam-Rassias
stability of a Volterra integral equation of the second kind and for differential equa-
tions of first order. Using the same technique we prove the Hyers-Ulam-Rassias sta-
bility and Hyers-Ulam stability of differential equation

y'() + fl2)y(x) + g(x) =0 (1.8)

under some conditions, others than the conditions from [4].

2. MAIN RESULTS

In this paper, by using the idea of Cadariu and Radu [2], we will prove the
Hyers-Ulam-Rassias stability for the equation (1.8) on the intervals I = [a, b), where
—o<a<b< oo,

Theorem 2.1. Let f,g: I — R be continuous functions and let for a positive constant
M, |f(x)] > M for all x € I. Assume that ¢ : I — [0,00) is an integrable function
with the property that there exists P € (0,1) such that

/ F@O@)dr < Po(e) (2.1)

for all x € I. If a continuously differentiable function y : I — R verifies the relation:

|y (@) + f(@)y(x) + g (2)] < ¥(2) (2.2)

for all x € I, then there exists a unique solution S : I — R of the equation (1.8) which
verifies the following relations:

y(&) — S@)| < () (23)

forallz €I and S (a) =y (a).

Proof. Let us consider the set @ = {h: I — R|h is continuous and h (a) = y (a)} and
the generalized metric d (hy, ho) defined on 2 as

d (hy,ha) = dy (b, h) = inf {k > 0|hu(2) — ha(a)| < ki(a), Var € I}
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Then (£2,d) is a generalized complete metric space (see [4]). We define the operator
T:0—Q,

Thia) =y(a) ~ [ (FOh() + g(0)dt o€ 1,

for all h € Q. Indeed Th is a continuously differentiable function on I, since f and g
are continuous function and Th (a) = y (a).
Now, let ki, ho € Q. Then we have

(Thy(2) — Tha(z)| = / F(t) (ha(t) — ha(8)) dt| < / FO1R (1) — ha(t)] dt <

< d(h,ha) / FOI@)E < P(a)d (1, ha)

for all z € I. Therefore,
d(Thy,Ths) < Pd(hy, hs), (2.4)

thus the operator T is a contraction with the constant P.
Now integrating the both sides of the relation (2.2) on [a, 2] we obtain

x

o) =@+ [ (Fw0) + 9 0)ar| < 310 (25)

a

for all x € I, which means d(y,Ty) < % < o0. By the fixed point alternative

there exists an element S = lim 7™y and S is unique fixed point of T in the set
n—od

A={heQ|d(T™y,h) < oco}. It may be proved that
A={heQ|d(y,h) <oo}.

Therefore the set A is independent of ng. To prove that the function S is a solution
to the equation (1.8), we derive with respect to x the both sides of the relation

S(x)=TS(x), zel. (2.6)
Thus
S'(x) = —f(2)S(z) — g (x) (2.7)

for all z € I which implies that the function S is a solution to the equation (1.8) and
verifies the relation S (a) =y (a).
Applying again the fixed point alternative we obtain

1
d(h,S) < 7—5d(h,Th) forall he A,
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Since y € A, we have

1
d < dy,Ty) < ————
(4, 5) < T—pdu,Ty) < Ma-DP)
whence
y(w) = () < 55 e)
vz =3 —mpt"
for all « € I. This inequality proves the relation (2.3). O

In the same manner it can be proved the following theorem of the
Hyers-Ulam-Rassias stability of the equation (1.8) on the interval J = (b, a], where
—oc0<b<a<oo.

Theorem 2.2. Let f,g : J — R be continuous functions and let for some positive
constant M, |f(z)| > M for all x € J. Assume that ¢ : J — [0,00) is an integrable
function with the property that there exists P € (0,1) such that

/u@wmwspwm (2.8)

for all x € J. If a continuously differentiable function y : J — R verifies the relation:

|y (z) + f(@)y(x) + g (2)] < ¥(2) (2.9)

for all © € J, then there exists a unique solution S : J — R of the equation (1.8)
which verifies the following relations:

(&)~ S@)] < 37— 1 0(a) (2.10)

forallz € J and S (a) =y (a).

The Hyers-Ulam-Rassias stability equation (1.8) on R will be proved by Theo-
rem 2.1 and Theorem 2.2.

Corollary 2.3. Let f,g : R — R be continuous functions and let for some positive
constant M, |f(x)] > M for all x € R. Assume that ¢ : R — [0,00) is an integrable
function with the property that there exists P € (0,1) such that

\ﬂmwwﬂsmm (211)
0

for all z € R. If a continuously differentiable function y : R — R verifies the relation:

' (x) + f(@)y () + g (2)] < () (2.12)
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for all x € R, then there exists a unique solution S : R — R of equation (1.8) which
verifies the following relations:

P
(@)~ S()| € T @) (213)
for all z € R and S (0) =y (0).
Proof. By the relation (2.11) we have
[1r@lwa < Pow (2.14)
0

for all > 0. Applying Theorem 2.1, there exists a solution of equation (1.8),
S :[0,00) — R which verifies the relations (2.3) and S; (0) = y (0).
From (2.11) we also obtain

0
/ FOl0)dE < Py(a) (2.15)

for all x < 0. Applying Theorem 2.2, there exists a solution of equation (1.8),
Sy i (—00,0] — R which verifies (2.10) and S5 (0) = y(0). It is easy to check that

the function
>
S(x) = ), =20, (2.16)
SQ(x)v T < Oa

is a continuously differentiable function on R, a solution of equation (1.8) on R and
it verifies relation (2.13). O

Using Theorem 2.1 it can be shown the Hyers-Ulam stability for the equation (1.8)
on I = [a,b), where —oo0 < a < b < 0.

Corollary 2.4. Lete, M >0 and let f : I — [M,00) and g : I — R be continuous.
If a continuously differentiable function y: I — R verifies the relation

' (z) + f(@)y(x) + g(2)| < & (2.17)

for all x € I, then there exists a unique solution S : I — R of equation (1.8) which
verifies the relations:

ly(z) — S(x)] < M(%—l) (2.18)

for all z € I, where q € (3,1) and S (a) =y (a).
Proof. Let q € (1,1). Multiplying relation (2.17) by e? Jo @t and denoting

2(z) = y(z)etJa IO pe (2.19)
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we have , /
(@) + (1 — ) f(2)2(x) + gla)er i FO%| < o eali for (2.20)

for all z € I. Then the function F(x) = (1 — q) f(z), where x € I, is continuous on [
and satisfies the relation |F'(x)| > (1 —¢) M for all x € I.
Let ¢(z) = ¢ - e9Ja 74t when - € I. We see that

[ [ t -

JIE@Rd = 0 -0z [ e o < Syw) @)
for all « € I, thus the function ¢ : I — [0, 00) verifies relation (2.1) with P = %q €
(0,1).

By Theorem 2.1, there exists s € C! (I,R), which is a unique solution for the
equation

7 (x) + (1 - q) f(z)2(x) + g(z)e?Ja IO = o (2.22)
and verifies the relations
1 «
_ < T L eSS St 2.9
|2(z) — s(z)] < Mag—1 ¢ (2.23)

for all z € T and s (a) = z (a).
Then the function S(z) = s(x)e 9Ja FMdt is a solution of equation (1.8) and
verifies relation (2.18). O

Equation (1.8) is not Hyers-Ulam stable on the intervals J = (—o0, a] in general,
as we can see in the following example.

Example 2.5. Let us consider equation (1.8) where f(x) = 2% and g(x) = 0. The
solution of this equation S : J — R which verifies the condition S (a) = p is

a3 —a3

S(x)=p-e 5 . (2.24)

A continuously differentiable function y : J — R which verifies inequality (2.17) is
a3 — 3 T

z-3 x t3
ylx)=p-e = —&-5-6_7/67(%. (2.25)

a

Considering equation (1.8) being Hyers-Ulam stable, there exists k& > 0 such that
ly(w) — S(@)| < =k (2.26)

for all x € J. By substitution, we have
r t3 '1‘,3
‘/e?’dt‘ < kes (2.27)

for all x € J. Now letting + — —oo it generates a contradiction. So equation (1.8) is
not Hyers-Ulam stable.
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