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MONOTONE ITERATIVE TECHNIQUE
FOR FINITE SYSTEMS

OF NONLINEAR RIEMANN-LIOUVILLE
FRACTIONAL DIFFERENTIAL EQUATIONS

Z. Denton, A.S. Vatsala

Abstract. Comparison results of the nonlinear scalar Riemann-Liouville fractional differ-
ential equation of order q, 0 < q ≤ 1, are presented without requiring Hölder continuity
assumption. Monotone method is developed for finite systems of fractional differential equa-
tions of order q, using coupled upper and lower solutions. Existence of minimal and maximal
solutions of the nonlinear fractional differential system is proved.
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1. INTRODUCTION

Fractional differential equations or fractional differential systems have numerous ap-
plications in diverse and widespread fields of science and engineering. See [2, 5, 6] for
details.The approach to obtain existence and uniqueness of solutions for the nonlinear
fractional differential systems in general has been through fixed point theorem meth-
ods. In this paper we develop monotone method combined with the method of coupled
upper and lower solutions for fractional differential systems with initial conditions.

The monotone method is useful for nonlinear equations and systems because it
reduces the problem to sequences of linear equations. Specifically, if the nonlinear
system is unwieldy, either too difficult or impossible to solve explicitly, then the
monotone method may be beneficial. If one can find upper and lower solutions to
the original system that are less unwieldy and satisfy the particular requirements,
then the monotone method implements a technique for constructing sequences from
these upper and lower solutions. These sequences are solutions to linear equations
and converge uniformly and monotonically to either a unique solution, maximal and
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minimal solutions, or coupled maximal and minimal solutions. Practically, one could
numerically approximate solutions to within a desired tolerance with this iterative
method.

The nature of fractional calculus complicates this method somewhat, as does the
generalization of the nonlinear systems that we consider. Here the nonlinear terms
satisfy the mixed quasimonotone property, which generalizes results related to the
quasimonotone property. Further, we do not get direct uniform convergence when
considering the fractional derivative. Instead, using coupled lower and upper solutions
v0 and w0, we develop sequences {tpvn} and {tpwn} which converge uniformly and
monotonically to tpv and tpw. Here v and w are the coupled extremal solutions of the
nonlinear system satisfying the initial condition.

In order to develop our main result we modify the existing comparison result.
The modification in our comparison result has the advantage of not requiring Hölder
continuity of the order λ > q (where q is the fractional order of the system) for the
coupled upper and lower solutions. It is to be noted, that in general we cannot prove
that the iterates we develop in the monotone method possess this Hölder continuity
property. We prove the comparison result by using the Cp continuity property of the
coupled lower and upper solutions. Also we have recalled and modified the proof for
the existence of a solution of the scalar fractional differential equation.

2. PRELIMINARY RESULTS

In this section we consider results for the Riemann-Liouville (R-L) fractional integral
of order q ∈ R+. We then consider results for the R-L differential equation of order
q, where 0 < q ≤ 1. In the next sections we will apply the results to finite systems
of fractional differential equations of order q. In the direction of proving these results
we will need the following definitions. Note for simplicity we will only consider results
on an interval (0, T ], where T > 0.

Definition 2.1. Let q ∈ R+ and let p = m − q where m = ceil(q) = [q] + 1. Let
J = (0, T ]. Then a function φ(t) ∈ C(J,R) is a Cp function if tpφ(t) ∈ C(J̄ ,R). The
set of Cp functions is denoted Cp(J,R). Further, given a function φ(t) ∈ Cp(J,R) we
call the function tpφ(t) the continuous extension of φ(t).

Definition 2.2. Let φ ∈ Cp(J,R), then D−qt φ(t) is the q-th R-L integral of φ with
respect to t defined as

D−qt φ(t) =
1

Γ(q)

t∫
0

(t− s)q−1φ(s) ds.

Definition 2.3. Let φ ∈ Cp(J,R), then Dq
tφ(t) is the q-th R-L derivative of φ with

respect to t defined as

Dq
tφ(t) =

1
Γ(p)

dm

dtm

t∫
0

(t− s)−qφ(s) ds.
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Note that in cases where the initial value may be different, or ambiguous, we
will write out the definition explicitly. The next definition is related to the solution
of linear R-L fractional differential equations and is also of great importance in the
study of the R-L derivative.

Definition 2.4. The Mittag-Leffler function with parameters α and β, denoted Eα,β ,
is defined as

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.

The next result gives us that the q-th R-L integral of a Cp function is also a Cp
function. This result will give us that the solutions of R-L differential equations are
also Cp continuous.

Lemma 2.5. Let q ∈ R+, then f ∈ Cp(J,R) implies that D−qt f(t) ∈ Cp(J,R).

Proof. Since f is Cp continuous we have that |tpf(t)| is bounded by some M > 0 for
all t ∈ J̄ . Let t, τ ∈ J̄ and, without loss of generality, suppose that t ≥ τ > 0. Then
we have that

t∫
τ

(t− s)q−1sq−m ds ≤ 1
τp

∫ t

τ

(t− s)q−1 ds.

Now, we will consider the case where q ≥ 1. Note in this case

tp(t− s)q−1 − τp(τ − s)q−1 ≥ 0,

where τ > s. Then we obtain∣∣∣tpD−qt f(t)− τpD−qτ f(τ)
∣∣∣ ≤

≤ tp

Γ(q)

t∫
τ

(t− s)q−1
∣∣f(s)

∣∣ ds+
1

Γ(q)

τ∫
0

∣∣tp(t− s)q−1 − τp(τ − s)q−1
∣∣∣∣f(s)

∣∣ ds =

=
tp

Γ(q)

t∫
τ

(t− s)q−1
∣∣f(s)

∣∣sps−p ds+
+

1
Γ(q)

τ∫
0

[tp(t− s)q−1 − τp(τ − s)q−1]
∣∣f(s)

∣∣sps−p ds ≤
≤ M

Γ(q)
tp

τp

∫ t

τ

(t− s)q−1 ds+
M

Γ(q)

τ∫
0

[tp(t− s)q−1 − τp(τ − s)q−1]sq−m ds =

=
M

Γ(q + 1)
tp

τp
(t− τ)q − MΓ(q −m+ 1)

Γ(2q −m+ 1)
τ q +

M

Γ(q)
tq

τ
t∫

0

(1− α)q−1αq−m dα,
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where α = s
t . Now note that as t→ τ ,

M

Γ(q)
tq

τ
t∫

0

(1− α)q−1αq−1 dα→ MΓ(q −m+ 1)
Γ(2q −m+ 1)

τ q,

implying that tpD−qt f(t) → τpD−qτ f(τ) as t → τ , provided that q ≥ 1. This proves
that D−qt f(t) is Cp continuous as long as q ≥ 1 and τ > 0.

Now we will consider the case where q < 1. First, in this case m = 1, implying
that p = 1− q. Next we will show that in this case

tp(t− s)q−1 − τp(τ − s)q−1 ≤ 0,

where τ > s. To show this, consider the function

φ(t) = tp(t− s)q−1 = tp(t− s)−p,

with t > s ≥ 0. This function is nonincreasing in t on J , since

d

dt
φ(t) = ptp−1(t− s)−p − ptp(t− s)−p−1 = −tp−1(t− s)−p−1ps ≤ 0

for all t ∈ J . Thus implying that

φ(t)− φ(τ) ≤ 0.

From here, following the same process as before, we instead obtain

∣∣∣tpD−qt f(t)− τpD−qτ f(τ)
∣∣∣ ≤ M

Γ(q)
tp

τp

t∫
τ

(t− s)q−1 ds−

− M

Γ(q)

τ∫
0

[tp(t− s)q−1 − τp(τ − s)q−1]sq−m ds.

This is analogous to the above result except for the negative second term. The re-
mainder of the proof of this case follows exactly as before. Therefore D−qt f(t) is Cp
continuous for any q > 0, provided τ > 0.

Finally, the case where τ = 0 follows from the fact that∣∣tpD−qt f(t)
∣∣ ≤ MΓ(q −m+ 1)

Γ(2q −m+ 1)
tq.

Thus proving that D−qt f(t) ∈ Cp(J,R) for any value of q.

From now on we choose q, such that 0 < q ≤ 1. Consider the following linear R-L
fractional differential equation,

Dq
tx = λx+ f(t), (2.1)
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with initial condition
Γ(q)tpx(t)

∣∣
t=0

= x0,

where λ and x0 are constants and f ∈ Cp(J,R).

Theorem 2.6. The solution x of (2.1) exists, is unique, and is in Cp(J,R).

The proof that x(t) exists on J and is unique can be found in [4], further the
explicit solution of (2.1) is given as

x(t) = x0tq−1Eq,q(λtq) +

t∫
0

(t− s)q−1Eq,q(λ(t− s)q)f(s) ds. (2.2)

That this x is in Cp(J,R) follows from Lemma 2.5.
The next lemma is very similar to that found in [4], but we do not require the

function in question to be locally Hölder continuous for our conclusion. Although
the first part of the proof will follow on the same lines as that found in [4], we
provide our modifications for clarity. The motivation for relaxing the assumptions
comes from the requirements of the monotone method. For this iterative method
we construct sequences from the solutions of linear R-L differential equations. As
displayed previously the solution of equation (2.1) is given by equation (2.2), which
can be rewritten as

x(t) =
x0

Γ(q)
tq−1 + x0

∞∑
k=1

λktqk+q−1

Γ(qk + q)
+

t∫
0

(t− s)q−1Eq,q(λ(t− s)q)f(s) ds.

In this form it can be seen that, in general, this function is not locally Hölder con-
tinuous of any order due to the term containing tq−1. Therefore we must relax the
requirements of the comparison result. Otherwise the resulting iterates of our con-
structed sequences in the monotone method cannot satisfy the requirements needed
for convergence.

Lemma 2.7. Let m ∈ Cp(J,R) be such that for some t1 ∈ J we have m(t1) = 0 and
m(t) ≤ 0 for t ∈ (0, t1]. Then Dq

tm(t)
∣∣
t=t1
≥ 0.

Proof. Note that

Dq
tm(t) =

1
Γ(p)

d

dt

t∫
0

(t− s)−qm(s) ds,

and let

H(t) =

t∫
0

(t− s)−qm(s) ds.

Now letting h > 0 be sufficiently small and following the same initial steps as in [4]
we get

H(t1)−H(t1 − h) ≥
t1∫

t1−h

(t1 − s)−qm(s) ds.
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Noting that tpm(t) is continuous on J̄ we may choose a Kh > 0 such that |t1− s| < h
implies |tp1m(t1)− spm(s)| < hKh, further implying that

m(s) > −hKhs
q−1, for s ∈ Bh(t1).

This yields

t1∫
t1−h

(t1 − s)−qm(s) ds > −hKh

t1∫
t1−h

(t1 − s)−qsq−1 ds ≥ −h
2−qKh

1− q
(t1 − h)q−1.

Thus we get,

H(t1)−H(t1 − h)
h

> −h
1−qKh

1− q
(t1 − h)q−1, ∀h > 0.

Which gives us that,
Dq
tm(t)

∣∣
t=t1
≥ 0,

this completes the proof.

We will now analyze existence results for the scalar nonlinear R-L differential
equation along with results pertaining to lower and upper solutions, that will aid in
developing a monotone method for finite systems in the following section. For that
purpose consider the R-L equation

Dq
tx = f(t, x), Γ(q)tpx(t)

∣∣
t=0

= x0, (2.3)

where f ∈ C(J̄ × R,R). Note that a solution x ∈ Cp(J,R) of (2.3) also satisfies the
equivalent R-L integral equation

x(t) =
x0

Γ(q)
tq−1 +

1
Γ(q)

t∫
0

(t− s)q−1f(s, x(s)) ds. (2.4)

Thus if f ∈ C(J̄ × R,R) then (2.3) is equivalent to (2.4). See [2, 4] for details. Next
we recall a comparison result, the special case of which is needed in our main result.

Theorem 2.8. Let f ∈ C(J̄ × R,R) and let v, w ∈ Cp(J,R) be lower and upper
solutions of (2.3), i.e.

Dq
t v ≤ f(t, v), Γ(q)tpv(t)

∣∣
t=0

= v0 ≤ x0,

and
Dq
tw ≥ f(t, w), Γ(q)tpw(t)

∣∣
t=0

= w0 ≥ x0.

If f satisfies the following Lipschitz condition

f(t, x)− f(t, y) ≤ L(x− y), when x ≥ y,

then v(t) ≤ w(t) on J .
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The proof follows as in [4] with appropriate modifications. For the corresponding
case with R-L integral equations see [1]. In our main result, we need the special case
of Theorem 2.8, which we state below as a corollary.

Corollary 2.9. Let f ∈ Cp(J,R) and let v, w ∈ Cp(J,R) be lower and upper solutions
of the linear equation (2.1), i.e.

Dq
t v ≤ λv + f(t), Γ(q)tpv(t)

∣∣
t=0

= v0 ≤ x0,

and
Dq
tw ≥ λw + f(t), Γ(q)tpw(t)

∣∣
t=0

= w0 ≥ x0.

Then v(t) ≤ w(t) on J .

Note this follows since F (t, x) = λx+ f(t) is Lipschitz with respect to x. Now, in
the direction of proving an existence result relative to lower and upper solutions we
state a Peano’s type existence result for equation (2.3).

Theorem 2.10. Suppose f ∈ C(R0,R) and |f(t, x)| ≤M on R0, where

R0 = {(t, x) ∈ J̄ × Cp(J,R) : |tpx(t)− x0| ≤ η}.

Then the solution of (2.3) exists on J .

Although this result has been presented in [4], we require a modification of the
set R0 for our preceding results regarding existence by method of upper and lower
solutions.

Proof. That the solution x exists on (0, α], where

α = min
{
T,
ηΓ(q + 1)

M

}
,

can be found in [4] with slight alterations. We have that since x ∈ Cp((0, α],R), and
by the properties of Cp functions we have that x is defined at t = α. Thus choose
xα ∈ R such that x(α) = xα, then the IVP

cDq
tx = f(t, x), x(α) = α (2.5)

exists on [α, α+ α1], where cDq
t is the q-th Caputo derivative defined as

cDq
tx(t) =

1
Γ(p)

t∫
α

(t− s)−qx′(s) ds.

The Caputo differential equation covers the case where x is continuous on a compact
interval and has initial condition as defined above. See [4] for more information. The
existence of a solution to (2.5) where f is continuous and bounded on a rectangle
follows in the same way as in the integer order case. From here, that the solution of
(2.3) can be extended to J can be proved in the same way as in the integer order
case.
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Now, if we know of the existence of lower and upper solutions v and w such that
v ≤ w, we can prove the existence of a solution in the set

Ω = {(t, y) : tpv(t) ≤ y ≤ tpw(t), t ∈ J̄}.

Note, for this result, we require f to be continuous on a compact set. The set Ω is
defined in terms of the continuous extensions of v and w as a consequence of this
requirement. We consider this result in the following theorem.

Theorem 2.11. Let v, w ∈ Cp(J,R) be lower and upper solutions of (2.3) such that
v(t) ≤ w(t) on J and let f ∈ C(Ω,R), where Ω is defined as above. Then there exists
a solution x ∈ Cp(J,R) of (2.3) such that v(t) ≤ x(t) ≤ w(t) on J .

Proof. By the continuity of f on Ω there exists a function F such that f(t, x) =
F (t, tpx). Now consider the function µ defined by

µ(t, x) = max{tpv(t),min{tpx(t), tpw(t)}},

and note that by the definition of µ we have,

tpv(t) ≤ µ(t, x) ≤ tpw(t).

Therefore by Theorem 2.10 the R-L differential equation

Dq
tx = F (t, µ(t, x)), Γ(q)tpx(t)

∣∣
t=0

= x0 (2.6)

has a solution x ∈ Cp(J,R).
Now we wish to show that v(t) ≤ x(t) ≤ w(t) on J , where x is any solution of (2.6).
To do so consider the functions vε and wε defined as follows

vε(t) = v(t)− εψ(t), and wε(t) = w(t) + εψ(t),

where

ψ(t) =
tq−1

Γ(q)
+

tq

Γ(q + 1)
.

We claim that tpvε(t) < tpx(t) < tpwε(t) on J . To prove this first note that

v0
ε = Γ(q)tp(v(t)− εψ)

∣∣
t=0

= v0 − ε < v0 ≤ x0.

Similarly w0
ε > x0. Now suppose to the contrary that there exists a t1 > 0 such

that tpvε(t1) = tpx(t1) and since v0
ε < x0 we have that tpvε(t) ≤ tpx(t) on [0, t1].

So by the continuity of vε and x we have that vε(t) ≤ x(t) on (0, t1]. Thus letting
m(t) = vε(t)− x(t) we have by Lemma 2.7 that Dq

tm(t)|t=t1 ≥ 0. Thus we have that

F (t1, t
p
1v(t1)) = F (t1, µ(t1, x(t1))) ≤ Dq

t vε(t)|t=t1 =
= Dq

t v(t)|t=t1 − εD
q
tψ(t)|t=t1 ≤ f(t1, v(t1))− ε < F (t1, t

p
1v(t1)),

which is a contradiction. Therefore tpvε(t) < tpx(t) on J̄ . Similarly it can be shown
that tpx(t) < tpwε(t) on J̄ . Thus letting ε → 0, and applying the continuity of v, x
and w we get v(t) ≤ x(t) ≤ w(t) on J .
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3. MONOTONE ITERATIVE TECHNIQUE

In this section we discuss the results for finite systems of R-L fractional differential
equations of order q. For simplicity suppose that the subscript i ∈ {1, 2, 3, . . . , N},
and suppose that for any two vectors x and y, x ≤ y implies that xi ≤ yi for each i.
We can extend the results of Theorems 2.10 and 2.11 to the nonlinear R-L fractional
differential equation of the form

Dq
tx = f(t, x), (3.1)

where f ∈ C(J̄ × RN ,RN ) with initial condition

Γ(q)tpx(t)
∣∣
t=0

= x0.

Written in component form, equation (3.1) becomes

Dq
txi = fi(t, x), Γ(q)tpxi(t)

∣∣
t=0

= x0
i . (3.2)

As in the integer order case, to develop a monotone iterative technique for the frac-
tional system (3.1) we require the following generalizing concepts. For each fixed
i ∈ {1, 2, 3, . . . N}, let ri, si be two nonnegative integers such that ri + si = N − 1
so that we can split the vector x into x = (xi, [x]ri , [x]si). Then system (3.1) can be
written as

Dq
txi = fi(t, xi, [x]ri , [x]si), Γ(q)tpxi(t)

∣∣
t=0

= x0
i . (3.3)

Definition 3.1. Let v, w ∈ Cp(J,RN ), v and w are coupled lower and upper quasiso-
lutions of (3.3) if

Dq
t vi ≤ fi(t, vi, [v]ri , [w]si), Γ(q)tpvi(t)

∣∣
t=0

= v0
i ≤ x0

i ,

Dq
twi ≥ fi(t, wi, [w]ri , [v]si), Γ(q)tpwi(t)

∣∣
t=0

= w0
i ≥ x0

i .

On the other hand, v and w are coupled quasisolutions of (3.1) if

Dq
t vi = fi(t, vi, [v]ri , [w]si), Γ(q)tpvi(t)

∣∣
t=0

= x0
i ,

Dq
twi = fi(t, wi, [w]ri , [v]si), Γ(q)tpwi(t)

∣∣
t=0

= x0
i .

Further, one can define coupled extremal quasisolutions of (3.3) in the usual way.

Definition 3.2. A function f ∈ C(J̄ × RN ,RN ) possesses a mixed quasimonotone
property if for each i, fi(t, xi, [x]ri , [x]si) is monotone nondecreasing in [x]ri and mono-
tone nonincreasing in [x]si .

A special case of the mixed quasimonotone property, specifically when either ri or
si is equal to zero, is defined below.

Definition 3.3. A function f ∈ C(J̄ × RN ,RN ) is quasimonotone nondecreasing
(nonincreasing) if for each i, x ≤ y and xi = yi, then fi(t, x) ≤ fi(t, y) (fi(t, x) ≥
fi(t, y)).
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Next we state our main result. Using coupled lower and upper solutions relative
to (3.3), we construct monotone sequences {vn(t)} and {wn(t)} such that tpvn and
tpwn converge uniformly and monitonically to tpv and tpw respectively, where v and
w are coupled minimal and maximal solutions of system (3.3).

Theorem 3.4. Let f ∈ C(J ×RN ,RN ) possess a mixed quasimonotone property and
let v0, w0 be coupled lower and upper quasisolutions of system (3.3) such that v0 ≤ w0

on J . Suppose f also satisfies

fi(t, xi, [x]ri , [x]si)− fi(t, yi, [x]ri , [x]si) ≥ −Mi(xi − yi),

with Mi ≥ 0, whenever v0
0 ≤ x0 ≤ w0

0 and v0i ≤ yi ≤ xi ≤ w0i on J . Then there exist
monotone sequences {vn}, {wn} such that

tpvn(t)→ tpv(t),

and
tpwn(t)→ tpw(t)

monotonically and uniformly on J̄ , where v and w are coupled minimal and maximal
quasisolutions of (3.3) provided v0

0 ≤ x0 ≤ w0
0. Further if x is any solution of (3.3)

such that v0 ≤ x ≤ w0 then v ≤ x ≤ w on J .

Proof. For any η, µ ∈ Cp(J,RN ) such that v0 ≤ η, µ ≤ w0 on J , define the function
F as

Fi(t, x) = fi(t, ηi, [η]ri , [µ]si)−Mi(xi − ηi),

and consider the uncoupled linear fractional system

Dq
txi = Fi(t, x), Γ(q)tpxi(t)

∣∣
t=0

= x0
i . (3.4)

For each i (3.4) is a linear fractional differential equation of the form of (2.1). Therefore
for each η, µ, there exists a unique solution x(t) ∈ Cp(J,RN ) of (3.4). So for each
η, µ ∈ Cp(J,RN ) with v0 ≤ η, µ ≤ w0 on J , we can define the map A, where A(η, µ)
is the unique solution of (3.4).

Note that A will define our sequences {vn}, and {wn}, in this direction, first note
that v0 ≤ A(v0, w0) and w0 ≥ A(w0, v0). To prove this let v1 = A(v0, w0), then note
that

Dq
t v1i = Fi(t, v1),

and
Dq
t v0i ≤ fi(t, v0i, [v0]ri , [w0]si)−Mi(v0i − v0i) = Fi(t, v0).

Therefore by applying Corollary 2.9 for each i, we have that v0 ≤ v1 = A(v0, w0)
on J . Further, letting w1 = A(w0, v0) and with a similar argument we have that
w1 ≤ w0 on J . Now note that A possesses a mixed monotone property, to prove
this, let η, ξ, µ ∈ Cp(J,RN ) such that v0 ≤ η, ξ, µ ≤ w0, and η ≤ ξ on J . Now let
y = A(η, µ) and x = A(ξ, µ). Then note that

Dq
txi = fi(t, ξi, [ξ]ri , [µ]si)−Mi(xi − ξi),
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and by applying the mixed quasimonotone and Lipschitz properties of f ,

Dq
t yi = fi(t, ηi, [η]ri , [µ]si)−Mi(yi − ηi) ≤ fi(t, ξi, [ξ]ri , [µ]si)−Mi(yi − ξi).

Thus by Corollary 2.9 we have y ≤ x on J . Proving that A is monotone nondecreasing
in its first variable. By a similar argument we can prove that A is monotone nonin-
creasing in its second variable, proving that A possesses a mixed monotone property
on J .

Now define the following sequences of Cp continuous functions

vn = A(vn−1, wn−1), and wn = A(wn−1, vn−1).

Note that {vn} and {wn} are monotone nondecreasing and nonincreasing on J respec-
tively. We will prove this by induction. Note we previously proved the basis step that
v0 ≤ v1 and w1 ≤ w0 on J . So suppose that the hypothesis is true up to some k ≥ 1,
then by the mixed monotone property of A and applying the induction hypothesis we
have

vk+1 = A(vk, wk) ≥ A(vk−1, wk−1) = vk,

on J . Similarly we can show that wk+1 ≤ wk on J . Therefore by induction we have
that {vn} and {wn} are monotone on J .

Now we wish to show that vn ≤ wn for all n ≥ 0 on J . Note that v0 ≤ w0 by
definition, so suppose that the above hypothesis is true up to some k ≥ 1, then by
the mixed monotone property of A and applying the induction hypothesis we have

vk+1 ≤ A(wk, vk) = wk+1

on J , which by induction implies that vn ≤ wn on J for all n ≥ 1.
Now following the same process as found in [7] modified slightly to include finite

systems we get that {tpvn(t)} and {tpwn(t)} converge uniformly on J̄ . Therefore, we
have that

tpvni(t) =
x0
i

Γ(q)
+

tp

Γ(q)

t∫
0

(t− s)q−1fi(t, vn−1i, [vn−1]ri , [wn−1]si) ds−

− tp

Γ(q)

t∫
0

(t− s)q−1Mi(vni − vn−1i) ds

converges uniformly and monotonically to

tpvi(t) =
x0
i

Γ(q)
+

tp

Γ(q)

t∫
0

(t− s)q−1fi(t, vi, [v]ri , [w]si) ds

on J̄ . Implying that

vi(t) =
x0
i

Γ(q)
tq−1 +

1
Γ(q)

t∫
0

(t− s)q−1fi(t, vi, [v]ri , [w]si) ds
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on J , implying, along with a similar result for {tpw(t)}, that

Dq
t vi = fi(t, vi, [v]ri , [w]si), Γ(q)tpv(t)|t=0 = x0,

and
Dq
twi = fi(t, wi, [w]ri , [v]si), Γ(q)tpw(t)|t=0 = x0.

Therefore implying that v and w are coupled quasisolutions of (3.3) on J . Now we
will show that v and w are extremal, to do this let x be a solution of (3.3) with
v0
0 ≤ x0 ≤ w0

0. We wish to show that vn ≤ x ≤ wn on J . Suppose that x is a solution
to (3.1), where v0 ≤ x ≤ w0. Letting this be our basis step, suppose our hypothesis is
true up to some k ≥ 1, then by the mixed monotone property of A and applying the
induction hypothesis we have

vk+1 = A(vk, wk) ≤ A(x, x) = x

on J , and by a symmetric argument we have that x ≤ wk+1 on J . Therefore, by
induction, we have that vn ≤ x ≤ wn on J implying that tpv ≤ tpx ≤ tpw on J̄ . By
the continuity of v, x, and w this proves that v ≤ x ≤ w on J . Thus v and w are
coupled extremal solutions.

Note that Theorem 3.4 is an extension of Theorem 1.4.1 in [3] to the R-L fractional
differential system (3.3). Further, if si = 0, then v and w are coupled minimal and
maximal solutions of (3.3) thus covering the case when f is quasimonotone nonde-
creasing. Also, if ri = 0 then v and w are the most general coupled extremal solutions.
In addition, if f satisfies uniqueness condition then we can prove that v = w = x is
the unique solution of (3.3).
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