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THE EQUALITY CASE
IN SOME RECENT CONVEXITY INEQUALITIES
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Abstract. In this paper, we investigate a functional equation related to some recently
introduced and investigated convexity type inequalities.
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1. INTRODUCTION

In a recent paper [24] by Varošanec, a common generalization of convex and s-convex
functions, Godunova-Levin functions, and P-functions is introduced in the following
way: Let I be a nonvoid subinterval of R (the set of all real numbers), h : [0, 1]→ R
and f : I → R be real-valued functions satisfying the inequality

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) (1.1)

for all x, y ∈ I and t ∈]0, 1[. An even more general notion, the so-called
(T, h)-convexity, can be found in Házy [11]: Let X be a real or complex normed
space, D ⊂ X be a nonempty convex set, ∅ 6= T ⊂ [0, 1], and h : T → R be a function.
A function f : D → R is (T, h)-convex if (1.1) holds for all x, y ∈ D and t ∈ T . It is
clear that this generalizes the concepts of convexity (h(t) = t, t ∈ [0, 1], [24], [21]), the
Breckner-convexity (h(t) = ts, t ∈]0, 1[, for some s ∈ R, [5], [6]), the Godunova-Levin
functions (h(t) = t−1, t ∈]0, 1[, [10]), the P-functions (h(t) = 1, t ∈ [0, 1], [18]),
and the t-convexity (T = {t, 1 − t}, h(t) = t, h(1 − t) = 1 − t, where 0 < t < 1
is a fixed number, Kuhn [14]). For further related results see Burai-Házy [1, 2] and
Burai-Házy-Juhász [3, 4].

In this note, we focus on the functional equation related to these convexity prop-
erties and give the solutions of the following problem. Let X be a real or complex
topological vector space, D ⊂ X be a nonempty open set, T be a nonempty set,
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and α, β, a, b : T → R be given functions. The problem is to find all the solutions
f : D → R of the functional equation

f(α(t)x+ β(t)y) = a(t)f(x) + b(t)f(y) (x, y ∈ D, t ∈ T ) (1.2)

provided that D is (α, β)-convex, that is, α(t)x + β(t)y ∈ D whenever x, y ∈ D and
t ∈ T . To avoid the trivialities and the unimportant cases, we suppose that there
exists an element t0 ∈ T such that

α(t0)β(t0)a(t0)b(t0) 6= 0. (1.3)

We refer to the solutions of (1.2) as (α, β, a, b)-affine functions and the solutions f of
the corresponding inequality

f(α(t)x+ β(t)y) ≤ a(t)f(x) + b(t)f(y) (x, y ∈ D, t ∈ T )

will be called (α, β, a, b)-convex functions. Besides those convexity notions we listed
above this is a generalization of (t, q)-convexity (T = {t}, α(t) = t, β(t) = 1−t, a(t) =
q, b(t) = 1−q, where t, q ∈]0, 1[ are fixed numbers, Kuhn [15], Matkowski-Pycia [16]),
and Orlicz s-convexity (T = [0, 1], α(t) = ts, β(t) = (1− t)s, a(t) = t, b(t) = 1− t for
all t ∈ T and for some s ≥ 1, Orlicz [17], Hudzik-Maligranda [12]).

Our purpose is to describe the (α, β, a, b)-affine functions. Throughout this paper
X denotes a real or complex topological vector space. A function A : X → R is called
additive if it satisfies the Cauchy functional equation

A(x+ y) = A(x) +A(y) (x, y ∈ X).

Given a subfield S ⊆ R, a function ϕ : S → R is said to be a field-homomorphism if
ϕ is additive and multplicative on S, i.e.,

ϕ(s+ t) = ϕ(s) + ϕ(t) and ϕ(st) = ϕ(s)ϕ(t) (s, t ∈ S).

2. THE RESULTS

Our investigations are based on the following extension theorem which is an immediate
consequence of Theorem 1 in Radó-Baker [19].

Theorem 2.1. Let U be a nonempty, open, connected subset of X × X and define
the following sets

U0 := {x+ y | (x, y) ∈ U},
U1 := {x | ∃ y ∈ X : (x, y) ∈ U}, and
U2 := {y | ∃x ∈ X : (x, y) ∈ U}.

Suppose that the functions fi : Ui → R, (i = 0, 1, 2) satisfy the functional equation

f0(x+ y) = f1(x) + f2(y)
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for all (x, y) ∈ U . Then there exist a unique additive function A : X → R and
a unique pair (c1, c2) ∈ R2 such that

f0(x) = A(x) + c1 + c2 (x ∈ U0),
f1(x) = A(x) + c1 (x ∈ U1), and
f2(x) = A(x) + c2 (x ∈ U2).

An important consequence of the above theorem is the following result.

Theorem 2.2. Let γ, δ, p, q ∈ R and ∅ 6= D ⊂ X be an open and connected set such
that γδpq 6= 0 and γx + δy ∈ D for all x, y ∈ D. Then the function f : D → R
satisfies the functional equation

f(γx+ δy) = pf(x) + qf(y) (x, y ∈ D) (2.1)

if, and only if, there exist an additive function A : X → R and a constant c ∈ R such
that

A(γx) = pA(x) (x ∈ X),
A(δx) = qA(x) (x ∈ X),

c(p+ q − 1) = 0, and
f(x) = A(x) + c (x ∈ D).

(2.2)

Proof. Equation (2.1) implies that

f(x+ y) = pf
( 1
γ
x
)

+ qf
(1
δ
y
)

(x ∈ γD, y ∈ δD).

Applying Theorem 2.1 for the open and connected set U := (γD) × (δD) and the
triplet of functions

f0(x) := f(x), x ∈ γD + δD ⊂ D,

f1(x) := pf
( 1
γ
x
)
, x ∈ γD,

f2(x) := qf
(1
δ
x
)
, x ∈ δD,

we obtain that
pf

( 1
γ
x
)

= A0(x) + c0 (x ∈ γD)

with some additive function A0 : X → R and c0 ∈ R. Thus

f(x) =
1
p
A0(γx) +

c0
p

(x ∈ D),

whence, with the definitions A(x) := 1
pA0(γx), x ∈ X and c := c0

p ,

f(x) = A(x) + c (x ∈ D)

follows.
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Obviously, A : X → R is additive. Replacing this form of f into (2.1), we find
that

A(γx)− pA(x) +A(δy)− qA(y)− c(p+ q − 1) = 0 (x, y ∈ D).

This shows that, for all fixed y ∈ D, the polynomial function

x 7→ A(γx)− pA(x) +A(δy)− qA(y)− c(p+ q − 1) (x ∈ X)

vanishes on D, therefore it vanishes everywhere on X (see Székelyhidi [23]). This
implies the other equalities of (2.2), as well. The converse is straightforward.

In the result below we investigate homogeneity properties of additive functions.
Given an additive function A : R→ R, we introduce its set of homogeneity pairs HA

as follows:
HA := {(s, t) ∈ R2 | A(sx) = tA(x) for all x ∈ R}.

Theorem 2.3. Let A : R→ R be a nonzero additive function. Then there exist a sub-
field SA ⊆ R (called the homogeneity field of A) and an injective field-homomorphism
ϕA : SA → R (called the homogeneity field-homomorphism of A) such that HA is
equal to the graph of ϕA, i.e.,

HA = {(s, ϕA(s)) | s ∈ SA}. (2.3)

Conversely, for every subfield S ⊆ R and injective field-homomorphism ϕ : S → R,
there exists a nonzero additive function A : X → R such that S ⊆ SA and ϕA|S = ϕ.

Proof. Denote by SA the domain of the relation HA. We show that, HA is in fact a
function. Assume that (s, t1), (s, t2) ∈ HA. Then, for all x ∈ X,

(t1 − t2)A(x) = t1A(x)− t2A(x) = A(sx)−A(sx) = 0,

which, by the nontriviality of A, yields that t1 = t2 proving that the relation HA

is a function. This means that there exists a function ϕA : SA → R such that
(2.3) holds. It remains to show that SA is a subfield of R and ϕA is an injective
field-homomorphism.

To prove the injectivity, let (s1, t), (s2, t) ∈ HA. Then, for all x ∈ X,

A((s1 − s2)x) = A(s1x)−A(s2x) = tA(x)− tA(x) = 0,

which, by the nontriviality of A, yields that s1 = s2. By the injectivity, ϕA(s) is
nonzero whenever s is different from zero.

Let s, t ∈ S. Then, using (2.3), for all x ∈ X, we get that

A((s− t)x) = A(sx)−A(tx) = ϕA(s)A(x)− ϕA(t)A(x) = (ϕA(s)− ϕA(t))A(x).

Hence, (s − t, ϕA(s) − ϕA(t)) ∈ HA, which yields that s − t ∈ S and ϕA(s − t) =
ϕA(s)− ϕA(t). Thus S is a group with respect to the addition and ϕA is additive.

Similarly, for all s ∈ S, t ∈ S \ {0}, and x ∈ X, we obtain that

ϕA(t)A
(s
t
x
)

= A(sx) = ϕA(s)A(x).
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Hence
(s
t
,
ϕA(s)
ϕA(t)

)
∈ HA, which yields that

s

t
∈ S and ϕA

(s
t

)
=
ϕA(s)
ϕA(t)

. This proves

that S is a semigroup under the multiplication whose nonzero elements form a group
and ϕA is also multiplicative.

To prove the reversed statement, let S ⊆ R be a subfield and ϕ : S → R be an
injective field-homomorphism. Consider X as a vector space over S and let {xγ | γ ∈
Γ} be a Hamel base of X over S. In addition, let {aγ | γ ∈ Γ} be an arbitrary family
of real numbers such that at least one of these elements is different from zero. Given
an element x ∈ X, it can uniquely be written in the form

x = s1xγ1 + . . .+ smxγm , (2.4)

where m ∈ N ∪ {0}, s1, . . . , sm ∈ S, and γ1, . . . , γm are pairwise distinct elements of
the index set Γ. Now define A(x) by

A(x) := ϕ(s1)aγ1 + . . .+ ϕ(sm)aγm
.

Using the additivity of ϕ, it is immediate to see that A is a nonzero additive function.
It remains to show that, for all s ∈ S, (s, ϕ(s)) ∈ HA, i.e.,

A(sx) = ϕ(s)A(x) (x ∈ X). (2.5)

If x is of the form (2.4), then sx = (ss1)xγ1 + . . . + (ssm)xγm and hence, by the
multiplicativity of ϕ, we get

A(sx) = ϕ(ss1)aγ1 + . . .+ ϕ(ssm)aγm
= ϕ(s)

(
ϕ(s1)aγ1 + . . .+ ϕ(sm)aγm

)
=

= ϕ(s)A(x),

which completes the proof of (2.5).

Remark 2.4. The equality stated in (2.3) can be rewritten as the following identity:

A(sx) = ϕA(s)A(x) (s ∈ SA, x ∈ X). (2.6)

The additive and multiplicative properties of ϕA imply that if s ∈ S is an algebraic
number over a subfield of R then ϕA(s) must be one of its algebraic conjugates. In
particular, if s is a rational number then, ϕA(s) = s. On the other hand, if s ∈ S is
transcendent, then ϕA(s) can be any transcendental number. For an account of such
results see the paper [8] by Z. Daróczy. Those real numbers s such that (s, s) ∈ HA

also form a subfield of R (cf. Rätz [20]). This easily follows from the fact that they
are characterized by the fixed point equation ϕA(s) = s.

An easy consequence of Theorem 2.2 and Theorem 2.3 is the following result.

Theorem 2.5. Let T be a nonempty set, and α, β, a, b : T → R be given functions
satisfying property (1.3) for some t0 ∈ T . Let furthermore, ∅ 6= D ⊂ X be an open
connected and (α, β)-convex set. Then f : D → R is a nonconstant (α, β, a, b)-affine
function if, and only if, there exist a nonzero additive function A : X → R and a
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constant c ∈ R such that α(T ) ∪ β(T ) is contained by the homogeneity field SA of
A and

a(t) = ϕA(α(t)) (t ∈ T ),
b(t) = ϕA(β(t)) (t ∈ T ),

c(a(t) + b(t)− 1) = 0 (t ∈ T ), and
f(x) = A(x) + c (x ∈ D)

(2.7)

where ϕA : SA → R is the homogeneity field-homomorphism of A.

Proof. Applying Theorem 2.2 with γ := α(t0), δ := β(t0), p := a(t0), and q := b(t0),
it follows that there exist an additive function A : X → R and a constant c ∈ R such
that f(x) = A(x) + c for all x ∈ D.

To see that the first three equations in (2.7) are valid, we substitute this form of
f into (1.2) and get that, for all x, y ∈ D and t ∈ T ,

A(α(t)x)− a(t)A(x) +A(β(t)y)− b(t)A(y)− c(a(t) + b(t)− 1) = 0. (2.8)

In other words, for all fixed y ∈ D and t ∈ T , the polynomial function

x 7→ A(α(t)x)− a(t)A(x) +A(β(t)y)− b(t)A(y)− c(a(t) + b(t)− 1) (x ∈ X)

vanishes on the open set D, therefore it vanishes everywhere on X. (See Székelyhidi
[23].) Analogously, for all fixed x ∈ X and t ∈ T , the polynomial function

y 7→ A(α(t)x)− a(t)A(x) +A(β(t)y)− b(t)A(y)− c(a(t) + b(t)− 1) (y ∈ X)

vanishes on D, therefore it vanishes everywhere on X. Therefore, (2.8) holds for all
x, y ∈ X and t ∈ T .

Thus, with simple substitutions, for all t ∈ T and x ∈ X, we obtain that

A(α(t)x) = a(t)A(x), A(β(t)x) = b(t)A(x), c(a(t) + b(t)− 1) = 0.

The first two equalities yield that (α(t), a(t)) and (β(t), b(t)) belong to HA for all
t ∈ T . Therefore, α(T ) ∪ β(T ) ⊆ SA and the first two equations in (2.7) are also
satisfied.

3. REMARKS AND EASY CONSEQUENCES OF THEOREM 2.5

Remark 3.1. Suppose that α, β, a, b : T → R are given functions, ∅ 6= D ⊂ X such
that, for some t ∈ T ,

α(t) + β(t) = a(t) + b(t) = 1, a(t) > 0, b(t) > 0, and α(t)x+ β(t)y,
x+ y

2
∈ D

whenever x, y ∈ D. Then every (α, β, a, b)-convex function f : D → R is Jensen
convex, i.e.

f

(
x+ y

2

)
≤ f(x) + f(y)

2
(x, y ∈ D),
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and every (α, β, a, b)-affine function f : D → R satisfies the Jensen equation

f

(
x+ y

2

)
=
f(x) + f(y)

2
(x, y ∈ D).

In Kuczma [13, p. 315], there is an extension theorem for the Jensen equation. There
D is a subset of Rn with nonempty interior. Our statements follow easily from the
identity (see Daróczy-Páles [9], and also Matkowski-Pycia [16])

x+ y

2
= α(t)

[
α(t)

x+ y

2
+ β(t)y

]
+ β(t)

[
α(t)x+ β(t)

x+ y

2

]
(x, y ∈ D).

Finally, we list some easy consequences of Theorem 2.5.

Corollary 3.2. If α(T ) ∪ β(T ) contains a set of positive Lebesgue measure then the
additive function A in Theorem 2.5 is a linear functional on X and a = α, b = β.

Proof. In this case, by a well-known theorem of Steinhaus [22], the homogeneity
field SA must contain an interval of positive length. Therefore SA = R. Thus, by
the classical theorem of Darboux [7] and taking into consideration (1.3) to hold for
some t0 ∈ T , we have that ϕA(t) = t for all t ∈ R. The remaining statements are
obvious.

The following corollary is a trivial consequence of Corollary 3.2.

Corollary 3.3. Suppose that, for f : D → R and for all x, y ∈ D, the equality holds
in the defining inequality of Breckner-convexity or Orlicz-convexity. Then f must be
the constant function except the case s = 1.

Taking into consideration Remark 2.4 (see also Daróczy [8]), we have

Corollary 3.4. If t, q ∈]0, 1[ are fixed, T = {t}, α(t) = t, β(t) = 1− t, a(t) = q, b(t) =
1− q then there exists nonconstant (α, β, a, b)-affine function if, and only if, t and q
are conjugate, i.e., they are both transcendental or they are both algebraic and have
the same minimal polynomial with rational coefficients.

Acknowledgments
This research has been supported by the Hungarian Scientific Research Fund (OTKA)
Grant NK81402 and by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project im-
plemented through the New Hungary Development Plan co-financed by the European
Social Fund, and the European Regional Development Fund.



276 Gyula Maksa, Zsolt Páles

REFERENCES

[1] P. Burai, A. Házy, On Orlicz-convex functions, Proc. of the 12th Symposium of Mathe-
matics and Its Applications, Editura Politechnica, Temesvár, (2010), 73–79.

[2] P. Burai, A. Házy, Bernstein-Doetsch type results for generalized convex functions, Proc.
of the 12th Symposium of Mathematics and Its Applications, Editura Politechnica,
Temesvár, (2010), 118–124.

[3] P. Burai, A. Házy, T. Juhász, Bernstein-Doetsch type results for s-convex functions,
Publ. Math. Debrecen 75 (2009) 1–2, 23-31.

[4] P. Burai, A. Házy, On approximately h-convex functions, accepted for publication, Jour-
nal of Convex Analysis, available electronically
http://www.heldermann.de/JCA/JCA18/JCA182/jca18029.htm.

[5] W.W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funk-
tionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) 23 (1978), 13–20.

[6] W.W. Breckner, Hölder-continuity of certain generalized convex functions, Optimiza-
tion 28 (1994), 201–209.

[7] G. Darboux, Sur la composition des forces en statique, Bull. Sci. Math. 9 (1875) 1,
281–288.

[8] Z. Daróczy, Notwendige und hinreichende Bedingungen für die Existenz von nichtkon-
stanten Lösungen linearer Funktionalgleichungen, Acta Sci. Math. (Szeged) 22 (1961),
31–41.

[9] Z. Daróczy, Zs. Páles, Convexity with given infinite weight sequences, Stochastica 11
(1987), 5–12.

[10] E.K. Godunova, V.I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vy-
puklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov.
Sb. Nauc. Trudov, MGPI, Moskva, 1985, pp. 138–142.

[11] A. Házy, Bernstein-Doetsch type results for h-convex functions, accepted for publication,
Math. Ineq. Appl. (2011).

[12] H. Hudzik, L. Maligranda, Some remarks on si-convex functions, Aequationes Math.
48 (1994), 100–111.

[13] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities,
Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach Vol. CDLXXXIX (Państwowe
Wydawnictwo Naukowe – Uniwersytet Śla̧ski, Warszawa–Kraków–Katowice, 1985).

[14] N. Kuhn, A note on t–convex functions, General Inequalitis 4, Internat. Ser. Numer.
Math. 71 (1984), 269–276.

[15] N. Kuhn, On the structure of (s, t)-convex functions, General Inequalitis 5, Internat.
Ser. Numer. Math. 80 (1987), 161–174.

[16] J. Matkowski, M. Pycia, On (α, a)-convex functions, Arch. Math (Basel) 64 (1995),
132–138.

[17] W. Orlicz, A note on modular spaces I, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom.
Phys. 9 (1961), 157–162.



The equality case in some recent convexity inequalities 277

[18] C.E.M. Pearce, A.M. Rubinov, P-functions, quasi-convex functions and Hadamard-type
inequalities, J. Math. Anal. Appl. 240 (1999), 92–104.

[19] F. Radó, J.A. Baker, Pexider’s equation and aggregation of allocations, Aequationes
Math. 32 (1987), 227–239.

[20] J. Rätz, On the homogeneity of additive mappings, Aequationes Math. 14 (1976), 67–71.

[21] A.W. Roberts, D.E. Varberg, Convex Functions, Academic Press, New York, 1973.

[22] H. Steinhaus, Sur les distances des points des ensambles de mesure positive, Fund.
Math. 1 (1920), 99–104.

[23] L. Székelyhidi, Regularity properties of polynomials on groups, Acta Math. Hung. 45
(1985), 15–19.

[24] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 32 (2007), 303–311.

Gyula Maksa
maksa@math.klte.hu

University of Debrecen
Institute of Mathematics
H-4010 Debrecen, Pf. 12, Hungary

Zsolt Páles
pales@math.klte.hu

University of Debrecen
Institute of Mathematics
H-4010 Debrecen, Pf. 12, Hungary

Received: October 20, 2010.
Accepted: October 28, 2010.


