Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we establish a new composition theorem for Sp-weighted pseudo almost periodic functions under weaker conditions than the Lipschitz ones currently encountered in the literatures. We apply this new composition theorem along with the Schauder's fixed point theorem to obtain new existence theorems for weighted pseudo almost periodic mild solutions to a semilinear differential equation in a Banach space.
Czasopismo
Rocznik
Tom
Strony
457--474
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
autor
autor
- Lanzhou Jiaotong University Department of Mathematics Lanzhou, Gansu 730070, P.R. China, zhaozhihan841110@126.com
Bibliografia
- [1] C.Y. Zhang, Pseudo almost periodic solutions of some differential equations, J. Math. Anal. Appl. 151 (1994), 62–76.
- [2] C.Y. Zhang, Integration of vector-valued pseudo almost periodic functions, Proc. Amer. Math. Soc. 121 (1994), 167–174.
- [3] C.Y. Zhang, Pseudo almost periodic solutions of some differential equations II, J. Math.Anal. Appl. 192 (1995), 543–561.
- [4] R.P. Agarwal, T. Diagana, E. Hernández, Weighted pseudo almost periodic solutions to some partial neutral functional differential equations, J. Nonlinear Convex Anal. 8 (2007) 3, 397–415.
- [5] T. Diagana, Weighted pseudo almost periodic functions and applications, C. R. Acad. Sci. Paris Ser. I 343 (2006) 10, 643–646.
- [6] T. Diagana, Weighted pseudo almost periodic solutions to some differential equations, Nonlinear Anal. 68 (2008) 8, 2250–2260.
- [7] T. Diagana, Existence of weighted pseudo almost periodic solutions to some classes of hyperbolic evolution equations, J. Math. Anal. Appl. 350 (2009) 18–28.
- [8] G.M. N’Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal. TMA 68 (2008) 2658–2667.
- [9] T. Diagana, G.M. Mophou, G.M. N’Guérékata, Existence of weighted pseudo almost periodic solutions to some classes of differential equations with Sp-weighted pseudo almost periodic coefficients, Nonlinear Anal. TMA 72 (2010) 1, 430–438.
- [10] E. Hernández, H.R. Henríquez, Existence of periodic solutions of partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl. 221 (1998) 499–522.
- [11] H.R. Henríquez, C.H. Vasquez, Almost periodic solutions of abstract retarded functional differential equations with unbounded delay, Acta Appl. Math. 57 (1999) 105–132.
- [12] S. Abbas, D. Bahuguna, Almost periodic solutions of neutral functional differential equations, Comput. Math. Appl. 55 (2008) 2593–2601.
- [13] H.X. Li, F.L. Huang, J.Y. Li, Composition of pseudo almost periodic functions and semilinear differential equations, J. Math. Anal. Appl. 255 (2001) 436–446.
- [14] T. Diagana, C.M. Mahop, G.M. N’Guérékata, B. Toni, Existence and uniqueness of pseudo almost periodic solutions to some classes of semilinear differential equations and applications, Nonlinear Anal. 64 (2006) 2442–2453.
- [15] T. Diagana, Existence and uniqueness of pseudo almost periodic solutions to semilinear differential equations and applications, Nonlinear Anal. 66 (2007) 228–240.
- [16] H.S. Ding, J. Liang, G.M. N’Guérékata, T.J. Xiao, Pseudo almost periodicity to some nonautonomous evolution equations with delay, Nonlinear Anal. TMA 67 (2007) 1412–1218.
- [17] H.S. Ding, J. Liang, G.M. N’Guérékata, T.J. Xiao, Mild pseudo almost periodic solutions of nonautonomous semilinear evolution equations, Math. Comput. Modelling 45 (2007) 579–584.
- [18] E. Hernández, H.R. Henríquez, Pseudo almost periodic solutions for non-autonomous neutral differential equations with unbounded delay, Nonlinear Anal. RWA 9 (2008) 430–437.
- [19] C. Cuevas, E. Hernández, Pseudo almost periodic solutions for abstract partial functional defferential equations, Appl. Math. Lett. 22 (2009) 4, 534–538.
- [20] Z.R. Hu, Z. Jin, Stepanov-like pseudo almost periodic mild solutions to perturbed non-autonomous evolution equations with infinite delay, Nonlinear Anal. 71 (2009) 5381–5391.
- [21] Z.H. Zhao, Y.K. Chang, W.S. Li, Asymptotically almost periodic, almost periodic and pseudo almost periodic mild solutions for neutral differential equations, Nonlinear Anal. RWA 11 (2010) 3037–3044.
- [22] N. Boukli-Hacene, K. Ezzinbi, Weighted pseudo almost periodic solutions for some partial functional differential equations, Nonlinear Anal. TMA 71 (2009) 9, 3612–3621.
- [23] L.W. Zhang, Y.T. Xu, Weighted pseudo almost periodic solutions of a class of abstract differential equations, Nonlinear Anal. TMA 71 (2009) 9, 3705–3714.
- [24] R.P. Agarwal, B. de Andrade, C. Cuevas, Weighted pseudo almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Anal. RWA 11 (5) (2010), 3532–3554.
- [25] H.X. Li, L.L. Li, Stepanov-like pseudo almost periodicity and semilinear differential equations with uniform continuity, Reaults. Math. 59 (2011), 43–61, DOI:10.1007/s00025-010-0050-4.
- [26] Y.K. Chang, Z.H. Zhao, J.J. Nieto, Pseudo almost automorphic and weighted pseudo almost automorphic mild solutions to semi-linear differential equations in Hilbert spaces, Revista Matemática Complutense (2010), DOI: 10.1007/s13163-010-0047-2.
- [27] A.M. Fink, Almost periodic differential equations, [in:] Lecture Notes in Mathematics, vol. 377, Springer-Verlag, New York, Berlin, 1974.
- [28] G.M. N’Guérékata, Almost automorphic and almost periodic functions in abstract space, Kluwer Academic Plenum Publishers, New York, London, Moscow, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0005-0072