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A NOTE ON INVARIANT MEASURES

Piotr Niemiec

Abstract. The aim of the paper is to show that if F is a family of continuous transfor-
mations of a nonempty compact Hausdorff space Ω, then there is no F-invariant prob-
abilistic regular Borel measures on Ω iff there are ϕ1, . . . , ϕp ∈ F (for some p ≥ 2)
and a continuous function u : Ωp → R such that

P
σ∈Sp

u(xσ(1), . . . , xσ(p)) = 0 and
lim infn→∞

1
n

Pn−1
k=0 (u ◦ Φk)(x1, . . . , xp) ≥ 1 for each x1, . . . , xp ∈ Ω, where Φ: Ωp 3

(x1, . . . , xp) 7→ (ϕ1(x1), . . . , ϕp(xp)) ∈ Ωp and Φk is the k-th iterate of Φ. A modified version
of this result in case the family F generates an equicontinuous semigroup is proved.
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1. INTRODUCTION

Invariant measures are present in many parts of mathematics, including harmonic
analysis, ergodic theory and topological dynamics. Ergodic theory deals with a single
measurable transformation which preserves a fixed measure and it focuses on prop-
erties of the measure-theoretic discrete dynamical system obtained in this way. The
reader interested in this subject is referred to standard textbooks such as [6] or [4].
Another approach to the aspect of invariant measures, treated in the recent paper, is,
in a sense, related to (common) fixed point theory and it concentrates on the problem
of the existence of a measure preserved by all transformations of a fixed family. The
most classical result in this topic is the Haar measure theorem which states that on
every locally compact topological group there is a unique, up to a constant factor,
positive regular Borel measure invariant under the left shifts of the group (see e.g.
[5, 13] or [12]; for a much more general result see [9, 10, 19]). This meaningful result
plays an important role in abstract harmonic analysis and group representation theory
and gave foundations to this new branch of mathematics which is still widely investi-
gated. This includes invariant measures for both the groups as well as the semigroups
of continuous or measurable transformations acting on metric spaces, compact spaces
or totally arbitrary topological spaces. There is a huge range of literature concerning
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this subject and we mention here only a part: [1,3,7,8,11,14–17,20] or a survey article
[21] and references therein.

The recent paper deals with an arbitrary semigroup F of continuous transforma-
tions of a compact Hausdorff space. Our aim is to give an equivalent condition for
the existence of a Borel regular probabilistic measure invariant under each member
of F . The condition reduces the problem of the existence of the measure to the more
friendly issue of the nonexistence of a continuous function satisfying certain explicitly
stated conditions.

2. PRELIMINARIES

In this paper Ω is a nonempty compact Hausdorff space and Sn stands for the group
of all permutations of {1, . . . , n}. For σ ∈ Sn, let σσσ : Ωn → Ωn be a function defined
by

σσσ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Whenever Φ is a transformation of some set, Φk denotes the k-th iterate of Φ. The
algebra of all the continuous real-valued functions on Ω is denoted by C(Ω), B(Ω)
denotes the σ-algebra of all the Borel subsets of Ω and C(Ω,Ω) stands for the family
of continuous transformations of Ω; M(Ω) is the vector space of all the (signed)
real-valued regular Borel measures on Ω and Prob(Ω) is its subset of probabilistic
measures. The space M(Ω) is equipped with the standard weak-* topology induced
by linear functionals of the form M(Ω) 3 µ 7→

∫
Ω
f dµ ∈ R, where f ∈ C(Ω). For

a continuous transformation ϕ : Ω → Ω, let ϕ̂ : M(Ω) → M(Ω) be a transformation
given by the formula ϕ̂(µ)(A) = µ(ϕ−1(A)) (µ ∈M(Ω), A ∈ B(Ω)). (Thus ϕ̂(µ) is the
transport of the measure µ under the transformation ϕ.) The set Prob(Ω) is compact
and the transformation ϕ̂ is continuous in the weak-* topology (for continuous ϕ).
(For the proof of the second statement see e.g. [14].) For measures µ1, . . . , µn ∈M(Ω)
and transformations ϕ1, . . . , ϕn : Ω → Ω, we denote by µ1 ⊗ . . . ⊗ µn (∈ M(Ωn))
and ϕ1 × . . . × ϕn the product of µ1, . . . , µn and of ϕ1, . . . , ϕn, respectively. Thus
ϕ1 × . . .× ϕn : Ωn → Ωn and (ϕ1 × . . .× ϕn)(x1, . . . , xn) = (ϕ1(x1), . . . , ϕn(xn)).

If F is a family of continuous transformations of Ω, we say that F is equicontinuous
if and only if the closure of F in the compact-open topology of C(Ω,Ω) is compact (in
that topology). Equivalently, F is equicontinuous if for any points x, y ∈ Ω and every
open neighbourhood V ⊂ Ω of the point y there exist open subsets U and W of Ω
such that x ∈ U, y ∈ W and for each ϕ ∈ F , ϕ(U) ⊂ V provided ϕ(x) ∈ W . If F is
equicontinuous and h ∈ C(Ω), then the closure of the set h ◦ F = {h ◦ ϕ : ϕ ∈ F} in
the norm topology of C(Ω) is compact. For proofs, details and more information on
the compact-open topology the reader is referred to [2].

For a family F ⊂ C(Ω,Ω), let Inv(F) ⊂ Prob(Ω) be the set of all the F-invariant
measures, i.e. a measure µ ∈ Prob(Ω) belongs to Inv(F) if and only if ϕ̂(µ) = µ
for each ϕ ∈ F . Note, for example, that Inv(∅) = Prob(Ω). If F = {ϕ1, . . . , ϕn},
we shall write Inv(ϕ1, . . . , ϕn) instead of Inv({ϕ1, . . . , ϕn}). The set Inv(F) is always
compact (in the weak-* topology) and the following result has entered folklore in
ergodic theory:
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Theorem 2.1. If ϕ ∈ C(Ω,Ω) and µ ∈ Prob(Ω), then every limit point of the sequence
( 1
n

∑n−1
k=0(ϕ̂)k(µ))∞n=1 belongs to Inv(ϕ).

A variation of the above result is the crucial key in the proof of
Markov’s-Kakutani’s fixed point theorem – see e.g. [18]. Theorem 2.1 is in fact a
special case of this variation.

For simplicity, let Ap(Ω) (where p ≥ 2) denote the family of all continuous func-
tions u : Ωp → R such that ∑

σ∈Sp

u ◦ σσσ ≡ 0. (2.1)

The following result is well known and easy to prove.

Lemma 2.2. For a family F ⊂ C(Ω,Ω), the following conditions are equivalent:

(i) the set Inv(F) is empty,
(ii) there are a natural number N ≥ 2 and ϕ1, . . . , ϕN ∈ F such that

Inv(ϕ1, . . . , ϕN ) = ∅.

3. MAIN RESULTS

Lemma 2.2 says that we may restrict our investigations to finite sets of transforma-
tions, which shall be done in the sequel. For simplicity, we fix the situation.

Let ϕ1, . . . , ϕp (p ≥ 2) be members of C(Ω,Ω) and Φ = ϕ1 × . . . × ϕp : Ωp →
Ωp (note that Inv(Φ) ⊂ M(Ωp)). Additionally, let Inv(SSSp) be the collection of all
signed real-valued regular Borel measures on Ωp, invariant under all permutations of
variables.

The following simple result may be interesting in itself.

Lemma 3.1. Inv(ϕ1, . . . , ϕp) is nonempty iff Inv(Φ) ∩ Inv(SSSp) 6= ∅.

Proof. It is easy to check that if µ ∈ Inv(ϕ1, . . . , ϕp), then λ ∈ Inv(Φ) ∩ Inv(SSSp) for
λ = µ⊗. . .⊗µ ∈M(Ωp). Conversely, if λ belongs to both the sets Inv(Φ) and Inv(SSSp),
then it is easily verified that a measure µ ∈M(Ω) defined by µ(A) = λ(A×Ωp−1) (A ∈
B(Ω)) is ϕj-invariant for j = 1, . . . , p.

So, if we want to know when Inv(ϕ1, . . . , ϕp) = ∅, it is enough to verify when the
sets Inv(Φ) and Inv(SSSp) are disjoint. Since the first of them is convex and compact
and the latter is a closed (in the weak-* topology) linear subspace ofM(Ωp), thus –
by the separation theorem – they are disjoint if and only if there is u ∈ C(Ωp) such
that

∫
Ωp u dµ = 0 for µ ∈ Inv(SSSp), but for some positive t we have∫

Ωp

udλ ≥ t (3.1)

for any λ ∈ Inv(Φ).
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The proof of the following fact is immediate.

Lemma 3.2. Let u ∈ C(Ωp). Then
∫

Ωp u dµ = 0 for each µ ∈ Inv(SSSp) if and only if
u ∈ Ap(Ω).

The property (3.1) of the function u which separates the sets Inv(SSSp) and Inv(Φ)
can be reformulated as follows:

Lemma 3.3. For a function u ∈ C(Ωp) and a number t ∈ R the following conditions
are equivalent:

(i) the inequality (3.1) holds for every λ ∈ Inv(Φ),
(ii) lim infn→∞ 1

n

∑n−1
k=0(u ◦ Φk)(z) ≥ t for each z ∈ Ωp.

Proof. The implication (ii) =⇒ (i) follows from Fatou’s lemma. Indeed, take m ∈ R
such that u(z) ≥ m for each z ∈ Ωp. Then for λ ∈ Inv(Φ) we obtain:

lim inf
n→∞

∫
Ωp

( 1
n

n−1∑
k=0

u ◦ Φk −m
)
dλ ≥

∫
Ωp

(
lim inf
n→∞

1
n

n−1∑
k=0

u ◦ Φk −m
)
dλ ≥

≥
∫
Ωp

(t−m) dλ = t−m,
(3.2)

but

∫
Ωp

( 1
n

n−1∑
k=0

u ◦ Φk −m
)
dλ =

1
n

n−1∑
k=0

∫
Ωp

u ◦ Φk dλ−m =
1
n

n−1∑
k=0

∫
Ωp

udΦ̂k(λ)−m =

=
1
n

n−1∑
k=0

∫
Ωp

u dλ−m =
∫
Ωp

u dλ−m.

For the converse implication, fix z ∈ Ωp and take a subsequence (snk
)k of the sequence

sn = 1
n

∑n−1
j=0 u(Φj(z)) such that

lim
k→∞

snk
= lim inf

n→∞
sn.

Let δ be the Dirac measure on Ωp with the atom at z. Since Prob(Ωp) is com-
pact, the sequence µk = 1

nk

∑nk−1
j=0 Φ̂j(δ) has a limit point in Prob(Ωp), say λ.

By Theorem 2.1, λ ∈ Inv(Φ) and hence
∫

Ωp u dλ ≥ t. Finally, since the function
M(Ωp) 3 ν 7→

∫
Ωp u dν ∈ R is continuous, therefore the integral

∫
Ωp u dλ is a limit

point of the sequence
∫

Ωp u dµk. But
∫

Ωp udµk = snk
→ lim infn→∞ sn (k → +∞),

which finishes the proof.
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Now putting together the above facts, we obtain the main result of the paper.

Theorem 3.4. The following conditions are equivalent:

(i) Inv(ϕ1, . . . , ϕp) = ∅,
(ii) there is u ∈ Ap(Ω) such that for each z ∈ Ωp,

lim inf
n→∞

1
n

n−1∑
k=0

(u ◦ Φk)(z) ≥ 1. (3.3)

Before we strengthen condition (ii) of the foregoing theorem in case the family
{ϕ1, . . . , ϕp} generates an equicontinuous semigroup, we shall prove the following

Lemma 3.5. Let v ∈ Ap(Ω). The following conditions are equivalent:

(i) there are c > 0 and a number n0 ≥ 1 such that
∑n−1
k=0 c(v ◦ Φk)(z) > n for each

z ∈ Ωp and n ≥ n0,
(ii) there is m ≥ 0 such that the function

∑m
k=0 v ◦ Φk has only positive values.

Each of the above conditions implies that Inv(ϕ1, . . . , ϕp) = ∅.

Proof. Thanks to Theorem 3.4, it is enough to prove the equivalence of (i) and (ii).
To see that (ii) implies (i), put ε = infz∈Ωp

∑m
k=0(v ◦ Φk)(z). By (ii) and the

compactness of Ω, ε > 0. For simplicity, put l = m + 1 (≥ 1) and c = 2l
ε > 0. Let

t = inf
{∑k

j=0(v ◦ Φj)(z) : k ∈ {0, . . . , l − 1}, z ∈ Ωp
}
(observe that t 6 0, because v

is either constantly equal 0 or is not nonnegative). Finally, take n0 ≥ 1 such that

t− ε
n

> −1
c

(3.4)

for every n ≥ n0. Let n be an arbitrary natural number no less than n0. Express n in
the form n = sl + r, where s ≥ 1 and 0 6 r < l. From the definition of ε it follows
that

∑l−1
j=0(v ◦Φj)(Φql+r(z)) ≥ ε for every z ∈ Ωp and q = 0, . . . , s− 1. Furthermore,∑r−1

j=0(v ◦ Φj)(z) ≥ t (this is true also for r = 0, under the agreement that
∑

∅ = 0).
Hence, by (3.4):

n−1∑
j=0

c(v ◦ Φj)(z) = c

r−1∑
j=0

(v ◦ Φj)(z) + c

s−1∑
q=0

l−1∑
j=0

(v ◦ Φql+r+j)(z) ≥

≥ c(t+ sε) = c
(
t+

n− r
l

ε
)
> c
(
t+

n− l
l

ε
)

= c
(ε
l
n+ t− ε

)
>

> c
(2
c
n− n

c

)
= n,

which finishes the proof of the implication (ii) =⇒ (i). The converse implication is
immediate.
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The announced strengthening of Theorem 3.4 has the following form:

Theorem 3.6. If the family {ϕ1, . . . , ϕp} generates an equicontinuous semigroup
(with the action of composition), then the following conditions are equivalent:

(i) Inv(ϕ1, . . . , ϕp) = ∅,
(ii) there are v ∈ Ap(Ω) and a number n0 ≥ 1 such that

∑n−1
k=0(v ◦ Φk)(z) > n for

each n ≥ n0 and z ∈ Ωp.

Proof. It suffices to prove that (i) implies (ii). Suppose that the set Inv(ϕ1, . . . , ϕp) is
empty and let u ∈ Ap(Ω) be as in the statement of the condition (ii) of Theorem 3.4.
Put v = 2u ∈ Ap(Ω). We shall show that v is the function which we are looking for.
Suppose, to the contrary, there exist an increasing sequence (nk)k of natural numbers
and a sequence (zk)k of elements of Ωp such that

nk−1∑
j=0

(v ◦ Φj)(zk) 6 nk (k ≥ 1). (3.5)

Let vk = 1
nk

∑nk−1
j=0 v ◦ Φj . Since the semigroup generated by F is equicontinuous,

hence so is the semigroup {Φj : j ≥ 0}. This implies that the uniform closure of
V = {v ◦Φj : j ≥ 0} is compact and therefore the closed convex hull of V in C(Ωp) is
compact as well. So, replacing eventually the sequence (vk)k by a suitable subsequence,
we may assume that (vk)k is uniformly convergent to some v0 ∈ C(Ωp). Let z0 ∈ Ωp

be a limit point of the sequence (zk)k. From the uniform convergence of (vk)k to v0

we infer that v0(z0) is a limit point of the sequence (vk(zk))k and thus, by (3.5),
v0(z0) 6 1. But on the other hand, by (3.3):

v0(z0) = lim
k→∞

vk(z0) ≥ lim inf
n→∞

1
n

n−1∑
j=0

(v ◦ Φj)(z0) = 2 lim inf
n→∞

1
n

n−1∑
j=0

(u ◦ Φj)(z0) ≥ 2,

which is a contradiction.

Other conditions for the nonemptiness of Inv(F) in case the family F generates
an equicontinuous semigroup can be found in [14].
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