http://dx.doi.org/10.7494/OpMath.2011.31.2.237

OPERATOR REPRESENTATIONS OF FUNCTION ALGEBRAS AND FUNCTIONAL CALCULUS

Adina Juratoni, Nicolae Suciu

Abstract. This paper deals with some operator representations Φ of a weak*-Dirichlet algebra A, which can be extended to the Hardy spaces $H^p(m)$, associated to A and to a representing measure m of A, for $1 \leq p \leq \infty$. A characterization for the existence of an extension Φ_p of Φ to $L^p(m)$ is given in the terms of a semispectral measure F_{Φ} of Φ . For the case when the closure in $L^p(m)$ of the kernel in A of m is a simply invariant subspace, it is proved that the map $\Phi_p|H^p(m)$ can be reduced to a functional calculus, which is induced by an operator of class C_{ρ} in the Nagy-Foiaş sense. A description of the Radon-Nikodym derivative of F_{Φ} is obtained, and the log-integrability of this derivative is proved. An application to the scalar case, shows that the homomorphisms of A which are bounded in $L^p(m)$ norm, form the range of an embedding of the open unit disc into a Gleason part of A.

Keywords: weak*-Dirichlet algebra, Hardy space, operator representation, semispectral measure.

Mathematics Subject Classification: 46J25, 47A20, 46J10.

1. INTRODUCTION AND PRELIMINARIES

Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex continuous functions on X. Denote by A a function algebra on X, that is a closed subalgebra of C(X) which contains the constant functions and separates the points of X. $\mathcal{M}(A)$ stands for the set of all non zero complex homomorphisms (or Gelfand spectrum) of A. The equivalence classes of $\mathcal{M}(A)$ induced by the relation: $\gamma \sim \varphi$ iff $\|\gamma - \varphi\| < 2$ for $\gamma, \varphi \in \mathcal{M}(A)$, are the Gleason parts of A (see [2,21]).

For $\gamma \in \mathcal{M}(A)$, A_{γ} means the kernel of γ , and M_{γ} designates the set of all representing measures m for γ , that is m is a probability Borel measure on X satisfying

 $\gamma(f) = \int f dm, \ f \in A$. For a subspace $B \subset C(X)$, we put $\overline{B} = \{\overline{f} : f \in B\}$. Notice that the homomorphism γ can be naturally extended to $A + \overline{A}$ by

$$\gamma(f + \overline{g}) = \gamma(f) + \overline{\gamma(g)}, \quad f, g \in A.$$

In this paper we consider A to be a function algebra on X which is weak*-Dirichlet in $L^{\infty}(m)$, that is $A + \overline{A}$ is weak* dense in $L^{\infty}(m)$, for some fixed $m \in M_{\gamma}$ and $\gamma \in \mathcal{M}(A)$. This concept introduced in [20] is weaker than one of Dirichlet algebra, which means that $A + \overline{A}$ is dense in C(X). For example, the standard algebra $A(\mathbb{T})$ of all continuous functions f on the unit circle \mathbb{T} which have analytic extensions \tilde{f} to the open unit disc \mathbb{D} , is a Dirichlet algebra on \mathbb{T} . On the other hand, the subalgebra $A_1(\mathbb{T})$ of $A(\mathbb{T})$ of those functions f satisfying $f(1) = \tilde{f}(0)$ is a weak*-Dirichlet algebra in $L^{\infty}(m_0)$, m_0 being the normalized Lebesgue measure on \mathbb{T} , and $A_1(\mathbb{T})$ is not a Dirichlet algebra.

Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ be the Banach algebra of all bounded linear operators on \mathcal{H} .

Any bounded linear and multiplicative map Φ of A in $\mathcal{B}(\mathcal{H})$ with $\Phi(1) = I$ (the identity operator on \mathcal{H}) is called a *representation* of A on \mathcal{H} . When $\|\Phi\| \leq 1$ one says that Φ is *contractive*. Here, we only consider a representation Φ for which there exist a scalar $\rho > 0$ and a system $\{\mu_x\}_{x \in \mathcal{H}}$ of positive measures on X with $\|\mu_x\| = \|x\|^2$ such that

$$\langle \Phi(f)x,x\rangle = \int [\rho f + (1-\rho)\gamma(f)]d\mu_x$$

for any $f \in A$ and $x \in \mathcal{H}$. Such a μ_x is called a *weak* ρ -spectral measure for Φ attached to x by γ . It is known ([8,9]) that the existence of a system of measures $\{\mu_x\}_{x\in\mathcal{H}}$ as above, is equivalent to the fact that Φ satisfies a weaker von Neumann inequality of the form

$$w(\Phi(f)) \le \|\rho f + (1-\rho)\gamma(f)\|$$
 $(f \in A),$ (1.1)

where w(T) means the numeric radius of $T \in \mathcal{B}(\mathcal{H})$.

In [10] it was proved that if the representation Φ of A on \mathcal{H} admits a system $\{\mu_x\}_{x\in\mathcal{H}}$ of weak ρ -spectral measures attached by γ such that μ_x is m - a.c. for any $x \in \mathcal{H}$, then Φ has a γ -spectral ρ -dilation, that is there exists a contractive representation $\tilde{\Phi}$ of C(X) on a Hilbert space $\mathcal{K} \supset \mathcal{H}$ satisfying the relation

$$\Phi(f) = \rho P_{\mathcal{H}} \Phi(f) | \mathcal{H} \qquad (f \in A_{\gamma}), \tag{1.2}$$

where $P_{\mathcal{H}}$ is the orthogonal projection on \mathcal{H} . Moreover, in this case there exists a unique semispectral measure $F_{\Phi} : Bor(X) \to \mathcal{B}(\mathcal{H})$ such that $\langle F_{\Phi}(\cdot)x, x \rangle = \mu_x$, or equivalently

$$\langle \Phi(f)x, y \rangle = \int [\rho f + (1-\rho)\gamma(f)] d\langle F_{\Phi}x, y \rangle \qquad (f \in A), \tag{1.3}$$

for any $x, y \in \mathcal{H}$. As usual, Bor(X) denotes the set of all Borel subsets of X. Using the polarization formula, it follows that all measures $\langle F_{\Phi}(\cdot)x, y \rangle$ for $x, y \in \mathcal{H}$ are m-a.c. The relation (1.2) means that the representation $\overline{\Phi}$ is a γ -spectral ρ -dilation of Φ , and F_{Φ} is obtained as the compression to \mathcal{H} of the spectral measure of $\overline{\Phi}$ (see [21]).

The representations with spectral ρ -dilations was first studied by D. Gaşpar ([4– 6]), and recently by T. Nakazi ([15, 16]). Any such representation of the algebra $A(\mathbb{T})$ on \mathcal{H} reduces to the usual functional calculus with the operators of class C_{ρ} in $\mathcal{B}(\mathcal{H})$ in the sense of Sz. Nagy-Foiaş [22] (i.e. ρ -contractions; [1, 11]). In the general setting of a weak*-Dirichlet algebra A, it is natural to find conditions for a representation Φ of A on \mathcal{H} , under which Φ can be reduced to a certain functional calculus with a ρ -contraction. Recall that in [6] was given an example of a contractive representation of a Dirichlet algebra which cannot be reduced to a functional calculus with contractions.

In the sense of [5,6], the problem of reduction to a functional calculus refers to absolutely continuous representations with respect to representing measures. Thus, we only investigate here the representations Φ which have a system of m - a.c. weak ρ -spectral measures attached by γ . In the sequel $H^p(m)$ stands for the (weak^{*}, for $p = \infty$) closure of A into $L^p(m)$, that is the Hardy space associated to A in $L^p(m)$.

In Section 2 we characterize in terms of F_{Φ} the representations Φ which have bounded linear extensions Φ_p to the space $L^p(m)$ for $1 \leq p \leq \infty$. In Section 3 we prove the main result which says that, under some hypothesis on an invariant subspace of $H^p(m)$ when $1 \leq p \leq 2$, the map $\Phi_p|H^p(m)$ is given by a functional calculus with a ρ -contraction with the spectrum in \mathbb{D} , the functional calculus being induced by a Hoffman type [7] naturally associated to the corresponding invariant subspace. In this case, the Radon-Nikodym derivative of F_{Φ} is an essentially bounded function on Xand its logarithm belongs to $L^1(m)$. The scalar case is considered in Section 4 where we refer to the homomorphisms in $\mathcal{M}(A)$ which are bounded in the $L^p(m)$ -norm. Our main result is a version of Wermer's embedding theorem ([1,7,21]) for weak*-Dirichlet algebras, which prove that the set of above quoted homomorphisms corresponds to an analytic disc in the Gleason part which contains γ .

2. EXTENSION OF A REPRESENTATION TO THE SPACE $L^{p}(m)$

We characterize below some representations Φ of A on \mathcal{H} which can be linearly and boundedly extended to the space $L^p(m)$ for $1 \leq p \leq \infty$. Our characterization is given in the terms of the Radon-Nikodym derivative with respect to m of the corresponding $\mathcal{B}(\mathcal{H})$ -valued semispectral measure F_{Φ} . In the sequel we put $\varphi_{x,y}dm = d\langle F_{\Phi}(\cdot)x,y \rangle$ for $x, y \in \mathcal{H}$.

Theorem 2.1. Let Φ be a representation of A on \mathcal{H} which admits a system of m-a.c.weak ρ -spectral measures attached by γ . Then Φ has a bounded linear extension Φ_p from $L^p(m)$ into $\mathcal{B}(\mathcal{H})$ for $1 \leq p \leq \infty$, if and only if $\varphi_{x,y} \in L^q(m)$ and there exists a constant c > 0 such that

$$\|\varphi_{x,y}\|_q \le c \|x\| \|y\| \qquad (x, y \in \mathcal{H}), \tag{2.1}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. In this case, Φ_p is uniquely determined and it satisfies for $h \in L^p(m)$ and $x, y \in \mathcal{H}$ the relation

$$\langle \Phi_p(h)x, y \rangle = \int [\rho h + (1-\rho) \int h dm] \varphi_{x,y} dm.$$
(2.2)

Furthermore, for $h \in L^2(m)$ and $x \in \mathcal{H}$ we have the inequality

$$\|\Phi_2(h)x\|^2 \le \int |\rho h + (1-\rho) \int h dm |^2 \varphi_{x,x} dm.$$
(2.3)

Hence, if $\{h_{\alpha}\} \subset L^{\infty}(m)$ is a bounded net such that $\{h_{\alpha}\}$ converges a.e. (m) to $h \in L^{\infty}(m)$, then $\{\Phi_p(h_{\alpha})\}$ strongly converges to $\Phi_p(h)$ in $\mathcal{B}(\mathcal{H})$, for $p \geq 2$.

Proof. Suppose firstly that $\varphi_{x,y} \in L^q(m)$ and that the inequality (2.1) is satisfied. Since for $f \in A$, $g \in A_{\gamma}$ and $x, y \in \mathcal{H}$ we have

$$\langle (\Phi(f) + \Phi(g)^*)x, y \rangle = \int [\rho(f + \overline{g}) + (1 - \rho)\gamma(f + \overline{g})]\varphi_{x,y}dm,$$

we infer that

$$\begin{aligned} |\langle (\Phi(f) + \Phi(g)^*)x, y\rangle| &\leq \rho |\int (f + \overline{g})\varphi_{x,y}dm| + |(1 - \rho)\int (f + \overline{g})dm \cdot \int \varphi_{x,y}dm| \leq \\ &\leq (\rho + |1 - \rho|)||f + \overline{g}||_p ||\varphi_{x,y}||_q. \end{aligned}$$

Since $A + \overline{A}_{\gamma}$ is weak^{*} dense in $L^{\infty}(m)$, the closure of $A + \overline{A}_{\gamma}$ in $L^{p}(m)$ is just $L^{p}(m)$, for $1 \leq p < \infty$, (see [20]). Thus, the previous relations prove that for any $x, y \in \mathcal{H}$ there exists a bounded linear functional $\Phi_{x,y}$ on $L^{p}(m)$ satisfying for $f \in A, g \in A_{\gamma},$ $h \in L^{p}(m)$,

$$\Phi_{x,y}(f + \overline{g}) = \langle (\Phi(f) + \Phi(g)^*)x, y \rangle,$$

and

$$\Phi_{x,y}(h) = \int [\rho h + (1-\rho) \int h dm] \varphi_{x,y} dm.$$

Also we have $\Phi_{x,y} = \overline{\Phi_{y,x}}$ and using (2.1) we obtain

$$\|\Phi_{x,y}\| \le c(\rho + |1 - \rho|) \|x\| \|y\|$$

It follows that for every $h \in L^p(m)$, the map $(x, y) \mapsto \Phi_{x,y}(h)$ is a bounded bilinear functional on $\mathcal{H} \times \mathcal{H}$, hence there exists an operator $\Phi_p(h) \in \mathcal{B}(\mathcal{H})$ such that

$$\langle \Phi_p(h)x, y \rangle = \Phi_{x,y}(h), \quad x, y \in \mathcal{H}$$

and

$$\|\Phi_p(h)\| \le c(\rho + |1 - \rho|)\|h\|$$

Then $\Phi_p: h \mapsto \Phi_p(h)$ is a bounded linear map from $L^p(m)$ into $\mathcal{B}(\mathcal{H})$, which extends Φ and also satisfies the relation (2.2). Using also (2.2) with $h = f + \overline{g}$ for $f \in A$, $g \in A_{\gamma}$ one can see that Φ_p is the unique bounded linear extension of Φ to $L^p(m)$.

Now, let $\widetilde{\Phi}$ be the γ -spectral ρ -dilation of Φ (from (1.2)), corresponding to the Naimark dilation (as a spectral measure) of the semispectral measure F_{Φ} (see [6,21]). Then for $f \in A$, $g \in A_{\gamma}$ and $x \in \mathcal{H}$ we have $\Phi(g)^* x = \rho P_{\mathcal{H}} \widetilde{\Phi}(\overline{g}) x$ and

$$\begin{split} \|\Phi_2(f+\overline{g})x\|^2 &= \|(\Phi(f)+\Phi(g)^*)x\|^2 = \|P_{\mathcal{H}}\tilde{\Phi}(\rho(f+\overline{g})+(1-\rho)\gamma(f+\overline{g}))x\|^2 \leq \\ &\leq \langle \tilde{\Phi}(|\rho(f+\overline{g})+(1-\rho)\gamma(f+\overline{g})|^2)x,x\rangle = \\ &= \int |\rho(f+\overline{g})+(1-\rho)\gamma(f+\overline{g})|^2\varphi_{x,x}dm. \end{split}$$

Since $A + A_{\gamma}$ is dense in $L^2(m)$, by the continuity of Φ_2 one obtains from this inequality just the inequality (2.3).

Next, let $\{h_{\alpha}\} \subset L^{\infty}(m)$, be a bounded net which converges a.e. (m) to $h \in L^{\infty}(m)$. Then using (2.3) we obtain

$$\begin{split} \|(\Phi_2(h_\alpha) - \Phi_2(h))x\|^2 &\leq \\ &\leq \int |\rho(h_\alpha - h) + (1 - \rho) \int (h_\alpha - h)dm|^2 \varphi_{x,x} dm \leq \\ &\leq 2[\rho^2 \int |h_\alpha - h|^2 \varphi_{x,x} dm + |1 - \rho|^2 \int |\int (h_\alpha - h)dm|^2 \varphi_{x,x} dm] \leq \\ &\leq 2[\rho^2 \int |h_\alpha - h|^2 \varphi_{x,x} dm + |1 - \rho|^2 \int |h_\alpha - h|^2 dm \cdot \int \varphi_{x,x} dm] = \\ &= 2 \int |h_\alpha - h|^2 (\rho^2 \varphi_{x,x} + |1 - \rho|^2 ||x||^2) dm \longrightarrow_{\alpha} 0. \end{split}$$

The convergence to 0 is assured by Lebesgue's theorem, because $\mu = \varphi_x^{(\rho)}m$ is a m-a.c. positive measure on X, where $\varphi_x^{(\rho)} = \rho^2 \varphi_{x,x} + |1-\rho|^2 ||x||^2$. We infer that $\Phi_2(h_\alpha)x \longrightarrow \Phi_2(h)x$ in \mathcal{H} for any $x \in \mathcal{H}$, and since $\Phi_p = \Phi_2|L^p(m)$ we have that $\{\Phi_p(h_\alpha)\}$ strongly converges to $\Phi_p(h)$ in $\mathcal{B}(\mathcal{H})$, for $p \geq 2$ (including and the case $p = \infty$ because $\Phi_\infty = \Phi_p|L^\infty(m)$ for $p < \infty$).

For the converse statement, we suppose now that Φ admits a bounded linear extension Ψ to $L^p(m)$ with $1 \leq p < \infty$. For $x, y \in \mathcal{H}$ the functional $\langle \Psi(\cdot)x, y \rangle$ is bounded linear on $L^p(m)$, so there exists $\psi_{x,y} \in L^q(m)$ such that

$$\langle \Psi(h)x,y\rangle = \int h\psi_{x,y}dm \qquad (h \in L^p(m)).$$

Since $\Psi|A = \Phi$ we have for $f \in A$ and $g \in A_{\gamma}$,

$$\begin{split} \int (f+\overline{g})\psi_{x,y}dm &= \langle \Psi(f+\overline{g})x,y\rangle = \langle (\Phi(f)+\Phi(g)^*)x,y\rangle = \\ &= \int [\rho(f+\overline{g})+(1-\rho)\gamma(f+\overline{g})]\varphi_{x,y}dm = \\ &= \int (f+\overline{g})(\rho\varphi_{x,y}+(1-\rho)\langle x,y\rangle)dm. \end{split}$$

Using the weak^{*} density of $A + \overline{A}_{\gamma}$ in $L^{\infty}(m)$ we obtain

$$\int h\psi_{x,y}dm = \int h(\rho\varphi_{x,y} + (1-\rho)\langle x,y\rangle)dm$$

for any $h \in L^{\infty}(m)$, hence $\psi_{x,y} = \rho \varphi_{x,y} + (1-\rho) \langle x, y \rangle$. This implies $\varphi_{x,y} \in L^q(m)$ and also

$$\|\varphi_{x,y}\|_{q} = \frac{1}{\rho} \|\psi_{x,y} + (\rho - 1)\langle x, y\rangle\|_{q} \le \left(\frac{1}{\rho} \|\Psi\| + |1 - \frac{1}{\rho}|\right) \|x\| \|y\|,$$

for any $x, y \in \mathcal{H}$. Thus, $\varphi_{x,y}$ satisfies (2.1) and this proves the converse statement when $p < \infty$. If $p = \infty$ that is we assume that Φ has a bounded linear extension Ψ to $L^{\infty}(m)$, then clearly we have

$$\langle \Psi(h)x,y\rangle = \int (\rho h + (1-\rho)\int h dm)\varphi_{x,y}dm$$

for all $h \in L^{\infty}(m)$ and $x, y \in \mathcal{H}$. Since $\varphi_{x,y} \in L^{1}(m)$ we get

$$\begin{aligned} \|\varphi_{x,y}\|_{1} &= \sup_{g \in L^{\infty}(m), \|g\| \leq 1} \left| \int g\varphi_{x,y} dm \right| = \\ &= \sup_{g \in L^{\infty}(m), \|g\| \leq 1} \left| \langle \Psi \left(\frac{1}{\rho} + \left(1 - \frac{1}{\rho} \right) \int h dm \right) x, y \rangle \right| \leq \\ &\leq \|\Psi\| \left(\frac{1}{\rho} + \left| 1 - \frac{1}{\rho} \right| \right) \|x\| \|y\|, \end{aligned}$$

and so $\varphi_{x,y}$ also satisfies (2.1) when $p = \infty$. This ends the proof.

Remark 2.2. The equivalent conditions of Theorem 2.1 imply

$$\|\Phi\|_p := \sup_{f \in A, \|f\|_p \le 1} \|\Phi(f)\| < \infty.$$
(2.4)

It is easy to see that the condition (2.4) is equivalent to the existence of a bounded linear extension $\widehat{\Phi}_p$ of Φ to $H^p(m)$. In this case, $\widehat{\Phi}_p$ is uniquely determined and it satisfies the relation (2.2) for $g \in H^p(m)$. In addition, the following property holds.

Proposition 2.3. Let Φ be a representation of A on \mathcal{H} as in Theorem 2.1 such that $\|\Phi\|_p < \infty$. Then

$$\widehat{\Phi}_p(fg) = \widehat{\Phi}_p(f)\widehat{\Phi}_p(g) \quad (f \in H^{\infty}(m), \ g \in H^p(m))$$
(2.5)

and, in particular, $\widehat{\Phi} := \widehat{\Phi}_p | H^{\infty}(m)$ is a representation of $H^{\infty}(m)$ on \mathcal{H} . Moreover, if $\{f_{\alpha}\} \subset H^{\infty}(m)$ is a bounded net which converges a.e. (m) to $f \in H^{\infty}(m)$, then $\{\widehat{\Phi}(f_{\alpha})\}$ strongly converges to $\widehat{\Phi}(f)$ in $\mathcal{B}(\mathcal{H})$.

Proof. Let $g \in H^p(m)$ and $f, g_n \in A$ such that $g_n \to g$ in $L^p(m)$. Then $fg_n \to fg$ in $L^p(m)$, so

$$\widehat{\Phi}_p(fg) = \lim_n \Phi(fg_n) = \Phi(f)\Phi_p(g).$$

Now, if $f \in H^{\infty}$ and $\{f_{\alpha}\} \subset A$ is a net which converges to f in the weak* topology of $L^{\infty}(m)$ then for g, g_n as above and $x, y \in \mathcal{H}$ one has

$$\begin{split} \langle \widehat{\Phi}_{p}(fg)x, y \rangle &= \int (\rho fg + (1-\rho) \int fg dm) \varphi_{x,y} dm = \\ &= \lim_{n} \lim_{\alpha} \int (\rho f_{\alpha} g_{n} + (1-\rho) \int f_{\alpha} g_{n} dm) \varphi_{x,y} dm = \\ &= \lim_{n} \lim_{\alpha} \langle \Phi(f_{\alpha} g_{n})x, y \rangle = \lim_{n} \lim_{\alpha} \langle \Phi(f_{\alpha}) \Phi(g_{n})x, y \rangle = \\ &= \lim_{n} \lim_{\alpha} \int (\rho f_{\alpha} + (1-\rho) \gamma(f_{\alpha})) \varphi_{\Phi(g_{n})x,y} dm = \\ &= \lim_{n} \int (\rho f + (1-\rho) \int f dm) \varphi_{\Phi(g_{n})x,y} dm = \\ &= \lim_{n} \langle \widehat{\Phi}_{p}(f) \Phi(g_{n})x, y \rangle = \langle \widehat{\Phi}_{p}(f) \widehat{\Phi}_{p}(g)x, y \rangle. \end{split}$$

So, property (2.5) is proved. This also gives that $\widehat{\Phi}_p$ is multiplicative on $H^{\infty}(m)$, therefore $\widehat{\Phi} := \widehat{\Phi}_p | H^{\infty}(m)$ is a representation of $H^{\infty}(m)$ on \mathcal{H} .

The second statement of the proposition can be infered as in the previous proof. $\hfill \Box$

Remark 2.4. If the representation Φ in Theorem 2.1 is contractive, that is $\rho = 1$ and $\|\Phi\| = 1$ (because $\Phi(1) = I$), then its extension Φ_p is also contractive, in the case when it exists. Indeed, if $\tilde{\Phi}$ is as in the proof of Theorem 2.1, we have for $f \in A$, $g \in A_{\gamma}$ and $x, y \in \mathcal{H}$,

$$\left| \int (f+\overline{g})\varphi_{x,y}dm \right| = \left| \langle (\Phi(f) + \Phi(g)^*)x, y \rangle \right| = \left| \langle P_{\mathcal{H}}\widetilde{\Phi}(f+\overline{g})x, y \rangle \right| \le \\ \le \|\widetilde{\Phi}(f+\overline{g})\| \|x\| \|y\| \le \|f+\overline{g}\| \|x\| \|y\|,$$

because $\widetilde{\Phi}$ is a contractive representation of C(X). From this inequality we infer by the density of $A + \overline{A}_{\gamma}$ in $L^{p}(m)$ that

$$\left|\int h\varphi_{x,y}dm\right| \le \|h\|_{\infty}\|x\|\|y\| \qquad (h \in L^{p}(m)),$$

hence $\|\varphi_{x,y}\|_q \leq \|x\| \|y\|$. Thus, we can take c = 1 in (2.1) and from the proof of Theorem 2.1 we deduce (the case $\rho = 1$) that $\|\Phi_p\| \leq 1$, and finally $\|\Phi_p\| = 1$ because $\Phi_p(1) = I$.

3. REDUCTION TO FUNCTIONAL CALCULUS

In the sequel we denote by $H_0^p(m)$ the closure (weak^{*}, if $p = \infty$) of A_{γ} in $L^p(m)$, that is

$$H_0^p(m) = \left\{ f \in H^p(m) : \int f dm = 0 \right\}.$$

We say ([17, 20, 21]) that $H_0^p(m)$ is simply invariant if the closure of $A_{\gamma}H_0^p(m)$ in $L^p(m)$ is strictly contained in $H_0^p(m)$. By Theorem 4.1.6 [20] (see also [17, 21]) if $H_0^p(m)$ is simply invariant then there exists a function $Z \in H_0^{\infty}(m)$ with |Z| = 1 a.e. (m) such that $H_0^p(m) = ZH^p(m)$.

As in Theorem 3 [14] one can prove that, if m_0 is the normalized Lebesgue measure on \mathbb{T} , there exists an isometric *-isomorphism τ of $L^p(m_0)$ onto a closed subspace of $L^p(m)$, taking $H^p(m_0)$ onto a closed subspace of $H^p(m)$, for $1 \le p \le \infty$. In fact, τ is defined by

$$(\tau h)(s) = h(Z(s))$$

for $h \in L^p(m_0)$ and a.e. $(m) \ s \in X$.

The following main result shows that under the simple invariance of $H_0^p(m)$ with $1 \leq p \leq 2$, the representations from Theorem 2.1 and their extensions to $H^p(m)$ can be reduced to functional calculus. For this we need to define the operator $S : H^p(m) \to L^p(m)$ by

$$Sg = \overline{Z}(g - \int gdm) \qquad (g \in H^p(m)). \tag{3.1}$$

Also, for $T \in \mathcal{B}(\mathcal{H})$ we denote by r(T) the spectral radius of T.

Theorem 3.1. Suppose that $H_0^p(m)$ is a simply invariant subspace for $1 \le p < \infty$, and let Φ be a representation of A on \mathcal{H} satisfying Theorem 2.1. Then $r(\widehat{\Phi}(Z)) < 1$, and if $1 \le p \le 2$ one has

$$\widehat{\Phi}_p(g) = \sum_{n=0}^{\infty} \widehat{g}(n) \widehat{\Phi}(Z)^n \qquad (g \in H^p(m)),$$
(3.2)

where $\widehat{g}(n) = \int \overline{Z}^n g dm$ for $n \in \mathbb{N}$, the series being absolutely convergent in $\mathcal{B}(\mathcal{H})$. Moreover, the relation (3.2) is also true when $2 , for <math>g \in H^p(m)$ such that $\{S^ng\}$ is a bounded sequence in $H^p(m)$, S being the operator from (3.1).

Proof. The assumption on Φ means that $\varphi_{x,y}$ satisfies (2.1) for any $x, y \in \mathcal{H}$. As a bounded linear functional on $L^p(m)$, $\varphi_{x,y}$ induces, by the isomorphism τ , a bounded linear functional on $L^p(m_0)$, that is there exists $\varphi_{x,y}^0 \in L^q(m_0)$ satisfying

$$\int h\varphi_{x,y}^0 dm_0 = \int (\tau h)\varphi_{x,y} dm \qquad (h \in L^p(m_0)).$$
(3.3)

Since τ is an isometry we find

$$\|\varphi_{x,y}^{0}\|_{q} = \sup_{\|h\|_{p}=1} \left| \int h\varphi_{x,y}^{0} dm_{0} \right| = \sup_{\|\tau h\|_{p}=1} \left| \int (\tau h)\varphi_{x,y} dm \right| \le \|\varphi_{x,y}\|_{q} \le c\|x\|\|y\|,$$

with c as in (2.1).

Now from (3.3) and (2.2) we infer, for any analytic polynomial P, that

$$\int [\rho P + (1-\rho)P(0)]\varphi_{x,y}^0 dm_0 = \int [\rho(P \circ Z) + (1-\rho)P(0)]\varphi_{x,y} dm =$$
$$= \langle \Phi_p(P \circ Z)x, y \rangle = \langle P(\Phi_p(Z))x, y \rangle.$$

So, using the previous inequality we get

$$\begin{aligned} |\langle P(\Phi_p(Z))x,y\rangle| &\leq \|\rho P + (1-\rho)P(0)\|_p \|\varphi_{x,y}^0\|_q \leq \\ &\leq c(\rho+|1-\rho|)\|P\|_p \|x\|\|y\|, \end{aligned}$$

and putting $c_{\rho} = c(\rho + |1 - \rho|)$ one obtains

$$\|P(\Phi_p(Z))\| \le c_\rho \|P\|_p$$

This means that the operator $\Phi_p(Z)$ is polynomially bounded. On the other hand, taking $P(\lambda) = \lambda^n$ for $n \in \mathbb{N}$ in the above equality, we obtain

$$\langle \Phi_p(Z)^n x, y \rangle = \rho \int \lambda^n \varphi_{x,y}^0 dm_0$$

and so it follows that for $x, y \in \mathcal{H}$ there exists $\psi_{x,y} \in L^q(m_0)$ such that

$$\langle \Phi_p(Z)^{*n}x,y\rangle = \int \overline{\lambda}^n \psi_{x,y} dm_0 \qquad (n \in \mathbb{N}).$$

This yields that the operator $\Phi_p(Z)^*$ is absolutely continuous, and since $\psi_{x,y} \in L^q(m_0)$ with q > 1 (by the choose of p), from Lebow's theorem [13] we infer that $r(\Phi_p(Z)) < 1$.

The assumption that $H_p^0(m) = ZH^p(m)$ assures that the range of operator S from (3.1) is contained in $H^p(m)$, so $S \in \mathcal{B}(H^p(m))$. In addition, for $g \in H^p(m)$ we have

$$\int Sgdm = \int \overline{Z}gdm = \widehat{g}(1),$$

therefore $S^2g = \overline{Z}(Sg - \widehat{g}(1))$, or $Sg = \widehat{g}(1) + Z(S^2g)$. This also gives

$$g = \int g dm + Z(Sg) = \hat{g}(0) + \hat{g}(1)Z + Z^2(S^2g).$$

Assume now that $g = \sum_{j=0}^{n-1} \widehat{g}(j)Z^j + Z^n(S^ng)$ for n > 1. Then

$$S^{n}g = \overline{Z}^{n}g - \sum_{j=0}^{n-1}\widehat{g}(j)\overline{Z}^{n-j},$$

whence we get $\int S^n g dm = \hat{g}(n)$. So, we have $S^{n+1}g = \overline{Z}(S^ng - \hat{g}(n))$, or $S^ng = \hat{g}(n) + Z(S^{n+1}g)$, and by our assumption on g we obtain

$$g = \sum_{j=0}^{n} \widehat{g}(j) Z^{j} + Z^{n+1}(S^{n+1}g) \qquad (g \in H^{p}(m)).$$
(3.4)

Considering the extension $\widehat{\Phi}_p = \Phi_p | H^p(m)$ of Φ to $H^p(m)$ (as in Proposition 2.3) we get by (3.4) that

$$\|\widehat{\Phi}_{p}(g) - \sum_{j=0}^{n} \widehat{g}(j)\widehat{\Phi}(Z)^{j}\| = \|\widehat{\Phi}(Z^{n+1})\widehat{\Phi}_{p}(S^{n+1}g)\| \leq \\ \leq \|\widehat{\Phi}_{p}\|\|S^{n+1}g\|_{p}\|\widehat{\Phi}(Z)^{n+1}\|,$$
(3.5)

for any $g \in H^p(m)$.

If p = 2, the operator S is a contraction on $H^2(m)$ that is

$$||Sg||_2 = ||g - \int g dm||_2 \le ||g||_2$$

because $g - \int g dm$ is the orthogonal projection of g on $H_0^2(m)$ for $g \in H^2(m)$. In this case, in (3.5) we have $||S^{n+1}g||_2 \leq ||g||_2$ for any $n \in \mathbb{N}$, and since $\widehat{\Phi}(Z)^n \to 0$ $(n \to \infty)$ by a remark before, it follows that the representation (3.2) holds true for $g \in H^2(m)$.

Suppose now $1 \leq p < 2$. As $H^2(m)$ is dense in $H^p(m)$, for $g \in H^p(m)$ and every $\varepsilon > 0$ there exists $g_{\varepsilon} \in H^2(m)$ with $||g - g_{\varepsilon}||_p < \varepsilon$. Since $|\widehat{g}(n)| \leq ||g||_p$ for $n \in \mathbb{N}$, the series from (3.2) is absolutely convergent in $\mathcal{B}(\mathcal{H})$ and applying the previous remark to g_{ε} we obtain

$$\begin{split} \|\sum_{n=0}^{\infty} \widehat{g}(n)\widehat{\Phi}(Z)^n - \Phi_p(g)\| &\leq \|\sum_{n=0}^{\infty} (\widehat{g}(n) - \widehat{g}_{\varepsilon}(n))\widehat{\Phi}(Z)^n\| + \|\Phi_p(g_{\varepsilon} - g)\| \leq \\ &\leq \|g - g_{\varepsilon}\|_p (\|\Phi_p\| + \sum_{n=0}^{\infty} \|\widehat{\Phi}(Z)^n\|) < \varepsilon M \end{split}$$

for some constant M > 0. Thus, the representations (3.2) occurs for any $g \in H^p(m)$, if $p \leq 2$. When p > 2, from the inequality (3.5) we infer that the equality (3.2) is also true for $g \in H^p(m)$ for which $\{S^n g\}$ is a bounded sequence in $H^p(m)$. The proof is finished.

Remark 3.2. By (3.4) we have that the sequence $\{S^ng\}_n$ is bounded if and only if the sequence $\{\sum_{j=0}^n \widehat{g}(j)Z^j\}_n$ is bounded in $H^p(m)$, and in particular, this happens if S is a power bounded operator in $\mathcal{B}(H^p(m))$. But, even if the second sequence before converges, its limit is not necessary the function g. In fact, one has (by (3.4)) $g = \sum_{j=0}^{\infty} \widehat{g}(j)Z^j$ in $H^p(m)$ if and only if $S^ng \to 0$ $(n \to \infty)$; but this condition is false, in general, as we can see in the following

Example 3.3. Let A be the algebra of all continuous functions f on \mathbb{T}^2 having the Fourier coefficients

$$c_{ij} = \int_{\mathbb{T}^2} \overline{\lambda}^i \overline{w}^j f(\lambda, w) dm_2 \quad (i, j \in \mathbb{Z})$$

such that $c_{ij} = 0$ if either j < 0, or j = 0 and i < 0. Then A is a Dirichlet algebra on \mathbb{T}^2 , while the normalized Lebesgue measure m_2 on \mathbb{T}^2 is the representing measure for the homomorphism of evaluation in (0,0) of A. Here the function $Z \in H_0^{\infty}(m_2)$ is given by $Z(\lambda, w) = \lambda$, $\lambda, w \in \mathbb{T}$. On the other hand, for the function $g_0 \in H^{\infty}(m_2)$ defined by $g_0(\lambda, w) = w$, we have $(S^n g_0)(\lambda, w) = \lambda^n w$ and $\|S^n g_0\|_p = 1$, for any $n \in \mathbb{N}, \lambda, w \in \mathbb{T}$. Hence $\{S^n g_0\}$ is a bounded sequence which is not convergent to 0, in $H^p(m_2)$ for $1 \le p \le \infty$. Clearly, $\hat{g}_0(n) = 0$ for any $n \ge 0$, therefore $\sum_{j=0}^n \hat{g}_0(j)\lambda^j = 0$ for $n \ge 0$, what justifies the last assertion of Remark 3.2.

This example also provides that, in general under the hypothesis of Theorem 3.1, the space $H^p(m)$ is not spanned by $\{Z^n\}_{n\in\mathbb{N}}$, even if the operator S is power bounded. For instance, S is always a contraction on $H^2(m)$, but $\{Z^n\}_{n\in\mathbb{N}}$ becomes an orthonormal basis in $H^2(m)$ if and only if $H^{\infty}(m)$ is a maximal weak* closed algebra in $L^{\infty}(m)$, when m is the unique representing measure for γ , while $\{\gamma\}$ is not a Gleason part of A (see [1,6]).

If $H^p(m)$ is spanned by $\{Z^n\}_{n\in\mathbb{N}}$ then for any $g\in H^p(m)$ the representation (3.2) holds (by Remark 3.2), which means that the map Φ_p is reduced to a functional calculus. Theorem 3.1 shows that this fact occurs for Φ satisfying (2.1) for $2 \leq q \leq \infty$, but we cannot prove (3.2) in the case $2 (when <math>1 \leq q < 2$), the boundedness condition (2.1) for $\varphi_{x,y}$, being weakened in this case.

We see now that, from the point of view of the semispectral measure F_{Φ} , the cases when p belongs to the range $1 \le p \le 2$ are not essentially different, in Theorem 3.1.

Theorem 3.4. Suppose $1 \leq p \leq 2$ and that $H_0^p(m)$ is a simply invariant subspace in $H^p(m)$. Let Φ be a representation of A on \mathcal{H} satisfying Theorem 2.1. Then the semispectral measure F_{Φ} has the form $F_{\Phi} = \theta(\cdot)m$ where the function $\theta : X \to \mathcal{B}(\mathcal{H})$ is given by

$$\theta(s) = \sum_{n=-\infty}^{\infty} \overline{Z}^n(s) \widehat{\Phi}(Z)^{(n)}_{\rho}, \qquad (3.6)$$

while the series converges absolutely and uniformly a.e. (m) for $s \in X$. Moreover, θ is a bounded function a.e. (m) on X.

Proof. Since $r(\widehat{\Phi}(Z)) < 1$ (by Theorem 3.1) one can define the function

$$\theta_+(s) = \sum_{n=0}^{\infty} \overline{Z}^n(s)\widehat{\Phi}(Z)^n,$$

the series being absolutely and uniformly convergent a.e. (m) for $s \in X$. In addition, one has

$$\|\theta_+(s)\| \le \sum_{n=0}^{\infty} \|\widehat{\Phi}(Z)^n\|$$
 (a.e. $(m) \ s \in X$).

Then for $g \in H^p(m)$ and $x \in \mathcal{H}$ the function $g\langle \theta_+(\cdot)x, x \rangle$ belongs to $L^p(m)$, and we have (by (3.2) and (2.2)),

$$\int g \langle \theta_+(\cdot)x, x \rangle dm = \sum_{n=0}^{\infty} \widehat{g}(n) \langle \widehat{\Phi}(Z)^n x, x \rangle = \langle \sum_{n=0}^{\infty} \widehat{g}(n) \widehat{\Phi}(Z)^n x, x \rangle =$$
$$= \langle \Phi_p(g)x, x \rangle = \int (\rho g + (1-\rho) \int g dm) \varphi_{x,x} dm.$$

Equivalently, taking $\frac{1}{\rho}g + (1 - \frac{1}{\rho})\int g dm$ instead of g in this relation, we obtain

$$\begin{split} \int g\varphi_{x,x}dm &= \int \left[\frac{1}{\rho}g(s) + \left(1 - \frac{1}{\rho}\right)\int gdm\right] \langle \theta_+(s)x,x\rangle dm = \\ &= \int g(s) \left[\frac{1}{\rho} \langle \theta_+(s)x,x\rangle + \left(1 - \frac{1}{\rho}\right)\int \langle \theta_+(s)x,x\rangle dm\right] dm = \\ &= \int g(s) \left[\frac{1}{\rho} \langle \theta_+(s)x,x\rangle + \left(1 - \frac{1}{\rho}\right)\|x\|^2\right] dm = \\ &= \left(1 - \frac{1}{\rho}\right)\|x\|^2 + \frac{1}{\rho}\int \sum_{n=0}^{\infty} g\overline{Z}^n \langle \widehat{\Phi}(Z)^n x,x\rangle dm = \\ &= \left(1 - \frac{1}{\rho}\right)\|x\|^2 + \frac{1}{\rho}\int g(s) \langle \theta(s)x,x\rangle dm, \end{split}$$

where the function θ is defined as in (3.6), that is

$$\theta(s) = \theta_+(s) + \theta_+(s)^* - I \quad (\text{a.e. } (m) \ s \in X).$$

Clearly, we used before that $\int gZ^n dm = 0$ for n > 0.

Since $\varphi_{x,x}$ and $\langle \theta(\cdot)x, x \rangle$ are real functions, we get that

$$\int (f+\overline{g})\varphi_{x,x}dm = \int (f+\overline{g})\langle\theta(\cdot)x,x\rangle dm$$

for $f \in A$, $g \in A_{\gamma}$, and this gives $\varphi_{x,x} = \langle \theta(\cdot)x, x \rangle$ because A is weak^{*} Dirichlet in $L^{\infty}(m)$. Hence θ is the Radon-Nikodym derivative of F_{Φ} with respect to m, and θ is bounded a.e. (m) on X, in fact

$$\|\theta(s)\| \le 1 + \frac{2}{\rho} \sum_{n=0}^{\infty} \|\widehat{\Phi}(Z)^n\| \quad (\text{a.e. } (m) \ s \in X).$$

This ends the proof.

From this theorem it follows that, for Φ as in Theorem 2.1, the $L^q(m)$ -boundedness of $\varphi_{x,y}$ in the sense of (2.1) for any $x, y \in \mathcal{H}$ and some q in the range $2 \leq q \leq \infty$, is equivalent to the fact that the Radon-Nikodym derivative of F_{Φ} is a bounded function a.e. (m) on X, if $H_0^p(m)$ is simply invariant. In this last case, Φ can be extended to whole $L^1(m)$ as in Theorem 2.1 and one has $\Phi_p = \Phi_1 | L^p(m)$ for 1 . $Moreover, if <math>1 \leq p \leq r \leq \infty$ then $\widehat{\Phi}_r = \widehat{\Phi}_p | H^r(m)$. Hence we infer from Theorem 3.1 the following

Corollary 3.5. Suppose that for some $p \in [1,2]$ the subspace $H_0^p(m)$ is simply invariant, and let Φ be a representations of A on \mathcal{H} satisfying Theorem 2.1. Then the relation (3.2) holds for $\widehat{\Phi}_r$ and any $g \in H^r(m)$ with $p \leq r \leq \infty$.

Notice that the above results extend some facts from [12] where only the case p = 2 was considered. Remark also that the assertion $r(\widehat{\Phi}(Z) < 1$ in the corresponding version in [12] of Theorem 3.1 before was obtained in a different way, adapting an argument of M. Schreiber [19].

In turn the Theorem 3.4 shows that the semispectral measure F_{Φ} can be described by the operator $\widehat{\Phi}(Z)$. Conversely, $\widehat{\Phi}(Z)$ can be retrieved from F_{Φ} as follows.

Proposition 3.6. Suppose that $H_0^p(m)$ is a simple invariant subspace for some $p \in [1,2]$, and let Φ be a representation of A on \mathcal{H} satisfying Theorem 2.1. Then $\widehat{\Phi}(Z)$ is a ρ -contraction on \mathcal{H} and we have

$$\widehat{\Phi}(Z)^{(n)}_{\rho} = \int Z^n(s)\theta(s)dm \quad (n \in \mathbb{Z}),$$
(3.7)

where θ is function defined in (3.6).

Moreover, if there exists $s_0 \in X$ and $\lambda \in \mathbb{C}$ such that $\theta(s_0) = \lambda I$ then $\widehat{\Phi}(Z)$ is a normal strict contraction.

Proof. The relation (3.7) follows immediately because we may integrate the series of θ term by term (by uniform convergence in norm), having in view that $\int Z dm = 0$. From (3.7) we infer for any analytic polynomial P and $x \in \mathcal{H}$ that

$$\begin{split} \langle P(\widehat{\Phi}(Z))x,x\rangle &= \int [\rho(P \circ Z)(s) + (1-\rho)P(0)] \langle \theta(s)x,x\rangle dm = \\ &= \int [\rho(P \circ Z)(s) + (1-\rho)P(0)] \varphi_{x,x}(s) dm, \end{split}$$

the last equality being ensured by Theorem 3.4. So, we obtain

$$\begin{aligned} |\langle P(\widehat{\Phi}(Z))x,x\rangle| &\leq \sup_{|\lambda|=1} |\rho P(\lambda) + (1-\rho)P(0)| \int \varphi_{x,x} dm = \\ &= \|\rho P + (1-\rho)P(0)\| \|x\|^2, \end{aligned}$$

whence

$$\sup_{\|x\|=1} |\langle P(\widehat{\Phi}(Z))x, x\rangle| \le \|\rho P + (1-\rho)P(0)\|.$$

This last inequality just means that $\widehat{\Phi}(Z)$ is a ρ -contraction on \mathcal{H} (see [1,4,6,22]).

Suppose now that there exists $s_0 \in X$ and $\lambda \in \mathbb{C}$ such that $\theta(s_0) = \lambda I$. We write $\theta(s_0) = I + T + T^*$ where

$$T = \frac{1}{\rho} \sum_{n=1}^{\infty} \overline{Z}^n \widehat{\Phi}(Z)^n.$$

Then our assumption yields $TT^* = (\lambda - 1)T - T^2 = T^*T$, hence T is a normal operator. Since one has

$$\rho T = [I - \overline{Z}(s_0)\widehat{\Phi}(Z)]^{-1} - I,$$

we get

$$\widehat{\Phi}(Z) = Z(s_0)[I - (I + \rho T)^{-1}],$$

therefore $\widehat{\Phi}(Z)$ is a normal operator. This also gives $\|\widehat{\Phi}(Z)\| = r(\widehat{\Phi}(Z)) < 1$, that is $\widehat{\Phi}(Z)$ is a strict contraction. This ends the proof.

The converse statement fails for the second assertion of Proposition 3.6, even in the case $\rho = 1$, and this fact was proved in [19, p.189], concerning the contractive representations of the disc algebra.

Theorem 3.4 can be also completed as follows.

Theorem 3.7. Suppose that $H_0^p(m)$ is a simply invariant subspace for some $p \in [1, 2]$ and that $H^{\infty}(m)$ coincides to the weak* closure of the system $\{Z^n\}_{n\in\mathbb{N}}$. Let Φ be a representation of A on \mathcal{H} satisfying Theorem 2.1. Then the semispectral measure F_{Φ} is mutually absolutely continuous with respect to m, and for every $x \in \mathcal{H}, x \neq 0$, the function $\log\langle\theta(\cdot)x,x\rangle$ belongs to $L^1(m)$, where θ is defined in (3.6).

Proof. Since F_{Φ} is absolutely continuous with respect to m, it remains to prove the converse assertion.

Notice firstly that for $g \in H^{\infty}(m)$ one has $g = \sum_{n=0}^{\infty} \widehat{g}(n)Z^n$, and that $\{Z^n\}_{n \in \mathbb{N}}$ forms an orthogonal basis in $H^2(m)$. Since $L^2(m) = H^2(m) \oplus \overline{H^2_0(m)}$ (the bar meaning the complex conjugate), the isomorphism τ applies $L^2(m_0)$ onto $L^2(m)$, and $L^{\infty}(m_0)$ onto $L^{\infty}(m)$ too.

Let $\sigma \in Bor(X)$ and $0 \neq x \in \mathcal{H}$ such that $\langle F_{\Phi}(\sigma)x, x \rangle = 0$. By (3.3) we have (χ_{σ}) being the characteristic function of σ)

$$\int (\tau^{-1}\chi_{\sigma})(\tau^{-1}\langle\theta(\cdot)x,x\rangle)dm_{0} = \int \chi_{\sigma}\langle\theta(\cdot)x,x\rangle)dm = \langle F_{\Phi}(\sigma)x,x\rangle = 0.$$

Since one has

$$(\tau^{-1}\langle \theta(\cdot)x,x\rangle)(\lambda) = \sum_{n=-\infty}^{\infty} \lambda^n \widehat{\Phi}(Z)^{(n)}_{\rho} \qquad (|\lambda|=1),$$

this function is just the Radon-Nikodym derivative of the semispectral measure \widehat{F} of $\widehat{\Phi}(Z)$ with respect to m_0 ($\widehat{\Phi}(Z)$ being a uniformly stable ρ -contraction, by Theorem 3.1 and Proposition 3.6). So, we have $\int (\tau^{-1}\chi_{\sigma})d\langle \widehat{F}x, x\rangle = 0$, and since the measures m_0 and $\langle \widehat{F}x, x\rangle$ are equivalent (see [18]), while $\tau^{-1}\chi_{\sigma}$ is a positive function $((\tau^{-1}\chi_{\sigma})^2 = \tau^{-1}\chi_{\sigma}^2 = \tau^{-1}\chi_{\sigma} \ge 0)$, it follows $\int (\tau^{-1}\chi_{\sigma})dm_0 = 0$. Then we obtain

$$m(\sigma) = \int \chi_{\sigma} dm = \int (\tau^{-1} \chi_{\sigma}) dm_0 = 0,$$

hence the measures m and $\langle F_{\Phi}x, x \rangle$ are equivalent.

Now, by (3.3) we also have for $g \in H_0^{\infty}(m)$,

$$\int |1 - g(s)|^p \langle \theta(s)x, x \rangle dm = \int |1 - (\tau^{-1}g)(s)|^p d\langle \widehat{F}x, x \rangle dx$$

But $\tau^{-1}H_0^{\infty}(m) = H_0^{\infty}(m_0)$, and so taking the infimum for $g \in H_0^{\infty}(m)$ in the previous equality we obtain by Szegö's Theorem 4.2.2 [20] that

$$\exp \int \log \langle \theta(s)x, x \rangle dm = \exp \int \log \tau^{-1} \langle \theta(\cdot)x, x \rangle dm_0$$

Since the ρ -contraction $\widehat{\Phi}(Z)$ is completely non unitary, the right side of this equality cannot be 0 (by Theorem 3.8 [18]), hence $\log \langle \theta(\cdot)x, x \rangle \in L^1(m)$. The proof is finished.

Note that the hypothesis on $H^{\infty}(m)$ in Theorem 3.7 is not verified for the algebra A in Example 3.3., as was proved in [6]. In the case that $H^{\infty}(m)$ is the weak* closure of $\{Z^n\}_{n\in\mathbb{N}}$, then for any $g\in H^{\infty}(m)$ we have $g=\sum_{n=0}^{\infty}\widehat{g}(n)Z^n$ in $H^2(m)$. In this case, for every Φ as above, $\widehat{\Phi}(g) = \widehat{\Phi}_2(g)$ is given by (3.2), and it is easy to see that this means that the representations $\widehat{\Phi}$ of $H^{\infty}(m)$ on \mathcal{H} is reduced to a functional calculus in the sense of Gaşpar [4, 6]. Finally, let us note that the case $\rho = 1$ of Theorem 3.7 is contained in Theorem 2.3.2 [6].

4. APPLICATION TO THE SCALAR CASE

In this section we consider the case when Φ is a homomorphism of A, this is the one-dimensional case $\mathcal{H} = \mathbb{C}$. In this context, we generalize to a weak^{*} Dirichlet algebra some classical results concerning the function algebra with the uniqueness property for representing measures ([2,7,21]).

Theorem 4.1. Suppose that $H_0^p(m)$ is a simply invariant subspace for some $p \in [1, 2]$. Then for any homomorphism $\varphi \in \mathcal{M}(A)$ with $\|\varphi\|_p < \infty$ we have $|\widehat{\varphi}(Z)| < 1$ and

$$\varphi_p(g) = \sum_{n=0}^{\infty} \widehat{g}(n) \widehat{\varphi}(Z)^n \quad (g \in H^p(m)), \tag{4.1}$$

where φ_p respectively ($\hat{\varphi}$) is the bounded linear extension of φ to $H^p(m)$ (respectively, to $H^{\infty}(m)$), the series being absolutely convergent. Moreover, the measure

$$\mu = \frac{1 - |\varphi(Z)|^2}{|Z - \varphi(Z)|^2} m \tag{4.2}$$

is a representing measure for φ .

Proof. Let $\varphi \in \mathcal{M}(A)$ with $\|\varphi\|_p = \sup\{|\varphi(f)| : f \in A, \|f\|_p \leq 1\} < \infty$. Assume, by contrary, that $|\widehat{\varphi}(Z)| = 1$. Since Z is uniquely determined by a scalar λ with $|\lambda| = 1$, one can suppose that $\widehat{\varphi}(Z) = 1$. Then for $n \geq 1$ there exists a function $f_n \in A(\mathbb{T})$ of the form $f_n(\lambda) = \sum_{j=0}^{\infty} c_j \lambda^j$ with $f_n(1) = n$ and $\|f_n\|_p \leq 1$, because 1 is a Choquet point for the standard algebra $A(\mathbb{T})$ ([2,21]). So, $\tau f_n \in H^p(m)$ and we have

$$\varphi_p(\tau f_n) = \varphi_p(\sum_{j=0}^{\infty} c_j Z^j) = \sum_{j=0}^{\infty} c_j \widehat{\varphi}(Z)^j = \sum_{j=0}^{\infty} c_j = f_n(1) = n$$

and $\|\tau f_n\|_p = \|f_n\|_p \leq 1$, contradicting the fact that φ is bounded on $H^p(m)$. Hence $|\widehat{\varphi}(Z)| < 1$.

Now, we can apply Theorem 3.1 for φ to obtain (4.1). Next, since $|\widehat{\varphi}(Z)| < 1$, the function

$$\theta_0 = \sum_{n = -\infty}^{\infty} \overline{Z}^n \widehat{\varphi}(Z)^{(n)}$$

is well defined and bounded a.e. (m) on X. In fact, because

$$\theta_0 = \sum_{n=0}^{\infty} \overline{Z}^n \widehat{\varphi}(Z)^{(n)} + \sum_{n=1}^{\infty} Z^n \overline{\widehat{\varphi}(Z)}^n = \\ = \frac{1}{1 - \overline{Z} \widehat{\varphi}(Z)} + \frac{Z \overline{\widehat{\varphi}(Z)}}{1 - Z \overline{\widehat{\varphi}(Z)}} = \frac{1 - |\widehat{\varphi}(Z)|^2}{|Z - \widehat{\varphi}(Z)|^2}.$$

 θ_0 is positive and $\int \theta_0 dm = 1$, hence $\mu = \theta_0 m$ is a probability measure on X. Clearly, we have by (4.1) for $f \in A$,

$$\int f d\mu = \sum_{n=-\infty}^{\infty} \widehat{\varphi}(Z)^{(n)} \int \overline{Z}^n f dm = \sum_{n=0}^{\infty} \widehat{f}(n) \widehat{\varphi}(Z)^n = \varphi(f),$$

that is μ is a representing measure for φ . This ends the proof.

Remark that only boundedness of φ on $H^p(m)$ assures that φ is m - a.c. that is φ has a m - a.c. representing measure, if $H^p_0(m)$ is simply invariant. In the general setting of Theorem 3.1, we cannot prove $r(\widehat{\Phi}(Z)) < 1$ without assuming that Φ is m - a.c.

Concerning the existence of homomorphism of A which are bounded on $H^p(m)$, we give the following result which generalize Theorem 6.4 [21] (or Theorem V 7.1, and Theorem VI 7.2 of [1]) in the context of weak^{*} Dirichlet algebras.

Theorem 4.2. Suppose that $H_0^p(m)$ is a simple invariant subspace for some $p \in [1, 2]$. Then the set $\Delta_p(m)$ of all homomorphisms of A which are bounded on $H^p(m)$ is not reduced to $\{\gamma\}$, and $\Delta_p(m)$ is contained in the Gleason part of A which contains γ . Moreover, there exists a one to one continuous map Γ from \mathbb{D} into $\mathcal{M}(A)$ such that:

- (i) $\Gamma(\mathbb{D}) = \Delta_p(m), \ \Gamma(0) = \gamma,$
- (ii) For any $f \in A$, the function $\hat{f} \circ \Gamma$ is analytic on \mathbb{D} , where \hat{f} is the Gelfand transform of f.

Proof. Let $\Delta_p(m) := \{ \varphi \in \mathcal{M}(A) : \|\varphi\|_{H^p(m)} < \infty \}$. For $\varphi \in \Delta_p(m)$ we have by Theorem 4.1 that $|\widehat{\varphi}(Z)| < 1$ where $Z \in H_0^{\infty}(m), |Z| = 1$ a.e. (m) such that $H_0^p(m) = ZH^p(m)$. We define the map $\Gamma_0 : \Delta_p(m) \to \mathbb{D}$ by $\Gamma_0(\varphi) = \widehat{\varphi}(Z), \varphi \in \Delta_p(m)$.

Firstly, Γ_0 is one to one because if $\Gamma_0(\varphi_0) = \Gamma_0(\varphi_1)$ for $\varphi_0, \varphi_1 \in \Delta_p(m)$ then by (4.1) we have $\varphi_0(f) = \varphi_1(f)$ for $f \in A$, so $\varphi_0 = \varphi_1$. Γ_0 is also onto \mathbb{D} . Indeed, for $z \in \mathbb{D}$ we define the linear functional φ_z on A by

$$\varphi_z(f) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \quad (f \in A).$$

Obviously, one has

$$|\varphi_z(f) \le \frac{\|f\|_p}{1-|z|},$$

because $|\widehat{f}(n)| \leq ||f||_p$ for $f \in A$. It is also easy to see (as in the proof of Theorem 6.4 [21]) that φ_z is multiplicative on A, therefore $\varphi_z \in \mathcal{M}(A)$. From the above estimation we have

$$\|\varphi_z\| \le \frac{1}{1-|z|},$$

hence $\varphi_z \in \Delta(m)$, and clearly, $\Gamma_0(\varphi_z) = \widehat{\varphi}_z(Z) = z$ that is Γ_0 is surjective. In addition, by Theorem 4.1 a representing measure for φ_z is m_z given by

$$m_z = \frac{1 - |\widehat{\varphi}_z(Z)|^2}{|Z - \widehat{\varphi}_z(Z)|^2} m = \frac{1 - |z|^2}{|Z - z|^2} m.$$

So, the measures m and m_z are mutually absolutely continuous and their corresponding Radon-Nikodym derivatives are bounded a.e. (m) on X. This means that φ_z belongs to the Gleason part $\Delta(\gamma)$ of A which contains γ (see [2, 21]). As Γ_0 is a bijection from $\Delta_p(m)$ onto \mathbb{D} , we infer that

$$\{\gamma\} \subsetneqq \Delta_p(m) = \{\varphi_z : z \in \mathbb{D}\} \subset \Delta(\gamma).$$

Now, $\Gamma = \Gamma_0^{-1}$ is one to one from \mathbb{D} onto $\Delta(m)$ and for $f \in A$ and $z \in \mathbb{D}$ we obtain by (4.1),

$$(\widehat{f} \circ \Gamma)(z) = \widehat{f}(\varphi_z) = \varphi_z(f) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n,$$

hence $\widehat{f} \circ \Gamma$ is an analytic function on \mathbb{D} . Finally, Γ is a continuous map on \mathbb{D} , relative to the Gelfand topology in $\mathcal{M}(A)$, and $\Gamma(0)(f) = \widehat{f}(0) = \int f dm = \gamma(f)$ for $f \in A$, so $\Gamma(0) = \gamma$. This ends the proof.

Remark 4.3. If for a function algebra A on X, m is the unique representing measure for $\gamma \in \mathcal{M}(A)$, then A is weak^{*} Dirichlet in $L^{\infty}(m)$, and any $\varphi \in \Delta(\gamma)$ has a unique representing measure which is bounded absolutely continuous with respect to m ([2], Cor. IV 1.2). This gives $\|\varphi\|_{H^p(m)} < \infty$ for $\varphi \in \Delta(\gamma)$, hence $\Delta(\gamma) = \Delta_p(m) \neq \{\gamma\}$ in this case, if $H_0^p(m)$ is simple invariant for some $p \in [1,2]$. Furthermore, only assumption $\Delta(\gamma) \neq \{\gamma\}$ assures that $H_0^p(m)$ is simply invariant, in the case of unique representing measure (see Theorem 6.4 [21], or Theorem V 7.2 [1]).

REFERENCES

- G. Cassier, N. Suciu, Mapping theorems and Harnack ordering for ρ-contractions, Indiana Univ. Math. Journal (2005), 483–524.
- [2] T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- [3] D. Gaşpar, On operator representations of function algebras, Acta Sci. Math. (Szeged) 31 (1970), 339–346.
- [4] D. Gaşpar, Spectral ρ-dilations for representations of function algebras, Anal. Univ. Timişoara, Ser. Şt. Mat. 3 (1970), 153–157.
- [5] D. Gaşpar, On absolutely continuous representations of function algebras, Rev. Roum. Math. Pures Appl. 17 (1972) 1, 21–31.
- [6] D. Gaşpar, On the harmonic analysis of representations of function algebras, Stud. Cerc. Mat. 24 (1972) 1, 7–95 [in Romanian; English summary].
- [7] K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271–317.
- [8] A. Juratoni, N. Suciu, Spectral ρ-dilations for some representations of uniform algebras, Proc. of the 9th Nat. Conf. Roumanian Math. Soc., Ed. Univ. de Vest Timişoara, (2005), 194–210.
- [9] A. Juratoni, On the weak ρ-spectral representations of function algebras, Proc. of the 11 Symp. of Math. and Its Appl., Ed. Politehnica, (2006), 153–158.
- [10] A. Juratoni, Some absolutely continuous representations of function algebras, Surveys in Math. and its Appl. 1 (2006), 51–60.
- [11] A. Juratoni, On uniformly stable p-contractions, Proc. of PAMM Conference, Balatonalmady (Hungary), BAM-CXIII/2008, Nr. 2382-2398, 017–027.
- [12] A. Juratoni, On operator representations of weak*-Dirichlet algebras, Proc. of the 22nd Conference on Operator Theory, Theta Bucureşti 2010, 89–98.
- [13] A. Lebow, On von Neumann's theory of spectral sets, J. Math. Anal. Appl. 7 (1963), 64–90.
- [14] G. Lumer, H^{∞} and the embedding of the classical H^p spaces in arbitrary ones, Function Algebra, Scott, Foresman and Co., 1966, 285–286.
- [15] T. Nakazi, ρ-dilations and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged) 56 (1992), 175–181.
- [16] T. Nakazi, Some special bounded homomorphisms of uniform algebras, Contemporary Math. 232 (1999), 243–252.
- T. Nakazi, Invariant subspaces of weak*-Dirichlet algebras, Pacific J. Math. 69 (1977) 1, 151–167.
- [18] A. Racz, Unitary skew-dilations (Romanian; English summary), Stud. Cerc. Mat. 26 (1974) 4, 545–621.
- [19] M. Schreiber, Absolutely continuous operators, Duke Math. 29 (1962), 175–190.

- [20] T.P. Srinivasan, Ju-Kwei Wang, Weak *-Dirichlet algebras, Function Algebras, Scott, Foresman and Co, 1966, 216–249.
- [21] I. Suciu, Function Algebras, Noordhoff Intern. Publ. Leyden, The Netherlands, 1975.
- [22] B.SZ.-Nagy, C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North Holland, New York, 1970.

Adina Juratoni adinajuratoni@yahoo.com

"Politehnica" University of Timişoara Department of Mathematics Piața Victoriei No. 2, Et. 2, 300006, Timişoara, Romania

Nicolae Suciu suciu@math.uvt.ro

West University of Timişoara Department of Mathematics Bv. V. Parvan 4, Timişoara 300223, Romania

Received: May 18, 2010. Revised: July 13, 2010. Accepted: July 15, 2010.