PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Polynomial stability of evolution operators in Banach spaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper considers three concepts of polynomial stability for linear evolution operators which are defined in a general Banach space and whose norms can increase not faster than exponentially. Our approach is based on the extension of techniques for exponential stability to the case of polynomial stability. Some illustrating examples clarify the relations between the stability concepts considered in paper. The obtained results are generalizations of well-known theorems about the uniform and nonuniform exponential stability.
Rocznik
Strony
279--288
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
autor
  • Academy of Romanian Scientists Independentei 54, Bucharest, 050094, Romania Departament of Mathematics West University of Timisoara Bd. V. Parvan, Nr.4, 300223, Timisoara, Romania, megan@math.uvt.ro
Bibliografia
  • [1] E.A. Barbashin, Introduction to the Theory of Stability, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1970.
  • [2] L. Barreira, C. Valls, Stability of Nonautonomous Differential Equations, Lect. Notes Math., Vol. 1926, 2008.
  • [3] L. Barreira, C. Valls, Polynomial growth rates, Nonlinear Analysis 7 (2009), 5208–5219.
  • [4] C. Buse, On nonuniform exponential stability of evolutionary processes, Rend. Sem. Mat. Univ. Pol. Torino 52 (1994), 395–406.
  • [5] C. Buse, M. Megan, M. Prajea, P. Preda, The strong variant of a Barbashin theorem on stability of solutions for nonautonomous differential eguations in Banach spaces, Integral Equations and Operator Theory 59 (2007) 4, 491–500.
  • [6] J.L. Daleckii, M.G. Krein, Stability of Differential Equations in Banach Spaces, Providence, R.I., 1974.
  • [7] R. Datko, Uniform asymptotic exponential stability of evolutionary processes, Siam J. Math. Anal. 3 (1973), 189–196.
  • [8] A.A. Minda, M. Megan, On (h,k)-stability of evolution operators in Banach spaces, Applied Mathematics Letters 24 (2011), 44–48.
  • [9] C. Stoica, M. Megan, On uniform exponential stability for skew-evolution semiflows on Banach spaces, Nonlinear Analysis 72 (2010), 1305–1313.
  • [10] C. Stoica, M. Megan, Nonuniform behaviors for skew-evolution semiflous in Banach spaces, Operator Theory Live, Theta Series in Advances Mathematics (2010), 203–212.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0005-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.