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Abstract. In this paper, we discuss a four-point boundary value problem for a nonlinear
differential equation of fractional order. The differential operator is the Riemann-Liouville
derivative and the inhomogeneous term depends on the fractional derivative of lower order.
We obtain the existence of at least one solution for the problem by using the Schauder
fixed-point theorem. Our analysis relies on the reduction of the problem considered to the
equivalent Fredholm integral equation.
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1. INTRODUCTION

Fractional differential equations have been of great interest recently. It is due to
the development of the theory of fractional calculus itself and by the application of
such constructions in various fields of science and engineering such as control theory,
physics, mechanics, electrochemistry, porous media, etc. There are many papers dis-
cussing the solvability of nonlinear fractional differential equations and the existence
of positive solutions of nonlinear fractional differential equations, see the monographs
of Kilbas et al. [1], Miller and Ross [2], and the papers [3, 4, 8–12] and the references
therein.

In [8], Bai and Lü considered the boundary value problem of a fractional order
differential equation {

Dα
0+ + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.1)
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where Dα
0+ is the standard Rieman-Liouville fractional derivative of order 1 < α ≤ 2

and f : [0, 1]× [0,∞)→ [0,∞) is continuous.
In [5] the authors investigated the existence of solutions for a coupled system of

nonlinear fractional differential equations with three-point boundary conditions
Dαu(t) = f(t, v(t), Dpv(t)), t ∈ (0, 1),
Dβv(t) = g(t, u(t), Dqu(t)), t ∈ (0, 1),
u(0) = 0, u(1) = γu(η), v(0) = 0, v(1) = γv(η),

(1.2)

where 1 < α, β < 2, p, q, γ > 0, 0 < η < 1, α−q ≥ 1, β−q ≥ 1, γηα−1 < 1, γηβ−1 < 1,
f, g : [0, 1]× R× R→ R are given continuous functions.

Multi-point boundary value problems for ordinary differential equations arise in
a variety of areas of applied mathematics, physics and engineering. For instance, the
vibrations of a guy wire of uniform cross-section and composed of N parts of different
densities can be set up as a multi-point BVP, as in [6]; also, many problems in the
theory of elastic stability can be handled by multi-point problems in [13].

Due to the above reason, we will consider a multi-point boundary problem for
nonlinear fractional differential equations. No contributions exist, as far as we know,
concerning the four-point boundary value problem of the following system:{

Dαu(t) = f(t, u(t), Dµu(t)), t ∈ (0, 1),
u(0) = u′(0) = 0, u(1) = au(η1) + bu(η2),

(1.3)

where 2 < α < 3, µ > 0, α − µ ≥ 1, 0 < a < 1, 0 < b < 1, 0 < η1 ≤ η2 < 1,
aηα−1

1 + bηα−1
2 < 1, f : [0, 1]×R×R→ R is a given continuous function and D is the

standard Riemann-Liouville differentiation.
In this paper, we firstly give the corresponding Green’s function of system (1.3).

Then, problem (1.3) is deduced to an equivalent Fredholm integral equation of the
second kind. Finally, by means of the Schauder fixed-point theorem, we obtain the
existence of solutions of the boundary value problem (1.3).

2. PRELIMINARIES

For convenience of the reader, in this section, we give some definitions and fundamen-
tal results of fractional calculus theory. Let α > 0 and n = [α] + 1 = N + 1, where N
is the smallest integer less than or equal to α.

Definition 2.1 ([7]). The Riemann-Liouville fractional integral of order α > 0 of a
function f : (0,+∞)→ R is given by

Iαf(t) =
1

Γ(α)

t∫
0

f(s)
(t− s)1−α ds,

where Γ denotes the gamma function, provided that the right side integral exists.
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Definition 2.2 ([7]). Let α > 0 and n = [α] + 1, where [α] is the smallest integer
greater than or equal to α. Then the Riemann-Liouville fractional derivative of order
α of a continuous function f : (0,+∞)→ R is given by

Dαf(t) =
1

Γ(n− α)

( d
dt

)n t∫
0

f(s)
(t− s)α−n+1

ds,

where Γ denotes the gamma function, provided that the right side is pointwise defined
on (0,∞).

Lemma 2.3 ([1]). Let α, β > 0, f : (0,+∞) → R is a continuous function, and
assume that the Riemann-Liouville fractional integral and fractional derivative of f
exist, then we have

IαIβf(t) = Iα+βf(t), DαIαf(t) = f(t).

Lemma 2.4 ([7]). Let α > 0 and assume that u ∈ C(0, 1)∩L1(0, 1), then the general
solution of the fractional differential equation

Dαu(t) = 0

is given by u(t) = C1t
α−1 + C2t

α−2 + · · ·+ CN t
α−N , where Ci ∈ R, i = 1, 2, · · · , N ,

N is the smallest integer greater than or equal to α.

Lemma 2.5 ([7]). Assume that u ∈ C(0, 1) ∩ L1(0, 1) with fractional derivative of
order α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then

IαDαu(t) = u(t) + C1t
α−1 + C2t

α−2 + · · ·+ CN t
α−N

for some Ci ∈ R, i = 1, 2, · · · , N .

In the following, we give the Green’s function of the fractional deferential equation
with a four-point boundary value problem. For convenience, we introduce the following
notation:

ζ : = 1− aηα−1
1 − bηα−1

2 ,

G1(t, s) =
(t− s)α−1

Γ(α)
,

G2(t, s) =
tα−1[a(η1 − s)α−1 + b(η2 − s)α−1 − (1− s)α−1]

ζΓ(α)
,

G3(t, s) =
tα−1[b(η2 − s)α−1 − (1− s)α−1]

ζΓ(α)
,

G4(t, s) =
tα−1(1− s)α−1

ζΓ(α)
.
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Lemma 2.6 ([7]). Given y ∈ C(0, 1) and 2 < α < 3. Then the unique solution of{
Dαu(t) = y(t), t ∈ (0, 1),
u(0) = u′(0) = 0, u(1) = au(η1) + bu(η2),

(2.1)

is given by

u(t) =

1∫
0

G(t, s)y(s) ds,

where

G(t, s) =


G1(t, s) +G2(t, s), 0 ≤ s ≤ t ≤ η1 ≤ η2 ≤ 1,
G2(t, s), 0 ≤ t ≤ s ≤ η1 ≤ η2 ≤ 1,
G3(t, s), 0 ≤ t ≤ η1 ≤ s ≤ η2 ≤ 1,
−G4(t, s), 0 ≤ t ≤ η1 ≤ η2 ≤ s ≤ 1,

(2.2)

or

G(t, s) =


G1(t, s) +G2(t, s), 0 ≤ s ≤ η1 ≤ t ≤ η2 ≤ 1,
G1(t, s) +G3(t, s), 0 ≤ η1 ≤ s ≤ t ≤ η2 ≤ 1,
G3(t, s), 0 ≤ η1 ≤ t ≤ s ≤ η2 ≤ 1,
−G4(t, s), 0 ≤ η1 ≤ t ≤ η2 ≤ s ≤ 1,

(2.3)

or

G(t, s) =


G1(t, s) +G2(t, s), 0 ≤ s ≤ η1 ≤ η2 ≤ t ≤ 1,
G1(t, s) +G3(t, s), 0 ≤ η1 ≤ s ≤ η2 ≤ t ≤ 1,
G1(t, s) +G4(t, s), 0 ≤ η1 ≤ η2 ≤ s ≤ t ≤ 1,
−G4(t, s), 0 ≤ η1 ≤ η2 ≤ t ≤ s ≤ 1.

(2.4)

Proof. We can apply Lemma 2.5 to reduce the first equation of (2.1) to an equivalent
integral equation

u(t) = Iαy(t) + C1t
α−1 + C2t

α−2 + C3t
α−3

for some C1, C2, C3 ∈ R. Hence, the general solution of Eq. (2.1) is

u(t) =
1

Γ(α)

t∫
0

y(s)
(t− s)1−α ds+ C1t

α−1 + C2t
α−2 + C3t

α−3.

It follows from u(0) = u′(0) = 0 that C2 = C3 = 0, and it follows from u(1) =
au(η1) + bu(η2) that

C1 =

η1∫
0

a(η1 − s)α−1y(s)
ζΓ(α)

ds+

η2∫
0

b(η2 − s)α−1y(s)
ζΓ(α)

ds−

−
1∫

0

(1− s)α−1y(s)
ζΓ(α)

ds.
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Therefore, the unique solution of (2.1) is given by

u(t) = Iαy(t) +

η1∫
0

atα−1(η1 − s)α−1y(s)
ζΓ(α)

ds+

+

η2∫
0

btα−1(η2 − s)α−1y(s)
ζΓ(α)

ds−
1∫

0

tα−1(1− s)α−1y(s)
ζΓ(α)

ds =

=

t∫
0

[
G1(t, s) +G2(t, s)

]
y(s) ds+

η1∫
t

G2(t, s)y(s) ds+

+

η2∫
η1

G3(t, s)y(s) ds−
1∫

η2

G4(t, s)y(s) ds

for 0 ≤ t ≤ η1 ≤ η2 ≤ 1 holds, where G(t, s) is described by (2.2). Or

u(t) =

t∫
0

(t− s)α−1y(s)
Γ(α)

ds+

η1∫
0

atα−1(η1 − s)α−1y(s)
ζΓ(α)

ds+

+

η2∫
0

btα−1(η2 − s)α−1y(s)
ζΓ(α)

ds−
1∫

0

tα−1(1− s)α−1y(s)
ζΓ(α)

ds =

=

η1∫
0

[
G1(t, s) +G2(t, s)

]
y(s) ds+

t∫
η1

[
G1(t, s) +G3(t, s)

]
y(s) ds+

+

η2∫
t

G3(t, s)y(s) ds−
1∫

η2

G4(t, s)y(s) ds =

=

1∫
0

G(t, s)y(s) ds
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for 0 ≤ η1 ≤ t ≤ η2 ≤ 1 holds, where G(t, s) is described by (2.3). Or

u(t) =

t∫
0

(t− s)α−1y(s)
Γ(α)

ds+

η1∫
0

atα−1(η1 − s)α−1y(s)
ζΓ(α)

ds+

+

η2∫
0

btα−1(η2 − s)α−1y(s)
ζΓ(α)

ds−
1∫

0

tα−1(1− s)α−1y(s)
ζΓ(α)

ds =

=

η1∫
0

[
G1(t, s) +G2(t, s)

]
y(s) ds+

η2∫
η1

[
G1(t, s) +G3(t, s)

]
y(s) ds+

+

t∫
η2

[
G1(t, s) +G4(t, s)

]
y(s) ds−

1∫
t

G4(t, s)y(s) ds =

=

1∫
0

G(t, s)y(s) ds

for 0 ≤ η1 ≤ η2 ≤ t ≤ 1 holds, where G(t, s) is described by (2.4). Thus, we complete
the proof.

Next, we define the space X = {u(t) ∈ C[0, 1] : Dµu(t) ∈ C[0, 1]} endowed with
the norm ‖u‖X = maxt∈[0,1] |u(t)|+ maxt∈[0,1] |Dµu(t)|.

Lemma 2.7 ([9]). (X, ‖ · ‖X) is a Banach space.

In what follows, the Green’s function’s form of system (2.1) is described by (2.2),
(2.3) and (2.4) can be considered similarly.

Considering the following integral equation

u(t) =

1∫
0

G(t, s)f(s, u(s), Dµu(s)) ds. (2.5)

Lemma 2.8. Suppose that f : [0, 1] × R × R → R is continuous, then u ∈ X is a
solution of (1.3) if and only if u ∈ X is a solution of system (2.5).

Proof. Let u ∈ X be a solution of (1.3). Applying the method used in Lemma 2.6, we
can obtain that u is a solution of system (2.5). And the proof of the inverse condition
is immediate from Lemma 2.6, so we omit it.
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Let us define an operator T : X → X as

Tu(t) =

1∫
0

G(t, s)f(s, u(s), Dµu(s)) ds. (2.6)

Then by Lemma 2.6, we know that the fixed point of operator T coincides with the
solution of system (1.3).

Let us set the following notation for convenience:

p =: max
t∈[0,1]

1∫
0

|G(t, s)m(s)| ds+
4

ζΓ(α− µ)

1∫
0

(1− s)α−µ−1m(s) ds,

q =:
aηα1 + bηα2 + 2
ζΓ(α+ 1)

+
4

ζΓ(α− µ)
.

3. MAIN RESULT

Our main result of this paper is as follows:

Theorem 3.1. Let f : [0, 1]×R×R→ R be a continuous function and assume that
there exists nonnegative functions a1(t), a2(t) ∈ C[0, 1], m(t) ∈ L[0, 1] such that

|f(t, z1, z2)| ≤ m(t) + a1(t)|z1|λ1 + a2(t)|z2|λ2 ,

where 0 < λi < 1, for i = 1, 2, then the system of (1.3) has a solution.

Proof. In order to use the Schauder fixed-point theorem to prove our main result, we
define

U = {u(t) ∈ X : ‖u‖X ≤ R, t ∈ [0, 1]},

where R ≥ max{3p, (3k1q)
1

1−λ1 , (3k2q)
1

1−λ2 }, k1 = maxt∈[0,1] a1(t) and k2 =
maxt∈[0,1] a2(t). Obviously, U ⊂ X is a bounded and closed convex set.
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As a first step, we prove that T : U → U . Using Lemma 2.3 together with the
result Dµtα−1 = Γ(α)tα−µ−1

Γ(α−µ) , we obtain

|Tu(t)| =
∣∣∣∣

1∫
0

G(t, s)f(s, u(s), Dµu(s)) ds
∣∣∣∣ ≤

≤
1∫

0

|G(t, s)m(s)| ds+

+ (k1R
λ1 + k2R

λ2)

1∫
0

|G(t, s)| ds ≤

≤
1∫

0

|G(t, s)m(s)| ds+

+ (k1R
λ1 + k2R

λ2)
{ t∫

0

[G1(t, s) +G2(t, s)] ds+

+

η1∫
t

G2(t, s) ds+

η2∫
η1

G3(t, s) ds+

1∫
η2

G4(t, s) ds
}

=

=

1∫
0

|G(t, s)m(s)| ds+ (k1R
λ1 + k2R

λ2)
[

tα

αΓ(α)
+
tα−1(aη

α
1
α + b

ηα
2
α + 1

α )
ζΓ(α)

]
=

=

1∫
0

|G(t, s)m(s)| ds+ (k1R
λ1 + k2R

λ2)
[

tα

Γ(α+ 1)
+
tα−1(aηα1 + bηα2 + 1)

ζΓ(α+ 1)

]
≤

≤
1∫

0

|G(t, s)m(s)| ds+ (k1R
λ1 + k2R

λ2)
tα + tα−1(aηα1 + bηα2 + 1)

ζΓ(α+ 1)
≤

≤
1∫

0

|G(t, s)m(s)| ds+ (k1R
λ1 + k2R

λ2)
aηα1 + bηα2 + 2
ζΓ(α+ 1)
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and

|Dµ(Tu(t))| =
˛̨̨̨
Dµ

»
Iαf(t, u(t), Dµu(t)) +

η1Z
0

atα−1(η1 − s)α−1y(s)

ζΓ(α)
ds+

+

η2Z
0

btα−1(η2 − s)α−1y(s)

ζΓ(α)
ds−

1Z
0

tα−1(1− s)α−1y(s)

ζΓ(α)
ds

–˛̨̨̨
=

= |Dµ[Iαf(t, u(t), Dµu(t)) + ζ−1atα−1Iαf(η1) + ζ−1btα−1Iαf(η2)− ζ−1tα−1Iαf(1)]| =

= |DµIµIα−µf(t, u(t), Dµu(t)) + Iαf(η1)Dµζ−1atα−1

+ Iαf(η2)Dµζ−1btα−1 − Iαf(1)Dµζ−1tα−1| =

= |Iα−µf(t, u(t), Dµu(t)) +
aΓ(α)tα−µ−1

ζΓ(α− µ)
Iαf(η1)+

+
bΓ(α)tα−µ−1

ζΓ(α− µ)
Iαf(η2)− Γ(α)tα−µ−1

ζΓ(α− µ)
Iαf(1)| =

=

˛̨̨̨
1

Γ(α− µ)

tZ
0

f(s, u(s), Dµu(s))

(t− s)1−α+µ
ds+

atα−µ−1

ζΓ(α− µ)

η1Z
0

f(s, u(s), Dµu(s))

(η1 − s)1−α
ds+

+
btα−µ−1

ζΓ(α− µ)

η2Z
0

f(s, u(s), Dµu(s))

(η2 − s)1−α
ds− tα−µ−1

ζΓ(α− µ)

1Z
0

f(s, u(s), Dµu(s))

(1− s)1−α ds

˛̨̨̨
≤

≤ 1

ζΓ(α− µ)

» tZ
0

(t− s)α−µ−1m(s) ds+ (k1R
λ1 + k2R

λ2)

tZ
0

(t− s)α−µ−1 ds

–
+

+ a

» η1Z
0

(η1 − s)α−1m(s) ds+ (k1R
λ1 + k2R

λ2)

η1Z
0

(η1 − s)α−1 ds

–
+

+ b

» η2Z
0

(η2 − s)α−1m(s) ds+ (k1R
λ1 + k2R

λ2)

η2Z
0

(η2 − s)α−1 ds

–
+

+

» 1Z
0

(1− s)α−1m(s) ds+ (k1R
λ1 + k2R

λ2)

1Z
0

(1− s)α−1 ds

–ff
≤

≤ 1

ζΓ(α− µ)

»
(1 + a+ b+ 1)

1Z
0

(1− s)α−µ−1m(s) ds+

+ (1 + a+ b+ 1)(k1R
λ1 + k2R

λ2)

1Z
0

(1− s)α−µ−1 ds

–
≤

≤ 4

ζΓ(α− µ)

» 1Z
0

(1− s)α−µ−1m(s) ds+ (k1R
λ1 + k2R

λ2)

1Z
0

(1− s)α−µ−1 ds

–
≤

≤ 4

ζΓ(α− µ)

1Z
0

(1− s)α−µ−1m(s) ds+
4(k1R

λ1 + k2R
λ2)

ζΓ(α− µ)
.
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Hence,

‖Tu‖X = max
t∈[0,1]

|Tu(t)|+ max
t∈[0,1]

|DµTu(t)| ≤

≤
1∫

0

|G(t, s)m(s)| ds+ (k1R
λ1 + k2R

λ2)
aηα1 + bηα2 + 2
ζΓ(α+ 1)

+

+
4

Γ(α− µ)ζ

1∫
0

(1− s)α−µ−1m(s) ds+

+
4(k1R

λ1 + k2R
λ2)

Γ(α− µ)ζ
≤

≤
1∫

0

|G(t, s)m(s)| ds+

+
4

Γ(α− µ)ζ

1∫
0

(1− s)α−µ−1m(s) ds+

+ (k1R
λ1 + k2R

λ2)
[
aηα1 + bηα2 + 2
ζΓ(α+ 1)

+
4

Γ(α− µ)ζ

]
≤

≤ p+ (k1R
λ1 + k2R

λ2)q ≤

≤ R

3
+
R

3
+
R

3
= R.

So, we conclude that ‖Tu‖X ≤ R. Since Tu, DµTu are continuous on [0,1], therefore
T : U → U .

Now, we show that T is a completely continuous operator. For this purpose we fix

M = max
t∈[0,1]

|f(t, u(t), Dµu(t))|.
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For u ∈ U , t, τ ∈ [0, 1](t < τ), we have

|Tu(t)− Tu(τ)| =

=
∣∣∣∣

1∫
0

G(t, s)f(s, u(s), Dµu(s)) ds−
1∫

0

G(τ, s)f(s, u(s), Dµu(s)) ds
∣∣∣∣ ≤

≤M
∣∣∣∣

1∫
0

(G(t, s)−G(τ, s)) ds
∣∣∣∣ ≤

≤M
{ t∫

0

[G1(τ, s)−G1(t, s) +G2(τ, s)−G2(t, s)] ds+

+

τ∫
t

[G1(τ, s) +G2(τ, s)−G2(t, s)] ds+

η1∫
τ

[G2(τ, s)−G2(t, s)] ds+

+

η2∫
η1

[G3(τ, s)−G3(t, s)] ds+

1∫
η2

[G4(τ, s)−G4(t, s)] ds
}

=

= M

[ 1∫
0

(τα−1 − tα−1)(1− s)α−1

ζΓ(α)
ds+

η1∫
0

a(τα−1 − tα−1)(η1 − s)α−1

ζΓ(α)
ds+

+

η2∫
0

b(τα−1 − tα−1)(η2 − s)α−1

ζΓ(α)
ds+

τ∫
0

(τ − s)α−1

Γ(α)
ds−

t∫
0

(t− s)α−1

Γ(α)
ds

]
=

= M

[
τα−1 − tα−1

ζΓ(α)
· 1
α

+
τα−1 − tα−1

ζΓ(α)
· aη

α
1

α
+

+
τα−1 − tα−1

ζΓ(α)
· bη

α
2

α
+

1
Γ(α)

τα

α
− 1

Γ(α)
· t
α

α

]
=

= M

[
τα−1 − tα−1

ζΓ(α+ 1)
(1 + aηα1 + bηα2 ) +

τα − tα

Γ(α+ 1)

]
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and

|Dµ(Tu(t))−Dµ(Tu(τ))| =

=
∣∣∣∣Iα−µf(t, u(t), Dµu(t) +

atα−µ−1Γ(α)
ζΓ(α− µ)

Iαf(η1)+

+
btα−µ−1Γ(α)
ζΓ(α− µ)

Iαf(η2)− tα−µ−1Γ(α)
ζΓ(α− µ)

Iαf(1)+

− Iα−µf(τ, u(τ), Dµu(τ)− aτα−µ−1Γ(α)
ζΓ(α− µ)

Iαf(η1)+

− bτα−µ−1Γ(α)
ζΓ(α− µ)

Iαf(η2) +
τα−µ−1Γ(α)
ζΓ(α− µ)

Iαf(1)
∣∣∣∣ =

=
∣∣∣∣ 1
Γ(α− µ)

t∫
0

f(s, u(s), Dµu(s))
(t− s)1−α+µ

ds+
atα−µ−1

ζΓ(α− µ)

η1∫
0

f(s, u(s), Dµu(s))
(η1 − s)1−α ds+

+
btα−µ−1

ζΓ(α− µ)

η2∫
0

f(s, u(s), Dµu(s))
(η2 − s)1−α ds− tα−µ−1

ζΓ(α− µ)

1∫
0

f(s, u(s), Dµu(s))
(1− s)1−α ds+

− 1
Γ(α− µ)

τ∫
0

f(s, u(s), Dµu(s))
(τ − s)1−α+µ

ds− aτα−µ−1

ζΓ(α− µ)

η1∫
0

f(s, u(s), Dµu(s))
(η1 − s)1−α ds+

− bτα−µ−1

ζΓ(α− µ)

η2∫
0

f(s, u(s), Dµu(s))
(η2 − s)1−α ds+

τα−µ−1

ζΓ(α− µ)

1∫
0

f(s, u(s), Dµu(s))
(1− s)1−α ds

∣∣∣∣ ≤
≤ M

Γ(α− µ)

∣∣∣∣
t∫

0

(t− s)α−µ−1 ds−
τ∫

0

(τ − s)α−µ−1 ds

∣∣∣∣+
+

aM

ζΓ(α− µ)

∣∣∣∣(tα−µ−1 − τα−µ−1)

η1∫
0

(η1 − s)α−1 ds

∣∣∣∣+
+

bM

ζΓ(α− µ)

∣∣∣∣(tα−µ−1 − τα−µ−1)

η2∫
0

(η2 − s)α−1 ds

∣∣∣∣+
+

M

ζΓ(α− µ)

∣∣∣∣(tα−µ−1 − τα−µ−1)

1∫
0

(1− s)α−1 ds

∣∣∣∣ =

=
M(τα−µ − tα−µ)

Γ(α− µ+ 1)
+
M(τα−µ+1 − tα−µ+1)

ζΓ(α− µ)α
(aηα1 + bηα2 + 1).

Since the functions tα−µ, tα−µ−1, tα−1, tα are uniformly continuous on [0, 1], therefore
it follows from the above estimates that TU is an equicontinuous set. Also, it is
uniformly bounded as TU ⊂ U . Thus, we conclude that T is a completely continuous
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operator. Hence, by the Schauder fixed point theorem, there exists a solution of (1.3).
This completes the proof.

Example 3.2. Consider the following four-point boundary value problem{
D

15
7 u(t) = a+ (t− 1

3 )4[(u(t))ρ1 + (D
2
5u(t))ρ2 ], t ∈ [0, 1],

u(0) = u′(0) = 0, u(1) = 4
5u( 1

3 ) + 4
5u( 2

3 ),
(3.1)

where 0 < ρ1, ρ2 < 1 and a is an constant different from 0. Obviously, it follows by
Theorem 3.1 that there exists a solution of (3.1).
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