Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the paper is to show that if F is a family of continuous transformations of a nonempty compact Hausdorff space Ω, then there is no F-invariant probabilistic regular Borel measures on Ω iff there are φ1..., φp ∈ F (for some p ≥ 2) and a continuous function u: Ω, p ? R such that Σ σ ∈Spu(x&sigma(1),...,x&sigmap = 0 and lim infn?∞1/n Σ n-1/k=0 (u o Φk)9x1,...xp) ≥ 1 for each x1,...xp ∈ Ω, where Φ: Ωp ∋ (x1,...xp) ? (φ1(x1,..., φp(xp)∈ Ωp and Φk is the k-th iterate of Φ. A modified version of this result in case the family F generates an equicontinuous semigroup is proved.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
425--431
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Jagiellonian University Institute of Mathematics ul. Łojasiewicza 6, 30-348 Kraków, Poland, piotr.niemiec@uj.edu.pl
Bibliografia
- [1] R.B. Chuaqui, Measures invariant under a group of transformations, Pacific J. Math. 68 (1977), 313–329.
- [2] R. Engelking, General Topology, PWN – Polish Scientific Publishers, Warszawa, 1977.
- [3] P. Erdös, R.D. Mauldin, The nonexistence of certain invariant measures, Proc. Amer. Math. Soc. 59 (1976), 321–322.
- [4] N.A. Friedman, Introduction to Ergodic Theory, Van Nostrand Reinhold Company, 1970.
- [5] P.R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
- [6] P.R. Halmos, Lectures on Ergodic Theory, Publ. Math. Soc. Japan, Tokyo, 1956.
- [7] V. Kannan, S.R. Raju, The nonexistence of invariant universal measures on semigroups, Proc. Amer. Math. Soc. 78 (1980), 482–484.
- [8] A.B. Khararazishvili, Transformation groups and invariant measures. Set-theoretic aspects, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
- [9] L.H. Loomis, Abstract congruence and the uniqueness of Haar measure, Ann. Math. 46 (1945), 348–355.
- [10] L.H. Loomis, Haar measure in uniform structures, Duke Math. J. 16 (1949), 193–208.
- [11] J. Mycielski, Remarks on invariant measures in metric spaces, Coll. Math. 32 (1974), 105–112.
- [12] L. Nachbin, The Haar Integral, D. Van Nostrand Company, Inc., Princeton-New Jersey-Toronto-New York-London, 1965.
- [13] J. von Neumann, Zum Haarschen Mass in topologischen Gruppen, Compos. Math. 1 (1934), 106–114.
- [14] P. Niemiec, Invariant measures for equicontinuous semigroups of continuous transformations of a compact Hausdorff space, Topology Appl. 153 (2006), 3373–3382.
- [15] A. Pelc, Semiregular invariant measures on abelian groups, Proc. Amer. Math. Soc. 86 (1982), 423–426.
- [16] D. Ramachandran, M. Misiurewicz, Hopf’s theorem on invariant measures for a group of transformations, Studia Math. 74 (1982), 183–189.
- [17] J.M. Rosenblatt, Equivalent invariant measures, Israel J. Math. 17 (1974), 261–270.
- [18] W. Rudin, Functional Analysis, McGraw-Hill Science, 1991.
- [19] R.C. Steinlage, On Haar measure in locally compact T2 spaces, Amer. J. Math. 97 (1975), 291–307.
- [20] P. Zakrzewski, The existence of invariant σ-finite measures for a group of transformations, Israel J. Math. 83 (1993), 275–287.
- [21] P. Zakrzewski, Measures on Algebraic-Topological Structures, Handbook of Measure Thoery, E. Pap, ed., Elsevier, Amsterdam, 2002, 1091–1130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0005-0069