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SOME CONSTRUCTIONS OF LYAPUNOV FUNCTION
FOR LINEAR EXTENSIONS OF DYNAMICAL SYSTEMS

Viktor Kulik, Ewa Tkocz-Piszczek

Abstract. In this note we consider some sets of linear extensions of dynamical systems and
research regularity by means of the sign-changing Lyapunov function. We examine some
constructions of Lyapunov functions for given systems.
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1. INTRODUCTION

Let us consider a system of differential equations

dx

dt
= f(x),

dy

dt
= A(x)y, (1.1)

where x = (x1, . . . , xm) ∈ Tm, y ∈ Rn, f(x) ∈ CLip(Tm), a square
n-dimensional matrix A(x) ∈ C0(Tm), Tm – m-dimensional torus, C0(Tm)
– a space of continuous real functions F (x) = F (x1, . . . , xm) which are periodic with
period 2π with respect to each variable xj , j = 1,m, it means it is specified on a torus
Tm, CLip(Tm) – a space of functions which satisfy Lipschitz inequality.

In the literature systems (1.1) are called linear extensions of dynamical systems
on a torus [1–7].

When we replace the Cauchy problem solution x(t;x): dx
dt = f(x), x

∣∣
t=0

= x,
into the second equation of (1.1) we obtain a linear system of differential equations
dy
dt = A(x(t;x))y with respect to x ∈ Tm. Let Ωtτ (x) be a normalized fundamental
matrix of the system, Ωtτ (x)

∣∣
t=τ

= In, In is an n-dimensional identical matrix. 〈y, ỹ〉 =∑n
i=1 yiỹi – an inner product in Rn. The norm of n × n-dimensional matrix A we

denote as ‖A‖ = max‖y‖=1 ‖Ay‖, ‖y‖ =
√
〈y, y〉. C ′(Tm; f) – a subspace of C0(Tm)

which consists of functions F (x) such that F (x(t;x)) is a continuously differentiable
function with respect to t ∈ R. Moreover Ḟ (x) =df dF (x(t;x))

dt

∣∣
t=0

, Ḟ (x) ∈ C0(Tm).
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Definition 1.1. Let C(x) be an n × n-dimensional matrix whose elements are real,
continuous functions defined on an m – dimensional torus Tm, such that function
G0(τ, x)

G0(τ, x) =

{
Ω0
τ (x)C(x(τ, x)), τ ≤ 0,

Ω0
τ (x) [C(x(τ, x))− In] , τ > 0,

(1.2)

satisfies the estimate
‖G0(τ, x)‖ ≤ Ke−γ|τ |

with positive constants K and γ, which do not depend on x ∈ Tm and τ ∈ R. Then
the function (1.2) is called the Green function of the invariant torus of system (1.1).

In the case when the Green function (1.2) is unique the system (1.1) is called
regular. Otherwise when the system (1.1) possesses many different Green functions
(1.2), the system (1.1) is called sharply-weak regular.

Existence of Green function of linear extensions of dynamical systems for invariant
torus is considered in [5–7].

The regularity of systems (1.1) can be examined by means of the Lyapunov func-
tion [1, 4]. Let us consider Lyapunov functions as a square form

V (x, y) = 〈S(x)y, y〉 , (1.3)

where the symmetric matrix S(x) ∈ C1(Tm), C1(Tm) ⊂ C0(Tm). Let us notice, that
the Lyapunov function is defined to be sign-changing. It means that the Lyapunov
function (the square form (1.3)) can change sign, and the derivative V̇ with respect
to system (1.1) is positive (or negative) definite

V̇ =
〈[

∂S(x)
∂x

f(x) + S(x)A(x) +AT (x)S(x)
]
y, y

〉
≥ ‖y‖2.

It is clear (see [1]) that system (1.1) is regular when the square form (1.3) exists.
Moreover, the derivative with respect to system (1.1) is positive definite, where the
symmetric matrix S(x) is nondegenerated

detS(x) 6= 0 for all x ∈ Tm.

Let W be a square form
W =

〈
S̄(x)z, z

〉
, z ∈ Rn, (1.4)

with matrix of coefficients S̄(x) = −S−1(x). It is readily verified that the derivative
of (1.4) with respect to the adjoint system to (1.1)

dx

dt
= f(x),

dz

dt
= −AT (x)z, z ∈ Rn, (1.5)

is positive definite

Ẇ =
〈[

∂S̄(x)
∂x

f(x)− S̄(x)AT (x)−A(x)S̄(x)
]
z, z

〉
≥ ε‖z‖2, ε = const > 0.

(1.6)
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When system (1.1) is regular it means that system (1.5) is also regular.
Assume the square form (1.4) exists. The symmetric matrix of coefficients S̄(x) ∈

C1(Tm) and for some x = x0 ∈ Tm the form vanishes det S̄(x0) = 0. Moreover the
derivative of (1.4) with respect to system (1.5) satisfies the inequality (1.6). This
shows that the Green function (1.2) for system (1.1) is not unique and the Green
function for system (1.5) does not exist.

Let system (1.1) be regular which means the Green function (1.2) is unique. It is
clear (see [1]) that C(x) is the projection matrix

C2(x) ≡ C(x) for all x ∈ Tm, (1.7)

which fulfills the following identity

C(x(τ ;x)) ≡ Ωτ0(x)C(x)Ω0
τ (x) for all τ ∈ R, x ∈ Tm. (1.8)

In this case the Lyapunov function for the system (1.1) can be taken in the following
square form

V = 〈(S1(x)− S2(x)) y, y〉 , y ∈ Rn,
where

S1(x) =

0∫
−∞

{
Ωt0(x) [C(x)− In]

}T ·H(x(t;x)) ·
{

Ωt0(x) [C(x)− In]
}
dt,

S2(x) =

+∞∫
0

{
Ωt0(x) [C(x)]

}T ·H(x(t;x)) ·
{

Ωt0(x)C(x)
}
dt,

where H(x) is a symmetric matrix (H(x) ∈ C0(Tm)), which is positive definite

〈H(x)y, y〉 ≥ h‖y‖2, h = const > 0

or negative definite

〈H(x)y, y〉 ≤ −h‖y‖2, h = const > 0.

If the system (1.1) possesses more than one Green function (1.2), then identities
(1.7) and (1.8) are not met and the Lyapunov function exists only for system (1.5).
Some such functions are of the form

W =
〈(
S̄1(x)− S̄2(x)

)
z, z
〉
,

where

S̄1(x) =

0∫
−∞

{
Ω0
τ (x)C(x(τ ;x))

}
·H1(x(τ ;x)) ·

{
Ω0
τC(x(τ ;x))

}T
dτ,

S̄2(x) =

∞∫
0

{
Ω0
τ (x) [C(x(τ ;x))− In]

}
·H2(x(τ ;x)) ·

{
Ω0
τ [C(x(τ ;x))− In]

}T
dτ,
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where both symmetric matrices Hi(x) ∈ C0(Tm), i = 1, 2 are positive definite

〈Hi(x)z, z〉 ≥ h‖z‖2, h = const > 0

or negative definite

〈Hi(x)z, z〉 ≤ −h‖z‖2, h = const > 0

at the same time. For the case in (1.1) y ∈ R and the system is regular, the Lyapunov
function (1.3)

V = s(x)y2,

where the scalar function s(x) ∈ C ′(Tm; f) can be in one of the following

s(x) =

0∫
−∞

(
Ωt0(x)

)2
H(x(t;x))dt (1.9)

or

s(x) =

+∞∫
0

(
Ωt0(x)

)2
H(x(t;x))dt (1.10)

and H(x) is any continuous scalar function (H(x) ∈ C0(Tm)), which fulfills inequality
H(x) > 0.

Remark 1.2. Let the scalar function s(x) ∈ C ′(Tm; f) be in the form (1.9). Then
the inequality

ṡ(x) + 2s(x)A(x) > 0 (1.11)

holds. Moreover, every solution of the inequality (1.11) is of the form (1.9). (When
s(x) is differentiable, then ṡ(x) = ds(x)

dx f(x).)

2. MAIN RESULTS

In [2] there is an equation, which describes the parametric resonance during a crystal
modular semiconductor lighting problem. With the use of an asymptotic method the
linear extension of the dynamical system converts to linear differential equation. It
then follows that it is very interesting to do research in to linear extensions of dynam-
ical systems on a torus, which by means of a change of variables can be converted to
system of linear differential equations.

Let
dy1
dt

= a11y1 + a12y2,
dy2
dt

= a21y1 + a22y2, (2.1)

be a system with constant matrix of coefficients. Changing into polar coordinates
y1 = y cosx, y2 = y sinx

dx

dt
= ω + k1 cos 2x− k2 sin 2x,

dy

dt
= [b+ k2 cos 2x+ k1 sin 2x] y,
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where a11 = b+ k2 , a12 = k1 − ω, a21 = k1 + ω, a22 = b− k2. Let k2
1 + k2

2 > 0 and

k =
√
k2
1 + k2

2, cos ∆ =
k1

k
, x− ∆

2
→ x, kt→ t,

ω

k
→ ω,

b

k
→ b,

then the system (2.1) results

dx

dt
= ω − sin 2x,

dy

dt
= [b+ cos 2x]y, (2.2)

where ω, b ∈ R.
System (2.2) is similar to system (1.1). System (2.2) regularity is researched in [3].

However, the Lyapunov function is not constructed in all cases. Therefore, we propose
the Lyapunov function construction.

Let
ω2 + b2 < 1.

Then the system (2.2) does not possess any Green function and the adjoint system:

dx

dt
= ω − sin 2x,

dz

dt
= −[b+ cos 2x]z, (2.3)

possesses more than one Green function. It follows that the derivative to the scalar
Lyapunov function

V = (cos 2x)y2

with respect to system (2.2) is positive definite

V̇ = {−2 sin 2x [ω − sin 2x] + 2 cos 2x [b+ cos 2x]} y2 =

=
{

2− 2
√
b2 + ω2 sin(2x+ ∆)

}
y2 ≥ 2

(
1−

√
b2 + ω2

)
y2.

Moreover, cos 2x = 0 for x = π
4 + πn

2 , n ∈ Z.
When parameters (2.2) satisfy the equality

ω2 + b2 = 1,

we always find such an x0 such that

0 = ω − sin 2x0,

0 = b+ cos 2x0.

It then follows that neither of system (2.2) or (2.3) possesses a Green function.
Assume in (2.2) the inequality

ω2 + b2 > 1, b 6= 0 (2.4)

is met. Research in to system (2.2) (see [3]) shows that, when inequality (2.4) is met,
system (2.2) is regular, so the Green function for the system is unique. Our task is to
determine the Lyapunov function for the system in four cases.
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I. Let b2 > 1. The Lyapunov function for the system is V = y2.
II. In the second case let |ω| > 1, b 6= 0. The Lyapunov function construction for

(2.2) is identical to the Lyapunov function construction to the following system:

dx

dt
= 1,

dy

dt
=
b+ cos 2x
ω − sin 2x

y.

For a homogeneous linear equation with parameter x

dy

dt
=
b+ cos 2(t+ x)
ω − sin 2(t+ x)

y

let us find a function Ωtτ (x)

Ωtτ (x) = exp


t∫
τ

b

ω − sin 2(σ + x)
dσ

 · F (t, τ, x),

where

F (t, τ, x) = exp


t∫
τ

cos 2(σ + x)
ω − sin 2(σ + x)

dσ

 =
(
ω − sin 2(τ + x)
ω − sin(t+ x)

) 1
2

.

The form of (1.9) and (1.10) implies that

s(x) =

0∫
−∞

exp

2

t∫
0

b

ω − sin 2(σ + x)
dσ


(

ω − sin 2x
ω − sin 2(t+ x)

)
H(x(t;x))dt,

b

ω
> 0,

s(x) =

∞∫
0

exp

2

t∫
0

b

ω − sin 2(σ + x)
dσ


(

ω − sin 2x
ω − sin 2(t+ x)

)
H(x(t;x))dt,

b

ω
< 0.

Since the integral
t∫

0

b

ω − sin 2(σ + x)
dσ

has form
t∫

0

b

ω − sin 2(σ + x)
dσ = αt+ Φ(t, x),

where

α =

π∫
0

b

ω − sin 2(σ + x)
dσ =

π+x∫
x

b

ω − sin 2z
dz = const
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and the function

Φ(t, x) =

t∫
0

[
b

ω − sin 2(σ + x)
− α

]
dσ

is bounded, then the scalar function s(x) which fulfills one of the inequalities

ds(x)
dx

(ω − sin 2x) + 2s(x)(b+ cos 2x) > 0 (2.5)

or
ds(x)
dx

(ω − sin 2x) + 2s(x)(b+ cos 2x) < 0, (2.6)

can be in the form
s(x) = ω − sin 2x.

Let us check

ds(x)
dx

(ω − sin 2x) + 2s(x)(b+ cos 2x) = −2 cos 2x(ω − sin 2x)+

+2(ω − sin 2x)(b+ cos 2x) = 2b(ω − sin 2x).

III. Let ω2 = 1, b 6= 0. From [3] we know that the Green function exists in cases
III and IV, but the Lyapunov function is not determined. In the case

Ωt0(x) = ebt ·

{√
2t2(cosx− sinx)2 + 2t cos 2x+ 1, ω = 1,√
2t2(cosx+ sinx)2 + 2t cos 2x+ 1, ω = −1.

When the conditions
ω = 1, 0 < b < 1 (2.7)

are met, then (
Ωt0(x)

)2 = 2te2bt cos 2x− 2t2e2bt sin 2x+ (2t2 + 1)e2bt.

On the basis of equality (1.9) the form of s(x) is given by

s(x) =

0∫
−∞

[
2te2bt cos 2x− 2t2e2bt sin 2x+ (2t2 + 1)e2bt

]
H(x(t;x))dt.

It then follows that, when conditions (2.7) are met, the function s(x) which fulfills
the inequality (2.5) can be in the form

s(x) = L cos 2x+M sin 2x+N, (2.8)

where L,M,N are constant. As function (2.8) has only positive values, the inequality√
L2 +M2 < N (2.9)
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holds. To determine constants L,M,N let us put function (2.8) to the left side of the
inequality (2.5)

ds(x)
dx

(ω − sin 2x) + 2s(x)(b+ cos 2x) = 2(Lb+M +N) cos 2x+

+2(Mb− L) sin 2x+ 2L+ 2Nb.

The inequality (2.5) holds, when{
L+Mb > 0,
(Lb+M +N)2 + (Mb− L)2 < (L+Nb)2.

(2.10)

The second inequality of (2.10) implies that

L2b2 +M2(1 + b2) +N2(1− b2) + 2MN < 0. (2.11)

When (2.7) holds, a necessary condition for (2.6) is M < 0. Let L = 0 and the
inequality (2.11) has the form

M2(1 + b2) +N2(1− b2) < 2(−M)N.

It then follows that
−M
N

(1 + b2) +
N

−M
(1− b2) < 2. (2.12)

Let us prove that there exist M < 0, N > 0 for which the inequality (2.12) holds. Let
us put

x =
−M
N

and study the function

f(x) = x(1 + b2) +
1− b2

x
, x > 0. (2.13)

The minimal value of the function (2.13) in

x =

√
1− b2
1 + b2

= xµ < 1

has the value
fmin = f(xµ) = 2

√
1− b4 + 2.

Therefore, for every fixed 0 < b < 1 there exist M < 0 and N > 0 such that for L = 0
inequalities (2.9) and (2.10) hold. Let M = −1. Then the function

s(x) =

√
1 + b2

1− b2
− sin 2x

fulfills (2.5).
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IV. Let ω2 < 1, b2 < 1, ω2 + b2 > 1. It this case

Ωt0 = exp
{(
b− γ

2

)
t
}√u2e2γt − 2Buveγt + Cν2

u2 − 2Buv + Cv2
, (2.14)

where

B =
ω2

1−
√

1− ω2
, C =

1 +
√

1− ω2

1−
√

1− ω2
, (2.15)

u = ω · sinx− (1 +
√

1− ω2) cosx,

ν = ω · sinx+ (−1 +
√

1− ω2) cosx, γ = 2
√

1− ω2.

(2.16)

This implies that the change of variables (2.15) and (2.16) in (2.14) gives

u2 − 2Buv + Cv2 ≡ const.

Indeed,

u2 = ω2 sin2 x+
(

1 +
√

1− ω2
)2

cos2 x− 2ω
(

1 +
√

1− ω2
)

sinx cosx,

Cv2 = 1+
√

1−ω2

1−
√

1−ω2 ·

·
[
ω2 sin2 x+ (−1 +

√
1− ω2)2 cos2 x+ 2ω

(
−1 +

√
1− ω2

)
sinx cosx

]
,

−2Buv = −2 ω2

1−
√

1−ω2

[
ω2 − 2ω sinx cosx

]
and

u2 − 2Buv + Cv2 ≡ 2
(

1 +
√

1− ω2
) (

1− ω2
)
.

From (2.14), when (2.15) and (2.16) holds, the scalar function s(x) which satisfies the
inequality

ds(x)
dx

(ω − sin 2x) + 2s(x)(b+ cos 2x) > 0 (2.17)

for ω, b
0 < ω < 1, b2 < 1, ω2 + b2 > 1

can be taken in the form (2.8). Let us put (2.8) into the left side of inequality (2.17)

ds(x)
dx

(ω − sin 2x) + 2s(x)(b+ cos 2x) = 2(Lb+Mω +N) cos 2x+

+2(Mb− Lω) sin 2x+ 2L+ 2Nb.

The right side of inequality (2.17) is positive, when the inequalities{
L+Nb > 0,
(Lb+Mω +N)2 + (Mb− Lω)2 < (L+Nb)2,

(2.18)
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hold. It then follows that

L2(b2 + ω2 − 1) +M2(ω2 + b2) +N2(1− b2) + 2MNω < 0. (2.19)

Let L = 0, M < 0, N > 0. Then inequality (2.19) implies

−M
N

(ω2 + b2) +
N

−M
(1− b2) < 2ω. (2.20)

There exist M < 0, N > 0 such that inequality (2.20) holds for every fixed b ∈ (0, 1).
Let

x =
−M
N

and the function

f(x) = x(ω2 + b2) +
1− b2

x
, x > 0

in

x =

√
1− b2
ω2 + b2

= xν

has a minimal value

fmin = f(xν) = 2
√

(1− b2)(ω2 + b2).

It is easy to see that fmin < 2ω. Hence, for every fixed b ∈ [−1, 0) ∪ (0, 1] there exist
M < 0, N > 0 such that L = 0 and inequalities (2.9) and (2.18) hold. Let M = −1
and the function s(x) be given by

s(x) =

√
ω2 + b2

1− b2
− sin 2x.

The result can be summarized as follows.

Proposition 2.1. The Lyapunov function for system (2.2) has the following form:
I. If |b| > 1

V = y2.

II. If |ω| > 1, b 6= 0

V = (ω − sin 2x)y2.

III. If ω2 ≤ 1, b2 < 1, ω2 + b2 > 1

V = (λ− sin 2x) y2,

λ =
√

ω2+b2

1−b2 , ω ∈ (0, 1〉,

λ = −
√

ω2+b2

1−b2 , ω ∈ 〈−1, 0).

IV. If b2 = 1, 0 < |ω| ≤ 1

V = (λ− sin 2x)y2,

{
λ > ω2+1

2ω , 0 < ω ≤ 1,
λ < ω2+1

2ω , −1 < ω < 0.
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