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OF A DISCRETE TIME LOTKA-VOLTERRA

COMPETITIVE SYSTEM
WITH HARVESTING TERMS
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Abstract. In this paper, by using Mawhin’s continuation theorem of coincidence degree
theory, we establish the existence of at least four positive periodic solutions for a discrete time
Lotka-Volterra competitive system with harvesting terms. An example is given to illustrate
the effectiveness of our results.
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1. INTRODUCTION

Generally, the model of a two species Lotka-Volterra competitive with harvesting
terms is described as [1, 2]:{

ẋ = x
(
a1 − b1x− c1y

)
− h1,

ẏ = y
(
a2 − b2y − c2x

)
− h2,

(1.1)

where x and y are functions of time representing the densities of two competitive
species, respectively; hi, i = 1, 2 are exploited terms of ith species standing for har-
vest; ai, bi, ci, i = 1, 2 are the intrinsic growth rates, death rate, competitive rates,
respectively. Moreover, we always assume that all of the parameters are positive
constants.

Considering the inclusion of the effect of a changing environment, that is the
following model:{

˙x(t) = x(t)
(
a1(t)− b1(t)x(t)− c1(t)y(t)

)
− h1(t),

˙y(t) = y(t)
(
a2(t)− b2(t)y(t)− c2(t)x(t)

)
− h2(t),

(1.2)
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where ai(t), bi(t), ci(t) and hi(t), i = 1, 2 are all positive continuous ω-periodic func-
tions.

Since many authors [3–6] have argued that the discrete time models governed by
difference equations are more appropriate than the continuous ones when the popula-
tions have non-overlapping generations, also, since discrete time models can also pro-
vide efficient computational models of continuous models for numerical simulations,
it is reasonable to study a discrete time predator-prey system with harvesting terms
governed by difference equations. One of the way of deriving difference equations
modelling the dynamics of populations with non-overlapping generations is based on
appropriate modifications of the corresponding models with overlapping generations
[7,8]. In this approach, differential equations with piecewise constant arguments have
proved to be useful.

Following the same idea and the same method [7, 8], one can easily derive the
following discrete analogues of system (1.2), that is

x(k + 1) = x(k) exp
[
a1(k)− b1(k)x(k)− c1(k)y(k)− h1(k)

x(k)

]
,

y(k + 1) = y(k) exp
[
a2(k)− b2(k)y(k)− c2(k)x(k)− h2(k)

y(k)

]
.

(1.3)

where ai(k), bi(k), ci(k), hi(k), i = 1, 2 are positive ω-periodic sequences, ω is a fixed
positive integer denoting the common period of all the parameters in system (1.3).

In recent years, the coincidence degree has been applied to study the existence
of a periodic solution or multiple periodic solutions in delayed differential population
models and many good results have been obtained, see e.g. [9–15]. However, there are
few papers published on multiple periodic solutions for discrete models governed by
difference equations. For system (1.3), to the best of our knowledge, there is no result
on multiple periodic solutions in the literature. So, in this paper, our purpose is to
study the existence of four positive periodic solutions for system (1.3) by employing
the continuation theorem of coincidence degree theory. Since the discrete system is
more difficult to deal with. we will employ new arguments in our discussion.

The organization of this paper is as follows. In Section 2, we introduce some nota-
tions and definitions, and state some preliminary results needed in later sections. In
Section 3, we shall use Mawhin’s continuation theorem [16] to establish the existence
of periodic solutions of (1.3). In Section 4, we will give an example to illustrate the
effectiveness of our results.

2. PRELIMINARIES

In this section, we shall introduce some notations and definitions, and state some
preliminary results.

Let X and Z be real normed vector spaces. Let L : DomL ⊂ X → Z be a linear
mapping and N : X × [0, 1] → Z be a continuous mapping. The mapping L will
be called a Fredholm mapping of index zero if dim Ker L = codim Im L < ∞ and
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Im L is closed in Z. If L is a Fredholm mapping of index zero, then there exists
continuous projectors P : X → X and Q : Z → Z such that ImP = KerL and
KerQ = Im L = Im (I −Q), and X = KerL

⊕
Ker P,Z = Im L

⊕
ImQ. It follows

that L|Dom L∩Ker P : (I−P )X → Im L is invertible and its inverse is denoted by KP .
If Ω is a bounded open subset of X, the mapping N is called L-compact on Ω̄× [0, 1],
if QN(Ω̄× [0, 1]) is bounded and KP (I −Q)N : Ω̄× [0, 1]→ X is compact. Because
Im Q is isomorphic to Ker L, there exists an isomorphism J : ImQ→ Ker L.

The notation deg following means coincidence degree [16], the Mawhin’s con-
tinuous theorem [16, p. 40] is given as follows:

Lemma 2.1 ([16]). Let L be a Fredholm mapping of index zero and let N be L-compact
on Ω̄× [0, 1]. Assume:

(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ) is such that x /∈ ∂Ω ∩
Dom L;

(b) QN(x, 0) 6= 0 for each x ∈ ∂Ω ∩Ker L;
(c) deg(JQN(x, 0),Ω ∩KerL, 0) 6= 0.

Then Lx = N(x, 1) has at least one solution in Ω ∩DomL.

For the sake of convenience, we introduce the following notation:

Iω = {0, 1, · · · , ω − 1}, Z0 = {0,±1,±2, · · · ,±n, · · · },

gL = min
k∈Iω

g(k), gM = max
k∈Iω

g(k), ḡ =
1
ω

ω−1∑
k=0

g(k),

where g(k) is a ω-periodic sequence of real numbers defined for k ∈ Z0.

Lemma 2.2 ([14]). Let x > 0, y > 0, z > 0 and x > 2
√
yz, for the functions

f(x, y, z) =
x+

√
x2 − 4yz
2z

and g(x, y, z) =
x−

√
x2 − 4yz
2z

, the follow assertions
hold.

(1) f(x, y, z), g(x, y, z) are monotonically increasing and monotonically decreasing on
the variable x, respectively.

(2) f(x, y, z), g(x, y, z)are monotonically decreasing and monotonically increasing on
the variable y, respectively.

(3) f(x, y, z), g(x, y, z)are monotonically decreasing and monotonically increasing on
the variable z, respectively.

In order to apply coincidence to our study system (1.3), we will state the following
definitions and propositions. For details and proof, see [15].

Define lω = {u(k) = (u1(k), u2(k))T : ui(k + ω) = ui(k), k ∈ Z0, i = 1, 2}. For
a = (a1, a2)T ∈ R2, define |a| = max{a1, a2}. Let ‖u(k)‖ = max

k∈ω
|u(k)|, for u(k) ∈ lω.

Equipped with above norm ‖ · ‖, lω is a finite-dimensional Banach space.
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Let

lω0 =
{
u(k) = {(u1(k), u2(k))T } ∈ lω :

ω−1∑
k=0

ui(k) = 0, i = 1, 2
}
,

lωc =
{
u(k) = {(u1(k), u2(k))T } ∈ lω : ui(k) = ui ∈ R, i = 1, 2

}
,

then it follows that lω0 and lωc are both closed linear subspaces of lω and

lω = lω0
⊕

lωc , dim lωc = 2.

Now we state the main result in this paper.
Throughout this paper, we assume that:

(H1) aL1 −
cM1 aM2
bL2

> 2
√
bM1 hM1 ;

(H2) aL2 −
cM2 aM1
bL1

> 2
√
bM2 hM2 .

For convenience, we note

A±1 =

aL1 −
cM1 aM2
bL2

±

√
[aL1 −

cM1 aM2
bL2

]2 − 4bM1 hM1

2bM1
,

A±2 =

aL2 −
cM2 aM1
bL1

±

√
[aL2 −

cM2 aM1
bL1

]2 − 4bM2 hM2

2bM2
.

3. EXISTENCE OF AT LEAST FOUR POSITIVE PERIODIC SOLUTIONS

In this section, by using Mawhin’s continuation theorem, we shall show the existence
of at least four positive periodic solutions of (1.3).

Theorem 3.1. Assume that (H1) and (H2) hold. Then system (1.3) has at least four
positive ω-periodic solutions.

Proof. In order to use the continuation theorem of coincidence degree theory to es-
tablish the existence of solutions of (1.3), we make the substitution

x(k) = exp{u1(k)}, y(k) = exp{u2(k)}. (3.1)

Then system (1.3) can be reformulated as
u1(k + 1)− u1(k) = a1(k)− b1(k)eu1(k) − c1(k)eu2(k) − h1(k)

eu1(k)
,

u2(k + 1)− u2(k) = a2(k)− b2(k)eu2(k) − c2(k)eu1(k) − h2(k)
eu2(k)

.

(3.2)
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We prefer to study system (3.2) in the sequel because it is more convenient for
our further discussion.

Now we define X = Z = lω, (Lu)(k) = u(k + 1)− u(k) and

N(u, λ)(k) =

 a1(k)− b1(k)eu1(k) − λc1(k)eu2(k) − h1(k)
eu1(k)

a2(k)− b2(k)eu2(k) − λc2(k)eu1(k) − h2(k)
eu2(k)

 ,

for u ∈ X and k ∈ Z0. It is trivial to see that L is a bounded linear operator and

KerL = lωc , ImL = lω0

as well as
dim KerL = 2 = codim ImL;

then it follows that L is a Fredholm mapping of index zero. Define

Pu =
1
ω

ω−1∑
k=0

u(k), u ∈ X, Qz =
1
ω

ω−1∑
k=0

z(k), z ∈ Z.

It is easy to show that P and Q are continuous projections such that

ImP = KerL, ImL = KerQ = Im (I −Q).

Moreover, the generalized inverse (to L) Kp : ImL → KerP ∩ DomL exists and is
given by

Kp(z) =
ω−1∑
s=0

z(s)− 1
ω

ω−1∑
s=0

(ω − s)z(s).

Clearly, QN and KP (I − Q)N are continuous. Since X is a finite-dimensional
Banach space, one can easily show that KP (I−Q)N(Ω̄× [0, 1]) are relatively compact
for any open bounded set Ω ⊂ X. QN(Ω̄ × [0, 1]) is bounded, and hence N is
L-compact on Ω̄ for any open bounded set Ω ⊂ X. Now we reach the position to search
for an appropriate open, bounded subset Ω for the application of the continuation
theorem.

In order to use Lemma 2.1, we have to find at least four appropriate open bounded
subsets in X. Considering the operator equationLu = λN(u, λ), that is

u1(k + 1)− u1(k) = λ

[
a1(k)− b1(k)eu1(k) − λc1(k)eu2(k) − h1(k)

eu1(k)

]
,

u2(k + 1)− u2(k) = λ

[
a2(k)− b2(k)eu2(k) − λc2(k)eu1(k) − h2(k)

eu2(k)

]
.

(3.3)

Summing (3.3) from 0 to ω − 1 gives
0 = λ

ω−1∑
k=0

[
a1(k)− b1(k)eu1(k) − λc1(k)eu2(k)

h1(k)
eu1(k)

]
,

0 = λ
ω−1∑
k=0

[
a2(k)− b2(k)eu2(k) − λc2(k)eu1(k)

h2(k)
eu2(k)

]
.

(3.4)
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From the above two equations, we get

ω−1∑
k=0

a1(k) =
ω−1∑
k=0

[
b1(k)eu1(k) + λc1(k)eu2(k) +

h(1k)
eu1(k)

]
(3.5)

and

ω−1∑
k=0

a2(k) =
ω−1∑
k=0

[
b2(k)eu2(k) + λc2(k)eu1(k) +

h2(k)
eu2(k)

]
. (3.6)

From (3.4)–(3.6), we get

ω−1∑
k=0

|u1(k + 1)−u1(k)|≤
ω−1∑
k=0

[
a1(k)+b1(k)eu1(k)+λc1(k)eu2(k)+

h1(k)
eu1(k)

]
=2ā1ω (3.7)

and

ω−1∑
k=0

|u2(k + 1)− u2(k)|≤
ω−1∑
k=0

[
a2(k)+b2(k)eu2(k)+λc2(k)eu1(k)+

h2(k)
eu2(k)

]
=2ā2ω. (3.8)

Assume that u = (u1, u2)T ∈ X is an ω-periodic solution of system (3.3) for some
λ ∈ (0, 1). Then there exists ξi, ηi ∈ Iω such that

ui(ξi) = max
k∈Iω

ui(k), ui(ηi) = min
k∈Iω

ui(k), i = 1, 2. (3.9)

From this and (3.4), we have

u1(η1 + 1)−u1(η1) = λ

[
a1(η1)− b1(η1)eu1(η1)−λc1(η1)eu2(η1)− h1(η1)

eu1(η1)

]
≥ 0 (3.10)

and

u2(η2 +1)−u2(η2) = λ

[
a2(η2)− b2(η2)eu2(η2)−λc2(η2)eu1(η2)− h2(η2)

eu2(η2)

]
≥ 0. (3.11)

From this, we have
bL1 e

2u1(η1) − aM1 eu1(η1) + hL1 < 0

and
bL2 e

2u2(η2) − aM2 eu2(η2) + hL2 < 0,

which imply that
ln l−i < ui(ηi) < ln l+i , i = 1, 2. (3.12)

From (3.4), we have

bL1 e
u1(ξ1) < b1(ξ1)eu1(ξ1) + h1(ξ1)e−u1(ξ1) = a1(ξ1)− λc1(ξ1)eu2(ξ1) < a1(ξ1) ≤ aM1
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and

bL2 e
u2(ξ2) < b2(ξ2)eu2(ξ2) + h2(ξ2)e−u2(ξ2) = a2(ξ2)− λc2(ξ2)eu1(ξ2) < a2(ξ2) ≤ aM2 ,

which imply that

u1(η1) ≤ u1(ξ1) < ln
aM1
bL1

(3.13)

and

u2(η2) ≤ u2(ξ2) < ln
aM2
bL2

. (3.14)

From (3.4) and (3.9), we have

ā1ω >

ω−1∑
k=0

h1(k)
eu1(k)

≥ h̄1ω

eu1(ξ1)

and

ā2ω >

ω−1∑
k=0

h2(k)
eu2(k)

≥ h̄2ω

eu2(ξ2)
,

that is

u1(ξ1) > ln
h̄1

ā1
≥ ln

hL1
aM1

and

u2(ξ2) > ln
h̄2

ā2
≥ ln

hL2
aM2

.

For k ∈ Iω, from this and (3.7), (3.8), (3.13) and (3.14) gives

ui(k) ≥ ui(ξi)−
ω−i∑
k=0

|ui(k + 1)− ui(k)| > ln
hLi
aMi
− 2āiω := H1

i , i = 1, 2, (3.15)

and

ui(k) ≤ ui(ηi) +
ω−1∑
k=0

|ui(k + 1)− ui(k)| < ln
aMi
bLi

+ 2āiω := H2
i , i = 1, 2. (3.16)

From (3.4) and (3.9), we have

u1(ξ1 + 1)− u1(ξ1) = λ

[
a1(ξ1)− b1(ξ1)eu1(ξ1) − λc1(ξ1)eu2(ξ1) − h1(ξ1)

eu1(ξ1)

]
≤ 0

and

u2(ξ2 + 1)− u2(ξ2) = λ

[
a2(ξ2)− b2(ξ2)eu2(ξ2) − λc2(ξ2)eu1(ξ2) − h2(ξ2)

eu2(ξ2)

]
≤ 0.
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From this, we have

bM1 e2u1(ξ1) −
[
aL1 −

cM1 aM2
bL2

]
eu1(ξ1) + hM1 > 0

and

bM2 e2u2(ξ2) −
[
aL2 −

cM2 aM1
bL1

]
eu2(ξ2) + hM2 > 0,

which imply that
u1(ξ1) < lnA−1 or u1(ξ1) > lnA+

1 (3.17)

and
u2(ξ2) < lnA−2 or u2(ξ2) > lnA+

2 . (3.18)

By the Lemma 2.2, it is easy to verify that

H1
i < ln l−i < lnA−i < lnA+

i < ln l+i < H2
i , i = 1, 2. (3.19)

Where

l±i =
aMi ±

√
(aMi )2 − 4bLi h

L
i

2bLi
, i = 1, 2.

Clearly, A±i , H
1
i , H

2
i , l
±
i , i = 1, 2. are independent of λ.

Now let us consider QN(u, 0) with u = (u1, u2)T ∈ R2. Note that

QN(u1, u2; 0) =


ā1 − b̄1eu1 − h̄1

eu1

ā2 − b̄2eu2 − h̄2

eu2

 .

Since H1 and H2 hold, then āi > 2
√
b̄ih̄i, i = 1, 2, we can show that QN(u1, u2; 0)

has four distinct solutions:

(u1
1, u

1
2) = (lnx−, ln y−), (u2

1, u
2
2) = (lnx−, ln y+),

(u3
1, u

3
2) = (lnx+, ln y−), (u4

1, u
4
2) = (lnx+, ln y+),

where

x± =
ā1 ±

√
(ā1)2 − 4b̄1h̄1

2b̄1
, y± =

ā2 ±
√

(ā2)2 − 4b̄2h̄2

2b̄2
.

It is easy to verify that

H1
1 < ln l−1 < lnx− < lnA−1 < lnA+

1 < lnx+ < ln l+1 < H2
1

and
H1

2 < ln l−2 < ln y− < lnA−2 < lnA+
2 < ln y+ < ln l+2 < H2

2 .
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Let

Ω1 =
{
u = (u1, u2)T ∈ X

∣∣∣∣ u1(k) ∈ (ln l−1 , lnA
−
1 )

u2(k) ∈ (ln l−2 , lnA
−
2 )

}
,

Ω2 =

 u = (u1, u2)T ∈ X

∣∣∣∣∣∣∣
u1(k) ∈ ((ln l−1 , lnA

−
1 )

min
k∈Iω

u2(k) ∈ (ln l−2 , ln l
+
2 )

max
k∈Iω

u2(k) ∈ (lnA+
2 , lnH

2
2 )

 ,

Ω3 =

 u = (u1, u2)T ∈ X

∣∣∣∣∣∣∣
min
k∈Iω

u1(k) ∈ (ln l−1 , ln l
+
1 )

max
k∈Iω

u1(k) ∈ (lnA+
1 , lnH

2
1 )

u2(k) ∈ (ln l−2 , lnA
−
2 )

 ,

Ω4 =


u = (u1, u2)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣

min
k∈Iω

u1(k) ∈ (ln l−1 , ln l
+
1 )

max
k∈Iω

u1(k) ∈ (lnA+
1 , lnH

2
1 )

min
k∈Iω

u2(k) ∈ (ln l−2 , ln l
+
2 )

max
k∈Iω

u2(k) ∈ (lnA+
2 , lnH

2
2 )


.

It is easy to see that (ui1, u
i
2) ∈ Ωi, i = 1, 2, 3, 4 and Ωi are open bounded subset of

X. With the help of (3.10)-(3.20), it is not difficult to verify that Ωi ∩ Ωj = ∅, i 6= j
and Ωi satisfies condition (a) of Lemma 2.1 Moreover, when u ∈ ∂Ωi ∩ KerL, i =
1, 2, 3, 4, QN(u, 0) 6= (0, 0)T , so condition (b) of Lemma 2.1 holds.

Finally, we shall show that condition (c) of Lemma 2.1 holds. Since KerL = ImQ,
we can take J = I. A direct computation gives, for i = 1, 2, 3, 4,

deg
{
JQN(u, 0),Ωi ∩Ker L, (0, 0)T

}
=

= deg
{(

ā1 − b̄1eu1 − h̄1

eu1
, ā2 − b̄2eu2 − h̄2

eu2

)T
,Ωi ∩Ker L, (0, 0)T

}
=

= sign

∣∣∣∣∣ −b̄1eu
i
1 + h̄1e

−ui1 0
0 −b̄2eu

i
2 + h̄2e

−ui2

∣∣∣∣∣ =

= sign
[
(ā1 − 2b̄1eu

i
1)(ā2 − 2b̄2eu

i
2)
]

=

= ±1 6= 0.

So far, we have proved that Ωi (i = 1, 2, 3, 4) satisfies all the assumptions in
Lemma 2.1. Hence, system (3.2) has at least four different ω-periodic solutions. Thus
system (1.3) has at least four different positive ω-periodic solutions. This completes
the proof of Theorem 3.1.
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4. AN EXAMPLE
x(k + 1) = x(k) exp

[
3 + cos kπ3 −

4+cos kπ3
10 x(k)− 2+sin kπ

3
100 y(k)− 9+sin kπ

3
20x(k)

]
,

y(k + 1) = y(k) exp
[
3 + sin kπ

3 −
5+sin kπ

3
10 y(k)− 2+cos kπ3

10 x(k)− 2+sin kπ
3

5y(k)

]
.

(4.1)

Since, in this case

aL1 − cM1
aM2
bL2

= 2− 3
100
× 4× 10

4
=

17
10

> 1 = 2
√
bM1 hM1 ,

aL2 − cM2
aM1
bL1

= 2− 3
100
× 4× 10

3
=

7
5
>

6
5

= 2
√
bM2 hM2 .

Therefore, all conditions of Theorem 3.1 are satisfied. By Theorem 3.1, system (4.1)
has at least four positive 6-periodic solutions.
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