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MATRICES RELATED
TO SOME FOCK SPACE OPERATORS

Krzysztof Rudol

Abstract. Matrices of operators with respect to frames are sometimes more natural and
easier to compute than the ones related to bases. The present work investigates such opera-
tors on the Segal-Bargmann space, known also as the Fock space. We consider in particular
some properties of matrices related to Toeplitz and Hankel operators. The underlying frame
is provided by normalised reproducing kernel functions at some lattice points.
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1. INTRODUCTION

In applied analysis it is often more natural to use in the underlying Hilbert space
overcomplete systems of vectors rather than bases. Such systems satisfying the frame
condition enjoy better stability of the reconstruction algorithms and are easier to
obtain using some natural constructions. For example, in reproducing kernel Hilbert
spaces, sequences of normalised kernel functions at suitably chosen discrete sets of
points can be shown to be frames, while they rarely constitute Riesz bases. Descrip-
tions of such discrete sets among regular lattices or even quite general sequences of
points appeared in the 80’s in the works of Rochberg, Coifmann, Daubechies with
Grossman, Lyubarskii, Seip and Wallsten, to mention the most important contribu-
tions. One of their guidelines can be traced to earlier success in atomic decompositions
of Hardy spaces over the complex half-plane.

The reproducing kernels lead to the Berezin transform approach to certain classes
of operators which proved especially fruitful in the cases related to analytic structure,
like Toeplitz or Hankel operators. In this note we show some relations to matrices
with respect to frames obtained from reproducing kernels.
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2. FRAMES AND KERNELS

In [3, 4] and [2] matrices with respect to frames for bounded linear operators on a
Hilbert space H were studied. Given a fixed sequence G = (gj), j ∈ N of vectors in
H one defines the analysis operator C = CG by

Cf := (〈f, gj〉)j∈N,

the sequence of inner products with the members of G. If C maps H boundedly into
`2, then G is referred to as a Bessel sequence. If moreover, for some constants K,κ > 0
(called frame bounds) one has

κ‖f‖2 ≤
∞∑
j=1

|〈f, gj〉|2 ≤ K‖f‖2, (2.1)

G is called a frame in H. These frame bounds may be equal, in which case we speak
of a tight frame with bound κ = K. Parseval Frames are defined as tight frames with
bound 1. For such frames (2.1) is the (generalised) Parseval identity and its polarised
form represents the inner product 〈f, h〉 as the sum

∑
j K
−1〈f, gj〉〈gj , h〉.

The adjoint operator C∗ = C∗G : `2 → H of C, called the synthesis operator maps
square–summable sequences (αj) ∈ `2 to the (unconditionally norm-convergent) sums∑
αjgj ∈ H -cf. [7]. Finally, their composition S := C∗C, called the frame operator

is given by Sf =
∑
〈f, gj〉gj , which is self–adjoint, positive, with κIH ≤ S ≤ KIH .

The the canonical dual frame for G is the sequence G̃ := (S−1gj) essential in the
following

(Reconstruction Formula) f =
∞∑
j=1

〈f, gj〉g̃j , where g̃j := S−1gj . (2.2)

The dual frame is a constant multiple of G iff the frame is tight, with equality
G̃ = G taking place iff G is a Parseval frame (then g̃j = gj for any j, see [7, 10]).

The practical way of verifying the frame condition in some cases is to prove directly
that the frame operator S itself is boundedly invertible by estimating its norm-distance
from the identity by some number γ < 1 (cf. [9, 11]).

Recall, that a Hilbert space H of functions on some set Ω is a reproducing kernel
Hilbert space (RKHS), if for any w ∈ Ω the linear functional H 3 f → f(w) ∈ C of
evaluation at w is continuous. Then for some reproducing kernel Kw ∈ H one has

f(w) = 〈f,Kw〉, f ∈ H, w ∈ Ω. (2.3)

The role of atoms is played by the normalised reproducing kernels,

kw(z) :=
Kw(z)
‖Kw‖

(2.4)

and it is easy to see that ‖Kw‖ =
√
Kw(w), |Kw(z)|2 ≤ Kw(w)Kz(z) and Kz(w) =

Kw(z) for any z, w ∈ Ω. Moreover, H is the (closed) linear span of the kernel functions
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Kw as w ∈ Ω. Actually, much smaller range of w’s is enough here to span H,
some discrete sequences in Ω suffice. The direct way of constructing Kw from an
orthonormal basis (en) of H is the well-known formula

Kw(z) =
∑
n

en(z)en(w),

which in the case of a frame G and its dual G̃ becomes

Kw(z) =
∑
n

g̃n(z)gn(w).

Let us recall the most important examples: The Hardy space case (Ω = D :=
= {z ∈ C : |z| < 1}, H = H2, en(z) = zn) has the reproducing kernel

Kw(z) = (1− zw̄)−1.

For the Bergman space L2 ∩H(D), en(z) = (n+ 1)
1
2 zn, so the Bergman kernel is

Kw(z) = (1− zw̄)−2.

Here the L2-norm is taken for the normalised area measure 1
π dx dy on D and

kw(z) =
1− |w|2

(1− zw̄)2
.

If dA(z) = dxdy is the Lebesgue (area) measure on the complex plane C, let
dµ(z) = exp(−π|z|2)dA(z) be the Gaussian measure. Then the subspace of L2(µ)

spanned by the orthonormal basis
√

πn

n! z
n is denoted by F 2(C) and called the Fock

space (or Segal-Bargmann space) over C. It consists of all entire functions that are
square µ-integrable. The reproducing kernels are Kw(z) = exp(πzw̄). Then

kw(z) = exp(π(z − w

2
)w̄). (2.5)

Some other normalisations are also common, e.g. replacing π either with 1
2 , or with 1

or with some arbitrary constant a. Passing from C to Cd (the “d degrees of freedom
case”) requires only the use of multiindices in place of n ∈ N∪ {0} (and the exponent
d in the normalization constant), hence for the sake of simplicity we consider only
d = 1 in what follows.

If {zj : j ∈ N} is a discrete subset of C satisfying the separation condition:

inf{|zj − zk| : j 6= k} = δ > 0

and the density condition:
sup
w∈C

inf
j
|zj − w| = ε0

with ε0 sufficiently small, then it is shown in Theorem 8.2 of [9] that the normalised
reproducing kernels gj := kzj

form a frame in F 2(C). For regular lattices (of the
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form ε1Z2d, where Z2d = {(λ1, . . . , λd) : λj ∈ C,<λj ∈ Z,=λj ∈ Z}) the result has
been obtained by Daubechies and Grossman (1988) and refined by Lyubarskij and
Seip in 1992. It should be mentioned that in [9] a general approach to various RKHS is
developed, giving frames for some sequence of points zj ∈ Ω and applying to analogous
spaces with Lp−norms for 1 ≤ p ≤ +∞, where instead of frames decompositions one
speaks then of atomic decompositions.

3. MATRICES REPRESENTING OPERATORS

If G1 = (gj1)∞j=1,G2 = (gj2)∞j=1 are frames in Hilbert spaces H1, H2, the coefficients of
a bounded linear operator T : H1 −→ H2 are defined by

Tnm := 〈Tgm1, gn2〉.

The so obtained matrix (Tnm) will be denoted as Matr(T ), or Matr(G2,G1)(T ).
Conversely, to a bounded (as an operator on `2) matrix A = (Ank)n,k∈N one

assigns the operator O(G2,G1)(M) = O(A) that maps f ∈ H1 into the sum

O(G2,G1)(A)f :=
∞∑
k=1

∞∑
n=1

Akn〈f, gn1〉gk2.

The basic properties of the correspondence between matrices and bounded linear
operators are collected below for the reader’s convenience. (These are Theorem 3.1,
Proposition 3.2 and Corollary 3.3 in [3], Theorem 3.2 and Corollary 4.1 in [2].)

Theorem 3.1. (i) Treated as an operator on `2, the matrix Matr(T ) is bounded
and

Matr(G2,G1)(T ) = CG2 ◦ T ◦ C∗G1 with ‖Matr(G2,G1)(T )‖ ≤
√
K1K2‖T‖.

(ii) The operator O(G2,G1)(A) : H1 −→ H2 is bounded and satisfies

O(G2,G1)(A) = C∗G2 ◦A ◦ CG1 with ‖O(A)‖ ≤
√
K1K2‖A‖.

(iii) For any frames G1,G2,G3 and operators T : H1 → H2, L : H2 → H3 the Product
Formula holds:

Matr(G3,G2)(L) ·Matr(
fG2,G1)(T ) = Matr(G3,G1)(LT ),

which together with G = ˜̃G and (i) implies that Matr(G,
eG) is a (non unital)

continuous homomorphism of Banach algebra B(H) into B(`2).
(iv) We have the following Operator Reconstruction Formula:

O(G2,G1)(Matr(
fG2,fG1)(T )) = T, O(G,eG)(I`2) = IH .
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(v) The assignment Matr(G,
eG) is a *- morphism, i.e. the matrix Matr(G,

eG)(T ∗) is the
Hermitian adjoint to the matrix Matr(G,

eG)(T ) for any bounded linear operator
T : H → H, if and only if the frame G is tight.

(vi) T ∈ B(H) belongs to the Schatten-von Neumann ideal Sp if and only if so does
its matrixM . Moreover, the following equality takes place in the normalised tight
frame case:

‖T‖p = ‖M‖p
for any finite number p ≥ 1.

One can ask, if the trace itself can be recovered from that of the related matrix. If
we just want to compare up to some constants, the trace norm can be estimated
from the product CG2TC∗G1 from the above theorem in both directions (here by
‖CG2‖‖T‖1‖C∗G1‖, where the operator norm of the analysis operator is the (square
root of) the Bessel constant. But the exact value will not follow in general, even for
Parseval frames, a clear consequence of the overcompleteness. It is therefore useful to
note the following

Proposition 3.2. If the frame G is a Riesz basis and G̃ is its biorthogonal sequence,
then

tr(T ) = tr(Matr(G,
eG)(T ))

for any trace-class operator T .

Indeed, let δmk ∈ {0, 1} denote the Kronecker symbol. If ei are orthonormal basic
vectors, then using the equalities

ei =
∑
m

〈ei, g̃m〉gm =
∑
k

〈ei, gk〉g̃k

and ∑
i

〈ei, g̃m〉〈gk, ei〉 = 〈g̃m, gk〉 = δmk,

we compute tr(T ) as equal to∑
i

〈Tei, ei〉 =
∑
i

∑
m

∑
k

〈〈ei, g̃m〉Tgm, 〈ei, gk〉g̃k〉 =

=
∑
i,m,k

〈ei, g̃m〉〈gk, ei〉〈Tgm, g̃k〉.

Now recognising the sum over i as δmk, we see, that the triple sum reduces to∑
m〈Tgm, g̃m〉, which is the trace of our matrix Matr(G,

eG)(T ).
It turns out that some of these results have extension for unbounded operators.

This requires special care with domains and with taking closures. Since in general,
there can be infinitely many nonzero coefficients of a frame vector w.r.to the dual
frame, the summability of each column may not suffice for the frame vectors to belong
to the domain of the operator formally associated with the matrix.
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If we make it an assumption, then more can be said:

Theorem 3.3. Let G be a tight frame in a Hilbert space H.

(i) If G is contained in the domain of a closed symmetric operator T in H, then
Matr(T ) is a Hermitian matrix.

(ii) If the matrix A is hermitian, closed as an operator on `2 and such that∑
j |ajk|2 < ∞ for any k, then the associated operator T = O(G,G)(A) is closed

and symmetric, containing G in its domain.

Proof. (i) is an easy consequence of the defining formula, so it remains to show (ii).
The arguments employed in the case of orthonormal base decompositions in [1](p.
100) show that the formally defined operator by a matrix is closed on its maximal
domain and if a Hermitian matrix has square-summable columns, then it defines a
closed symmetric operator. The square sumability of 〈f, gk〉 is used together with our
assumption on the columns to obtain dense domains for the related operator (and of
its adjoint). The last assumption is needed to replace the missing biorthogonality.
This assumption is easy to verify by direct computation in the concrete case (2.5) of
the exponents frame in the Fock space.

Let us finally remark that the assumption does not imply the boundedness of T . If
one has a uniform bound on `1-norms of columns and rows, then boundedness follows
from the Schur criterion. Another instance of boundedness follows from the Closed
Mapping Theorem:

Corollary 3.4. If the domain of T = O(G,G)(A) for the matrix A satisfying the
assumptions of (ii) above is closed, then this operator is bounded.

(Note that in view of the density of the linear span of frame vectors, the assumed
closedness means just the equality of the domain of T to the whole space H.)

4. SOME EXAMPLES

The orthogonal projection P from L2(µ) onto the Fock space F 2(C) can be written
as an integral operator of the form

(Pf)(w) =
∫
f(ζ)Kζ(w) dµ(ζ) = 〈f,Kw〉.

Toeplitz operator with symbol h is defined by

Thf := P (hf), f ∈ D(Th) := {f ∈ F 2(C) : fh ∈ L2(µ)}.

In particular, for h ∈ L∞(µ) one obtains a bounded, everywhere defined operator.
If h is nonconstant, analytic, then Th is unbounded, but densely defined, if g has
an exponential growth. Such operators are important in quantum mechanics models
of annihilation and creation operators ([5]) and are used in the Berezin’s second
quantization technique.
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Then the matrix with respect to the frame of normalised kernels gj := kzj
of the

form (2.5) with zj ranging through an appropriate lattice has its matricial entries
anm = 〈PThgm, gn〉 = 〈hKzm ,Kzn〉(‖Kzm‖‖Kzn‖)−1. In the non-analytic case we
have to stop here, but then h can be bounded and nonconstant at one time. If h is
analytic and of suitable growth, the latter term is, by the reproducing property, equal
to

(hKzm)(zn)(‖Kzm‖‖Kzn‖)−1 = h(zn) exp(πznz̄m −
π

2
(|zn|2 + |zm|2)).

This formula for anm enables one to rephrase the Shatten-von Neumann ideal mem-
bership croterion in terms of h. In the p = 2 -case the Hilbert-Schmidt condition
becomes the finiteness requirement for the double sum of squares of

|〈hKzm
,Kzn

〉|(‖Kzm
‖‖Kzn

‖)−1

taken over (m,n) ∈ N2. By the frame condition, the latter is finite iff

∞∑
m=1

‖hkzm‖2 < +∞.

The Berezin symbol function h̃(z) defined as the inner product 〈hkz, kz〉 corre-
sponds to the diagonal entries (if z is confined to the lattice points zj). Analogously,
one defines the Berezin 2-variable symbol

h̃(z, w) := 〈hkz, kw〉.

One can obtain h(z, w) from the one-variable symbol function h(·) by polarisation.
Hence we deduce (in any reproducing kernel Hilbert space, where a given lattice of
points yields a frame of normalised reproducing kernels) the following useful observa-
tion

Corollary 4.1. The matrix of T in the frame of normalised reproducing kernels (this
time not with respect to its dual frame) has entries simply equal to the values of its
two-variable Berezin symbol at the lattice points.

In this way we have from matricial following characterisation of the Schatten-von
Neumann classes the following description, which is not new, but has now almost
elementary proof:

Corollary 4.2. The Toeplitz operator Th on the Fock space is Hilbert-Schmidt iff
for the (chosen as above) lattice points zj and the corresponding frame of normalised
reproducing kernels kzj

the corresponding Berezin symbol satisfies
∑
j,n |h̃(zj , zn)|2 <

∞, or equivalently, if
∑
j |h̃(zj)|2 <∞.

For h nonnegative -the trace equals the trace norm and one can obtain the Berezin
symbol descriptions of the Sp-ideal of membership using our matricial form. This is
giving some estimates of the Lp(µ)-norms of h in terms of our lattice points, which
is interesting in its own sake in the nonanalytic h case. Analogous consequences may
be expected in the case of Hankel operators.
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Let us mention that the case of d = ∞ has physical motivation as the infinite
number of degrees of freedom. Here the situation complicates, but some formal esti-
mates apply at least to the p = 2 case (the work in progress). The measure-theoretic
approach has to be done with extreme care, since in this d = ∞ case the Gaussian
measure lives on a larger space including H as a set of measure zero, while the analytic
structure is based on H (although for a given element f it can be extended to a set
(depending, unfortunately on f) of full measure [8]. The related frames of reproducing
kernels seem a very interesting field for future study.
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