PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Four positive periodic solutions of a discrete time Lotka-Volterra competitive system with harvesting terms

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, by using Mawhin's continuation theorem of coincidence degree theory, we establish the existence of at least four positive periodic solutions for a discrete time Lotka-Volterra competitive system with harvesting terms. An example is given to illustrate the effectiveness of our results.
Rocznik
Strony
257--267
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Horst R. Thieme, Mathematics in Population Biology, [in:] Princeton Syries in Theoretial and Computational Biology, Princeton University Press, Princeton, NJ, 2003.
  • [2] Z. Ma, Mathematical modelling and studing on species ecology, Education Press, Hefei, 1996 [in Chinese].
  • [3] R.P. Agarwal, Difference Equations and Inequalities: Theory, Method and Applications, Monographs and Textbooks in Pure and Applied Mathematics, No. 228, Marcel Dekker, New York, 2000.
  • [4] R.P. Agarwal, P.J.Y.Wong, Advance Topics in Difference Equations, Kluwer Publisher, Dordrecht, 1997.
  • [5] H.I. Freedman, Deterministic Mathematics Models in Population Ecology, Marcel Dekker, New York, 1980.
  • [6] J.D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.
  • [7] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Boston, 1992.
  • [8] M. Fan, K. Wang, Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system, Math. Comput. Modelling 35 (2002) 9–10, 951–961.
  • [9] Y. Chen, Multiple periodic solutions of delayed predator-prey systems with type IV functional responses, Nonlinear Anal. Real World Appl. 5 (2004) 45–53.
  • [10] Q. Wang, B. Dai, Y. Chen, Multiple periodic solutions of an impulsive predator-prey model with Holling-type IV functional response, Math. Comput. Modelling 49 (2009), 1829–1836.
  • [11] D. Hu, Z. Zhang, Four positive periodic solutions to a Lotka-Volterra cooperative system with harvesting terms, Nonlinear Anal. Real World Appl. 11 (2010), 1115–1121.
  • [12] Y. Li, Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems, J. Math. Anal. Appl. 255 (2001) 260–280.
  • [13] Desheng Tian, Xianwu Zeng, Existence of at least two periodic solutions of a ratio-dependence predator-prey model with exploited term, Acta Math. Appl. Sin. English Ser. 21 (2005) 3, 489–494.
  • [14] K. Zhao, Y. Ye, Four periodic solutions to a periodic Lotka-Volterra predatory-prey system with harvesting terms, Nonlinear. Anal. Real World Appl. (doi: 10.1016/j.nonrwa.2009.08.001).
  • [15] R.Y. Zhang, et al., Periodic solutions of a single species discrete population modle with periodic harvest/stock, Comput. Math. Appl. 39 (2000) 77–90.
  • [16] R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differetial Equitions, Springer Verlag, Berlin, 1977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0005-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.