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FOR A HAMMERSTEIN

NONLINEAR INTEGRAL EQUATION
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Abstract. The existence of a solution, as well as some properties of the obtained solution
for a Hammerstein type nonlinear integral equation have been investigated. For a certain
class of functions the uniqueness theorem has also been proved.
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1. INTRODUCTION

Let us consider the following class of Hammerstein type nonlinear integral equations

ϕ(x) =

+∞∫
0

K(x− t)ϕα(t)dt, x ∈ (0,+∞), α ∈ (0, 1), (1.1)

with respect to an unknown function ϕ(x) ≥ 0. The kernel K(x) ≥ 0 is an integrable
function on (−∞,+∞) such that

+∞∫
−∞

K(t)dt = 1, ν = ν+ − ν− < 0, (1.2)

where ν+ =
∫∞
0
tK(t)dt < +∞ and ν− =

∫ 0

−∞ tK(−t)dt < +∞.
In the present paper we prove the existence of a positive, monotonic increasing

and bounded solution ϕ(x) ≤ 1. Moreover, we show that limx→+∞ ϕ(x) = 1. We also
prove that, by putting an additional condition on the kernel, the obtained solution is
continuous on [0,+∞) and unique in a certain class of functions.
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2. PRELIMINARIES

Let E be one of the following Banach spaces: Lp(0,+∞) for p ≥ 1, M [0,+∞),
CM [0,+∞), C0[0,+∞), where M [0,+∞) is the space of bounded functions on
[0,+∞], CM [0,+∞) is the space of continuous and bounded functions on [0,+∞),
and finally C0[0,+∞) is the the space of continuous functions, possessing zero limit
at infinity.

We denote by K the Wiener-Hopf type integral operator with the kernel K(x)

(Kf)(x) =

+∞∫
0

K(x− t)f(t)dt, x > 0, f ∈ E, K : E → E. (2.1)

It is known (see [1, §1, Theorem 1.1]) that given condition (1.2) the operator I − K
permits the following volteryan factorization

I −K = (I − V−)(I − V+) (2.2)

as an equality of operators acting in space E. Here

(V−f)(x) =

+∞∫
x

v−(t− x)f(t)dt, (V+f)(x) =

x∫
0

v+(x− t)f(t)dt, (2.3)

where 0 ≤ v± ∈ L1(0,+∞), and

γ− =

+∞∫
0

v−(x)dx = 1, γ+ =

+∞∫
0

v+(x)dx < 1. (2.4)

The existence of the solution of the corresponding linear equation

S(x) =

+∞∫
0

K(x− t)S(t)dt, x > 0 (2.5)

was proved in [3]. Using factorization (2.2), it was proved that the problem (2.5),
such that (1.2) holds, has a positive solution, possessing the following properties (see
[1, §3, p. 188]):

(a) 1 ≤ S(x) ≤ (1− γ+)−1, x > 0,
(b) S(x) ↑ by x on [0,+∞), i.e. S(x) is increasing on [0,+∞),
(c) lim

x→+∞
S(x) = (1− γ+)−1.
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3. BASIC RESULT

We introduce the following iteration for equation (1.1):

ϕn+1(x) =

+∞∫
0

K(x− t)ϕαn(t)dt, x > 0, α ∈ (0, 1), n = 0, 1, 2, . . . ,

ϕ0(x) ≡ 1, x > 0.

(3.1)

By induction, it is easy to check that the following statements are true:

j1) ϕn(x) ↓ by n,
j2) ϕn(x) ≥ (1− γ+)S(x), n = 0, 1, 2, . . .
j3) ϕn(x) ↑ by x on [0,+∞), n = 0, 1, 2, . . .

For example, we prove j2) and j3). When n = 0, inequality j2) immediately fol-
lows from the double inequality 1 ≤ S(x) ≤ (1 − γ+)−1. Assuming that ϕn(x) ≥
≥ (1− γ+)S(x) we have

ϕn+1(x) ≥ (1−γ+)α
+∞∫
0

K(x−t)Sα(t)dt ≥ (1−γ+)

+∞∫
0

K(x−t)S(t)dt = (1−γ+)S(x),

because α ∈ (0, 1) and 0 < (1− γ+)S(x) ≤ 1.
Now we prove statement j3). Let x1, x2 ∈ [0,+∞) be arbitrary numbers such that

x1 > x2. We may rewrite iteration (3.1) in the following form:

ϕn+1(x) =

x∫
−∞

K(τ)ϕαn(x− τ)dτ, n = 0, 1, 2, . . . , ϕ0(x) ≡ 1,

It is obvious that ϕ0(x) is increasing by x. Assuming that ϕn(x) is an increasing
function by x we have

ϕn+1(x1)− ϕn+1(x2) =

x1∫
−∞

K(t)ϕαn(x1 − t)dt−
x2∫
−∞

K(t)ϕαn(x2 − t)dt ≥

≥
x1∫
−∞

K(t)ϕαn(x2 − t)dt−
x2∫
−∞

K(t)ϕαn(x2 − t)dt =

=

x1∫
x2

K(t)ϕαn(x2 − t)dt ≥ 0.

We proved that j3) holds.
It follows from j1) and j2) that the sequence of functions {ϕn(x)}∞n=0 has the

pointwise limit
lim
n→∞

ϕn(x) = ϕ(x) ≤ 1. (3.2)
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From B. Levi’s theorem (see [2]) we deduce that the limit function satisfies equa-
tion (1.1). It follows from j3) that

ϕ(x) ↑ by x on (0,+∞). (3.3)

Taking into account j2) and (3.2) we obtain the following double inequalities:

1− γ+ ≤ (1− γ+)S(x) ≤ ϕ(x) ≤ 1, (3.4)

lim
x→∞

ϕ(x) = 1. (3.5)

Now we prove that if

0 < γ+ < 1− 1
e
, (3.6)

then ϕ ∈ C[0,+∞) and a solution of equation (1.1) in the following class of functions

M = {f ∈M [0,+∞) : f(x) ≥ 1− γ+ for all x ∈ [0,+∞)} (3.7)

is unique.
First we show the continuity of the obtained solution assuming that condition

(3.6) is fulfilled. By induction, we show that the following inequality holds

|ϕn+1(x)− ϕn(x)| ≤ (αe1−α)n, n = 0, 1, 2, . . . . (3.8)

In the case of n = 0 the inequality is obvious, because

|ϕ1(x)− ϕ0(x)| = 1−
x∫

−∞

K(τ)dτ ≤ 1.

Assume that (3.8) is true for any n = p ∈ N. Taking into account the inequality

|xα1 − xα2 | ≤ α
(

1
1− γ+

)1−α

|x1 − x2| for all x1, x2 ∈ [1− γ+,+∞) (3.9)

we obtain from (3.1) that

|ϕp+2(x)− ϕp+1(x)| ≤
+∞∫
0

K(x− t)|ϕαp+1(t)− ϕαp (t)|dt ≤

≤ α
(

1
1− γ+

)1−α +∞∫
0

K(x− t)|ϕp+1(t)− ϕp(t)|dt ≤

≤ α
(

1
1− γ+

)1−α

αpep−αp
x∫

−∞

K(τ)dτ ≤ α(p+1)e(1−α)(p+1).



Existence and uniqueness theorem for a Hammerstein nonlinear integral equation 397

As eα−1 > α, α ∈ (0, 1), then q = αe1−α ∈ (0, 1). Therefore, in accordance with
the Weierstrass theorem, from (3.8) it follows that the convergence of sequences of
functions {ϕn(x)}∞n=0 is uniform. By induction, the reader may easily convince himself
that ϕn(x) ∈ C[0,+∞). Thus, from the Dini inverse theorem it follows that the limit
function ϕ is continuous.

Now we prove uniqueness of a solution of equation (1.1) in the class M. We assume
that equation (1.1) has two different solutions ϕ and ϕ∗, which belong to M. Then
from (1.1), (3.6) and (3.9) we have

|ϕ(x)− ϕ∗(x)| ≤ αe1−α
+∞∫
0

K(x− t)|ϕ(t)− ϕ∗(t)|dt. (3.10)

We set
δ = sup

x∈R+
|ϕ(x)− ϕ∗(x)|

Then from (3.10) we infer that δ ≤ qδ or δ = 0. Therefore, ϕ(x) = ϕ∗(x). In this way
we prove that the following theorem holds.

Theorem 3.1. Assume that condition (1.2) is fulfilled. Then equation (1.1) has a
positive, monotonic increasing and bounded solution ϕ(x) such that limx→+∞ ϕ(x) =
1. Moreover, if condition (3.6) holds then the obtained solution is continuous and
unique in the class M.

Example 3.2. Assume that K(x) has the following form:

K(x) =

{
βe−x; x > 0
(1− β)ex; x < 0

β ∈
(

0,
1
2

)
. (3.11)

Opening brackets in (2.2), from operator equality we come to Yengibaryan’s nonlinear
factorization equation (see [1]).

v±(x) = K(±x) +

+∞∫
0

v∓(t)v±(x+ t)dt, x > 0. (3.12)

From (3.11) and (3.12) it follows that v+ = 2βe−x (x > 0), v− = ex (x < 0),
i.e. γ+ = 2β, γ− = 1. If β ∈

(
0, 1

2

(
1− 1

e

))
, then both conditions (1.2) and (3.6)

are fulfilled. Equation (1.1) with kernel (3.11) is reduced to the following ordinary
differential equation

ϕ′′(x) + (1− 2β)αϕα−1(x)ϕ′(x)− ϕ(x) = 0. (3.13)

From the proof it follows that equation (3.13) possesses positive, bounded and mono-
tonic increasing solution, which tends to 1 when x→ +∞.

Remark 3.3. It should be noted that if we assume a weaker condition 0 < γ+ <(
1− 1

α

) 1
1−α instead of (3.6) then the assertion of the theorem remains true.
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