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OPERATOR REPRESENTATIONS
OF FUNCTION ALGEBRAS

AND FUNCTIONAL CALCULUS

Adina Juratoni, Nicolae Suciu

Abstract. This paper deals with some operator representations Φ of a weak*-Dirichlet
algebra A, which can be extended to the Hardy spaces Hp(m), associated to A and to
a representing measure m of A, for 1 ≤ p ≤ ∞. A characterization for the existence of
an extension Φp of Φ to Lp(m) is given in the terms of a semispectral measure FΦ of
Φ. For the case when the closure in Lp(m) of the kernel in A of m is a simply invariant
subspace, it is proved that the map Φp|Hp(m) can be reduced to a functional calculus,
which is induced by an operator of class Cρ in the Nagy-Foiaş sense. A description of the
Radon-Nikodym derivative of FΦ is obtained, and the log-integrability of this derivative is
proved. An application to the scalar case, shows that the homomorphisms of A which are
bounded in Lp(m) norm, form the range of an embedding of the open unit disc into a Gleason
part of A.

Keywords: weak*-Dirichlet algebra, Hardy space, operator representation, semispectral
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1. INTRODUCTION AND PRELIMINARIES

Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex
continuous functions on X. Denote by A a function algebra on X, that is a closed
subalgebra of C(X) which contains the constant functions and separates the points
of X. M(A) stands for the set of all non zero complex homomorphisms (or Gelfand
spectrum) of A. The equivalence classes ofM(A) induced by the relation: γ ∼ ϕ iff
‖γ − ϕ‖ < 2 for γ, ϕ ∈M(A), are the Gleason parts of A (see [2, 21]).

For γ ∈ M(A), Aγ means the kernel of γ, and Mγ designates the set of all
representing measuresm for γ, that ism is a probability Borel measure onX satisfying
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γ(f) =
∫
fdm, f ∈ A. For a subspace B ⊂ C(X), we put B = {f : f ∈ B}. Notice

that the homomorphism γ can be naturally extended to A+A by

γ(f + g) = γ(f) + γ(g), f, g ∈ A.

In this paper we consider A to be a function algebra on X which is weak*-Dirichlet
in L∞(m), that is A + A is weak* dense in L∞(m), for some fixed m ∈ Mγ and
γ ∈ M(A). This concept introduced in [20] is weaker than one of Dirichlet algebra,
which means that A + A is dense in C(X). For example, the standard algebra A(T)
of all continuous functions f on the unit circle T which have analytic extensions f̃ to
the open unit disc D, is a Dirichlet algebra on T. On the other hand, the subalgebra
A1(T) of A(T) of those functions f satisfying f(1) = f̃(0) is a weak*-Dirichlet algebra
in L∞(m0), m0 being the normalized Lebesgue measure on T, and A1(T) is not a
Dirichlet algebra.

Let H be a complex Hilbert space and B(H) be the Banach algebra of all bounded
linear operators on H.

Any bounded linear and multiplicative map Φ of A in B(H) with Φ(1) = I (the
identity operator on H) is called a representation of A on H. When ‖Φ‖ ≤ 1 one says
that Φ is contractive. Here, we only consider a representation Φ for which there exist
a scalar ρ > 0 and a system {µx}x∈H of positive measures on X with ‖µx‖ = ‖x‖2
such that

〈Φ(f)x, x〉 =
∫

[ρf + (1− ρ)γ(f)]dµx

for any f ∈ A and x ∈ H. Such a µx is called a weak ρ-spectral measure for Φ attached
to x by γ. It is known ([8, 9]) that the existence of a system of measures {µx}x∈H as
above, is equivalent to the fact that Φ satisfies a weaker von Neumann inequality of
the form

w(Φ(f)) ≤ ‖ρf + (1− ρ)γ(f)‖ (f ∈ A), (1.1)

where w(T ) means the numeric radius of T ∈ B(H).
In [10] it was proved that if the representation Φ of A on H admits a system

{µx}x∈H of weak ρ-spectral measures attached by γ such that µx is m − a.c. for
any x ∈ H, then Φ has a γ-spectral ρ-dilation, that is there exists a contractive
representation Φ̃ of C(X) on a Hilbert space K ⊃ H satisfying the relation

Φ(f) = ρPHΦ̃(f)|H (f ∈ Aγ), (1.2)

where PH is the orthogonal projection on H. Moreover, in this case there exists a
unique semispectral measure FΦ : Bor(X) → B(H) such that 〈FΦ(·)x, x〉 = µx, or
equivalently

〈Φ(f)x, y〉 =
∫

[ρf + (1− ρ)γ(f)]d〈FΦx, y〉 (f ∈ A), (1.3)

for any x, y ∈ H. As usual, Bor(X) denotes the set of all Borel subsets of X. Using
the polarization formula, it follows that all measures 〈FΦ(·)x, y〉 for x, y ∈ H are
m− a.c.
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The relation (1.2) means that the representation Φ̃ is a γ-spectral ρ-dilation of Φ,
and FΦ is obtained as the compression to H of the spectral measure of Φ̃ (see [21]).

The representations with spectral ρ-dilations was first studied by D. Gaşpar ([4–
6]), and recently by T. Nakazi ([15, 16]). Any such representation of the algebra
A(T) on H reduces to the usual functional calculus with the operators of class Cρ
in B(H) in the sense of Sz. Nagy-Foiaş [22] (i.e. ρ-contractions; [1, 11]). In the
general setting of a weak*-Dirichlet algebra A, it is natural to find conditions for a
representation Φ of A on H, under which Φ can be reduced to a certain functional
calculus with a ρ-contraction. Recall that in [6] was given an example of a contractive
representation of a Dirichlet algebra which cannot be reduced to a functional calculus
with contractions.

In the sense of [5, 6], the problem of reduction to a functional calculus refers to
absolutely continuous representations with respect to representing measures. Thus,
we only investigate here the representations Φ which have a system of m− a.c. weak
ρ-spectral measures attached by γ. In the sequel Hp(m) stands for the (weak∗, for
p =∞) closure of A into Lp(m), that is the Hardy space associated to A in Lp(m).

In Section 2 we characterize in terms of FΦ the representations Φ which have
bounded linear extensions Φp to the space Lp(m) for 1 ≤ p ≤ ∞. In Section 3 we
prove the main result which says that, under some hypothesis on an invariant subspace
of Hp(m) when 1 ≤ p ≤ 2, the map Φp|Hp(m) is given by a functional calculus with
a ρ-contraction with the spectrum in D, the functional calculus being induced by a
Hoffman type [7] naturally associated to the corresponding invariant subspace. In this
case, the Radon-Nikodym derivative of FΦ is an essentially bounded function on X
and its logarithm belongs to L1(m). The scalar case is considered in Section 4 where
we refer to the homomorphisms inM(A) which are bounded in the Lp(m)-norm. Our
main result is a version of Wermer’s embedding theorem ([1,7,21]) for weak*-Dirichlet
algebras, which prove that the set of above quoted homomorphisms corresponds to
an analytic disc in the Gleason part which contains γ.

2. EXTENSION OF A REPRESENTATION TO THE SPACE Lp(m)

We characterize below some representations Φ of A on H which can be linearly and
boundedly extended to the space Lp(m) for 1 ≤ p ≤ ∞. Our characterization is given
in the terms of the Radon-Nikodym derivative with respect to m of the corresponding
B(H)-valued semispectral measure FΦ. In the sequel we put ϕx,ydm = d〈FΦ(·)x, y〉
for x, y ∈ H.

Theorem 2.1. Let Φ be a representation of A on H which admits a system of m−a.c.
weak ρ-spectral measures attached by γ. Then Φ has a bounded linear extension Φp
from Lp(m) into B(H) for 1 ≤ p ≤ ∞, if and only if ϕx,y ∈ Lq(m) and there exists a
constant c > 0 such that

‖ϕx,y‖q ≤ c‖x‖‖y‖ (x, y ∈ H), (2.1)
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where 1
p + 1

q = 1. In this case, Φp is uniquely determined and it satisfies for h ∈ Lp(m)
and x, y ∈ H the relation

〈Φp(h)x, y〉 =
∫

[ρh+ (1− ρ)
∫
hdm]ϕx,ydm. (2.2)

Furthermore, for h ∈ L2(m) and x ∈ H we have the inequality

‖Φ2(h)x‖2 ≤
∫
|ρh+ (1− ρ)

∫
hdm|2ϕx,xdm. (2.3)

Hence, if {hα} ⊂ L∞(m) is a bounded net such that {hα} converges a.e. (m) to
h ∈ L∞(m), then {Φp(hα)} strongly converges to Φp(h) in B(H), for p ≥ 2.

Proof. Suppose firstly that ϕx,y ∈ Lq(m) and that the inequality (2.1) is satisfied.
Since for f ∈ A, g ∈ Aγ and x, y ∈ H we have

〈(Φ(f) + Φ(g)∗)x, y〉 =
∫

[ρ(f + g) + (1− ρ)γ(f + g)]ϕx,ydm,

we infer that

|〈(Φ(f) + Φ(g)∗)x, y〉| ≤ ρ|
∫

(f + g)ϕx,ydm|+ |(1− ρ)
∫

(f + g)dm ·
∫
ϕx,ydm| ≤

≤ (ρ+ |1− ρ|)‖f + g‖p‖ϕx,y‖q.

Since A+Aγ is weak* dense in L∞(m), the closure of A+Aγ in Lp(m) is just Lp(m),
for 1 ≤ p < ∞, (see [20]). Thus, the previous relations prove that for any x, y ∈ H
there exists a bounded linear functional Φx,y on Lp(m) satisfying for f ∈ A, g ∈ Aγ ,
h ∈ Lp(m),

Φx,y(f + g) = 〈(Φ(f) + Φ(g)∗)x, y〉,

and
Φx,y(h) =

∫
[ρh+ (1− ρ)

∫
hdm]ϕx,ydm.

Also we have Φx,y = Φy,x and using (2.1) we obtain

‖Φx,y‖ ≤ c(ρ+ |1− ρ|)‖x‖‖y‖.

It follows that for every h ∈ Lp(m), the map (x, y) 7→ Φx,y(h) is a bounded bilinear
functional on H×H, hence there exists an operator Φp(h) ∈ B(H) such that

〈Φp(h)x, y〉 = Φx,y(h), x, y ∈ H

and
‖Φp(h)‖ ≤ c(ρ+ |1− ρ|)‖h‖.

Then Φp : h 7→ Φp(h) is a bounded linear map from Lp(m) into B(H), which extends
Φ and also satisfies the relation (2.2). Using also (2.2) with h = f + g for f ∈ A,
g ∈ Aγ one can see that Φp is the unique bounded linear extension of Φ to Lp(m).
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Now, let Φ̃ be the γ-spectral ρ-dilation of Φ (from (1.2)), corresponding to the
Naimark dilation (as a spectral measure) of the semispectral measure FΦ (see [6,21]).
Then for f ∈ A, g ∈ Aγ and x ∈ H we have Φ(g)∗x = ρPHΦ̃(g)x and

‖Φ2(f + g)x‖2 = ‖(Φ(f) + Φ(g)∗)x‖2 = ‖PHΦ̃(ρ(f + g) + (1− ρ)γ(f + g))x‖2 ≤

≤ 〈Φ̃(|ρ(f + g) + (1− ρ)γ(f + g)|2)x, x〉 =

=
∫
|ρ(f + g) + (1− ρ)γ(f + g)|2ϕx,xdm.

Since A+Aγ is dense in L2(m), by the continuity of Φ2 one obtains from this inequality
just the inequality (2.3).

Next, let {hα} ⊂ L∞(m), be a bounded net which converges a.e. (m) to h ∈
L∞(m). Then using (2.3) we obtain

‖(Φ2(hα)− Φ2(h))x‖2 ≤

≤
∫
|ρ(hα − h) + (1− ρ)

∫
(hα − h)dm|2ϕx,xdm ≤

≤ 2[ρ2

∫
|hα − h|2ϕx,xdm+ |1− ρ|2

∫
|
∫

(hα − h)dm|2ϕx,xdm] ≤

≤ 2[ρ2

∫
|hα − h|2ϕx,xdm+ |1− ρ|2

∫
|hα − h|2dm ·

∫
ϕx,xdm] =

= 2
∫
|hα − h|2(ρ2ϕx,x + |1− ρ|2‖x‖2)dm −→α 0.

The convergence to 0 is assured by Lebesgue’s theorem, because µ = ϕ
(ρ)
x m is a

m − a.c. positive measure on X, where ϕ(ρ)
x = ρ2ϕx,x + |1 − ρ|2‖x‖2. We infer that

Φ2(hα)x −→ Φ2(h)x in H for any x ∈ H, and since Φp = Φ2|Lp(m) we have that
{Φp(hα)} strongly converges to Φp(h) in B(H), for p ≥ 2 (including and the case
p =∞ because Φ∞ = Φp|L∞(m) for p <∞).

For the converse statement, we suppose now that Φ admits a bounded linear
extension Ψ to Lp(m) with 1 ≤ p < ∞. For x, y ∈ H the functional 〈Ψ(·)x, y〉 is
bounded linear on Lp(m), so there exists ψx,y ∈ Lq(m) such that

〈Ψ(h)x, y〉 =
∫
hψx,ydm (h ∈ Lp(m)).

Since Ψ|A = Φ we have for f ∈ A and g ∈ Aγ ,∫
(f + g)ψx,ydm = 〈Ψ(f + g)x, y〉 = 〈(Φ(f) + Φ(g)∗)x, y〉 =

=
∫

[ρ(f + g) + (1− ρ)γ(f + g)]ϕx,ydm =

=
∫

(f + g)(ρϕx,y + (1− ρ)〈x, y〉)dm.
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Using the weak* density of A+Aγ in L∞(m) we obtain∫
hψx,ydm =

∫
h(ρϕx,y + (1− ρ)〈x, y〉)dm

for any h ∈ L∞(m), hence ψx,y = ρϕx,y + (1 − ρ)〈x, y〉. This implies ϕx,y ∈ Lq(m)
and also

‖ϕx,y‖q =
1
ρ
‖ψx,y + (ρ− 1)〈x, y〉‖q ≤

(1
ρ
‖Ψ‖+ |1− 1

ρ
|
)
‖x‖‖y‖,

for any x, y ∈ H. Thus, ϕx,y satisfies (2.1) and this proves the converse statement
when p < ∞. If p = ∞ that is we assume that Φ has a bounded linear extension Ψ
to L∞(m), then clearly we have

〈Ψ(h)x, y〉 =
∫

(ρh+ (1− ρ)
∫
hdm)ϕx,ydm

for all h ∈ L∞(m) and x, y ∈ H. Since ϕx,y ∈ L1(m) we get

‖ϕx,y‖1 = sup
g∈L∞(m),‖g‖≤1

∣∣∣∣∫ gϕx,ydm

∣∣∣∣ =

= sup
g∈L∞(m),‖g‖≤1

∣∣∣∣〈Ψ(1
ρ

+
(

1− 1
ρ

)∫
hdm

)
x, y〉

∣∣∣∣ ≤
≤ ‖Ψ‖

(
1
ρ

+
∣∣∣∣1− 1

ρ

∣∣∣∣) ‖x‖‖y‖,
and so ϕx,y also satisfies (2.1) when p =∞. This ends the proof.

Remark 2.2. The equivalent conditions of Theorem 2.1 imply

‖Φ‖p := sup
f∈A,‖f‖p≤1

‖Φ(f)‖ <∞. (2.4)

It is easy to see that the condition (2.4) is equivalent to the existence of a bounded
linear extension Φ̂p of Φ to Hp(m). In this case, Φ̂p is uniquely determined and it
satisfies the relation (2.2) for g ∈ Hp(m). In addition, the following property holds.

Proposition 2.3. Let Φ be a representation of A on H as in Theorem 2.1 such that
‖Φ‖p <∞. Then

Φ̂p(fg) = Φ̂p(f)Φ̂p(g) (f ∈ H∞(m), g ∈ Hp(m)) (2.5)

and, in particular, Φ̂ := Φ̂p|H∞(m) is a representation of H∞(m) on H. Moreover,
if {fα} ⊂ H∞(m) is a bounded net which converges a.e. (m) to f ∈ H∞(m), then
{Φ̂(fα)} strongly converges to Φ̂(f) in B(H).
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Proof. Let g ∈ Hp(m) and f, gn ∈ A such that gn → g in Lp(m). Then fgn → fg in
Lp(m), so

Φ̂p(fg) = lim
n

Φ(fgn) = Φ(f)Φp(g).

Now, if f ∈ H∞ and {fα} ⊂ A is a net which converges to f in the weak* topology
of L∞(m) then for g, gn as above and x, y ∈ H one has

〈Φ̂p(fg)x, y〉 =
∫

(ρfg + (1− ρ)
∫
fgdm)ϕx,ydm =

= lim
n

lim
α

∫
(ρfαgn + (1− ρ)

∫
fαgndm)ϕx,ydm =

= lim
n

lim
α
〈Φ(fαgn)x, y〉 = lim

n
lim
α
〈Φ(fα)Φ(gn)x, y〉 =

= lim
n

lim
α

∫
(ρfα + (1− ρ)γ(fα))ϕΦ(gn)x,ydm =

= lim
n

∫
(ρf + (1− ρ)

∫
fdm)ϕΦ(gn)x,ydm =

= lim
n
〈Φ̂p(f)Φ(gn)x, y〉 = 〈Φ̂p(f)Φ̂p(g)x, y〉.

So, property (2.5) is proved. This also gives that Φ̂p is multiplicative on H∞(m),
therefore Φ̂ := Φ̂p|H∞(m) is a representation of H∞(m) on H.

The second statement of the proposition can be infered as in the previous proof.

Remark 2.4. If the representation Φ in Theorem 2.1 is contractive, that is ρ = 1
and ‖Φ‖ = 1 (because Φ(1) = I), then its extension Φp is also contractive, in the case
when it exists. Indeed, if Φ̃ is as in the proof of Theorem 2.1, we have for f ∈ A,
g ∈ Aγ and x, y ∈ H,∣∣∣∣∫ (f + g)ϕx,ydm

∣∣∣∣ = |〈(Φ(f) + Φ(g)∗)x, y〉| = |〈PHΦ̃(f + g)x, y〉| ≤

≤ ‖Φ̃(f + g)‖‖x‖‖y‖ ≤ ‖f + g‖‖x‖‖y‖,

because Φ̃ is a contractive representation of C(X). From this inequality we infer by
the density of A+Aγ in Lp(m) that∣∣∣∣∫ hϕx,ydm

∣∣∣∣ ≤ ‖h‖∞‖x‖‖y‖ (h ∈ Lp(m)),

hence ‖ϕx,y‖q ≤ ‖x‖‖y‖. Thus, we can take c = 1 in (2.1) and from the proof of
Theorem 2.1 we deduce (the case ρ = 1) that ‖Φp‖ ≤ 1, and finally ‖Φp‖ = 1 because
Φp(1) = I.
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3. REDUCTION TO FUNCTIONAL CALCULUS

In the sequel we denote by Hp
0 (m) the closure (weak*, if p = ∞) of Aγ in Lp(m),

that is
Hp

0 (m) =
{
f ∈ Hp(m) :

∫
fdm = 0

}
.

We say ([17, 20, 21]) that Hp
0 (m) is simply invariant if the closure of AγH

p
0 (m)

in Lp(m) is strictly contained in Hp
0 (m). By Theorem 4.1.6 [20] (see also [17, 21]) if

Hp
0 (m) is simply invariant then there exists a function Z ∈ H∞0 (m) with |Z| = 1 a.e.

(m) such that Hp
0 (m) = ZHp(m).

As in Theorem 3 [14] one can prove that, ifm0 is the normalized Lebesgue measure
on T, there exists an isometric ∗-isomorphism τ of Lp(m0) onto a closed subspace of
Lp(m), taking Hp(m0) onto a closed subspace of Hp(m), for 1 ≤ p ≤ ∞. In fact, τ is
defined by

(τh)(s) = h(Z(s))
for h ∈ Lp(m0) and a.e. (m) s ∈ X.

The following main result shows that under the simple invariance of Hp
0 (m) with

1 ≤ p ≤ 2, the representations from Theorem 2.1 and their extensions to Hp(m)
can be reduced to functional calculus. For this we need to define the operator S :
Hp(m)→ Lp(m) by

Sg = Z(g −
∫
gdm) (g ∈ Hp(m)). (3.1)

Also, for T ∈ B(H) we denote by r(T ) the spectral radius of T .

Theorem 3.1. Suppose that Hp
0 (m) is a simply invariant subspace for 1 ≤ p < ∞,

and let Φ be a representation of A on H satisfying Theorem 2.1. Then r(Φ̂(Z)) < 1,
and if 1 ≤ p ≤ 2 one has

Φ̂p(g) =
∞∑
n=0

ĝ(n)Φ̂(Z)n (g ∈ Hp(m)), (3.2)

where ĝ(n) =
∫
Z
n
gdm for n ∈ N, the series being absolutely convergent in B(H).

Moreover, the relation (3.2) is also true when 2 < p < ∞, for g ∈ Hp(m) such that
{Sng} is a bounded sequence in Hp(m), S being the operator from (3.1).

Proof. The assumption on Φ means that ϕx,y satisfies (2.1) for any x, y ∈ H. As a
bounded linear functional on Lp(m), ϕx,y induces, by the isomorphism τ , a bounded
linear functional on Lp(m0), that is there exists ϕ0

x,y ∈ Lq(m0) satisfying∫
hϕ0

x,ydm0 =
∫

(τh)ϕx,ydm (h ∈ Lp(m0)). (3.3)

Since τ is an isometry we find

‖ϕ0
x,y‖q = sup

‖h‖p=1

∣∣∣∣∫ hϕ0
x,ydm0

∣∣∣∣ = sup
‖τh‖p=1

∣∣∣∣∫ (τh)ϕx,ydm
∣∣∣∣ ≤ ‖ϕx,y‖q ≤ c‖x‖‖y‖,

with c as in (2.1).
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Now from (3.3) and (2.2) we infer, for any analytic polynomial P , that∫
[ρP + (1− ρ)P (0)]ϕ0

x,ydm0 =
∫

[ρ(P ◦ Z) + (1− ρ)P (0)]ϕx,ydm =

= 〈Φp(P ◦ Z)x, y〉 = 〈P (Φp(Z))x, y〉.

So, using the previous inequality we get

|〈P (Φp(Z))x, y〉| ≤ ‖ρP + (1− ρ)P (0)‖p‖ϕ0
x,y‖q ≤

≤ c(ρ+ |1− ρ|)‖P‖p‖x‖‖y‖,

and putting cρ = c(ρ+ |1− ρ|) one obtains

‖P (Φp(Z))‖ ≤ cρ‖P‖p.

This means that the operator Φp(Z) is polynomially bounded. On the other hand,
taking P (λ) = λn for n ∈ N in the above equality, we obtain

〈Φp(Z)nx, y〉 = ρ

∫
λnϕ0

x,ydm0

and so it follows that for x, y ∈ H there exists ψx,y ∈ Lq(m0) such that

〈Φp(Z)∗nx, y〉 =
∫
λ
n
ψx,ydm0 (n ∈ N).

This yields that the operator Φp(Z)∗ is absolutely continuous, and since ψx,y ∈
Lq(m0) with q > 1 (by the choose of p), from Lebow’s theorem [13] we infer that
r(Φp(Z)) < 1.

The assumption that H0
p (m) = ZHp(m) assures that the range of operator S from

(3.1) is contained in Hp(m), so S ∈ B(Hp(m)). In addition, for g ∈ Hp(m) we have∫
Sgdm =

∫
Zgdm = ĝ(1),

therefore S2g = Z(Sg − ĝ(1)), or Sg = ĝ(1) + Z(S2g). This also gives

g =
∫
gdm+ Z(Sg) = ĝ(0) + ĝ(1)Z + Z2(S2g).

Assume now that g =
n−1∑
j=0

ĝ(j)Zj + Zn(Sng) for n > 1. Then

Sng = Z
n
g −

n−1∑
j=0

ĝ(j)Z
n−j

,

whence we get
∫
Sngdm = ĝ(n). So, we have Sn+1g = Z(Sng − ĝ(n)), or Sng =

ĝ(n) + Z(Sn+1g), and by our assumption on g we obtain

g =
n∑
j=0

ĝ(j)Zj + Zn+1(Sn+1g) (g ∈ Hp(m)). (3.4)
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Considering the extension Φ̂p = Φp|Hp(m) of Φ to Hp(m) (as in Proposition 2.3) we
get by (3.4) that

‖Φ̂p(g)−
n∑
j=0

ĝ(j)Φ̂(Z)j‖ = ‖Φ̂(Zn+1)Φ̂p(Sn+1g)‖ ≤

≤ ‖Φ̂p‖‖Sn+1g‖p‖Φ̂(Z)n+1‖,

(3.5)

for any g ∈ Hp(m).
If p = 2, the operator S is a contraction on H2(m) that is

‖Sg‖2 = ‖g −
∫
gdm‖2 ≤ ‖g‖2,

because g−
∫
gdm is the orthogonal projection of g on H2

0 (m) for g ∈ H2(m). In this
case, in (3.5) we have ‖Sn+1g‖2 ≤ ‖g‖2 for any n ∈ N, and since Φ̂(Z)n → 0 (n→∞)
by a remark before, it follows that the representation (3.2) holds true for g ∈ H2(m).

Suppose now 1 ≤ p < 2. As H2(m) is dense in Hp(m), for g ∈ Hp(m) and every
ε > 0 there exists gε ∈ H2(m) with ‖g − gε‖p < ε. Since |ĝ(n)| ≤ ‖g‖p for n ∈ N, the
series from (3.2) is absolutely convergent in B(H) and applying the previous remark
to gε we obtain

‖
∞∑
n=0

ĝ(n)Φ̂(Z)n − Φp(g)‖ ≤ ‖
∞∑
n=0

(ĝ(n)− ĝε(n))Φ̂(Z)n‖+ ‖Φp(gε − g)‖ ≤

≤ ‖g − gε‖p(‖Φp‖+
∞∑
n=0

‖Φ̂(Z)n‖) < εM

for some constant M > 0. Thus, the representations (3.2) occurs for any g ∈ Hp(m),
if p ≤ 2. When p > 2, from the inequality (3.5) we infer that the equality (3.2) is also
true for g ∈ Hp(m) for which {Sng} is a bounded sequence in Hp(m). The proof is
finished.

Remark 3.2. By (3.4) we have that the sequence {Sng}n is bounded if and only

if the sequence {
n∑
j=0

ĝ(j)Zj}n is bounded in Hp(m), and in particular, this happens

if S is a power bounded operator in B(Hp(m)). But, even if the second sequence
before converges, its limit is not necessary the function g. In fact, one has (by (3.4))

g =
∞∑
j=0

ĝ(j)Zj in Hp(m) if and only if Sng → 0 (n→∞); but this condition is false,

in general, as we can see in the following

Example 3.3. Let A be the algebra of all continuous functions f on T2 having the
Fourier coefficients

cij =
∫
T2

λ
i
wjf(λ,w)dm2 (i, j ∈ Z)
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such that cij = 0 if either j < 0, or j = 0 and i < 0. Then A is a Dirichlet algebra
on T2, while the normalized Lebesgue measure m2 on T2 is the representing measure
for the homomorphism of evaluation in (0, 0) of A. Here the function Z ∈ H∞0 (m2)
is given by Z(λ,w) = λ, λ, w ∈ T. On the other hand, for the function g0 ∈ H∞(m2)
defined by g0(λ,w) = w, we have (Sng0)(λ,w) = λnw and ‖Sng0‖p = 1, for any
n ∈ N, λ,w ∈ T. Hence {Sng0} is a bounded sequence which is not convergent to 0, in
Hp(m2) for 1 ≤ p ≤ ∞. Clearly, ĝ0(n) = 0 for any n ≥ 0, therefore

∑n
j=0 ĝ0(j)λj = 0

for n ≥ 0, what justifies the last assertion of Remark 3.2.

This example also provides that, in general under the hypothesis of Theorem
3.1, the space Hp(m) is not spanned by {Zn}n∈N, even if the operator S is power
bounded. For instance, S is always a contraction on H2(m), but {Zn}n∈N becomes
an orthonormal basis in H2(m) if and only if H∞(m) is a maximal weak* closed
algebra in L∞(m), when m is the unique representing measure for γ, while {γ} is not
a Gleason part of A (see [1, 6]).

If Hp(m) is spanned by {Zn}n∈N then for any g ∈ Hp(m) the representation
(3.2) holds (by Remark 3.2), which means that the map Φp is reduced to a functional
calculus. Theorem 3.1 shows that this fact occurs for Φ satisfying (2.1) for 2 ≤ q ≤ ∞,
but we cannot prove (3.2) in the case 2 < p ≤ ∞ (when 1 ≤ q < 2), the boundedness
condition (2.1) for ϕx,y, being weakened in this case.

We see now that, from the point of view of the semispectral measure FΦ, the cases
when p belongs to the range 1 ≤ p ≤ 2 are not essentially different, in Theorem 3.1.

Theorem 3.4. Suppose 1 ≤ p ≤ 2 and that Hp
0 (m) is a simply invariant subspace

in Hp(m). Let Φ be a representation of A on H satisfying Theorem 2.1. Then the
semispectral measure FΦ has the form FΦ = θ(·)m where the function θ : X → B(H)
is given by

θ(s) =
∞∑

n=−∞
Z
n
(s)Φ̂(Z)(n)

ρ , (3.6)

while the series converges absolutely and uniformly a.e. (m) for s ∈ X. Moreover, θ
is a bounded function a.e. (m) on X.

Proof. Since r(Φ̂(Z)) < 1 (by Theorem 3.1) one can define the function

θ+(s) =
∞∑
n=0

Z
n
(s)Φ̂(Z)n,

the series being absolutely and uniformly convergent a.e. (m) for s ∈ X. In addition,
one has

‖θ+(s)‖ ≤
∞∑
n=0

‖Φ̂(Z)n‖ (a.e. (m) s ∈ X).
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Then for g ∈ Hp(m) and x ∈ H the function g〈θ+(·)x, x〉 belongs to Lp(m), and we
have (by (3.2) and (2.2)),∫

g〈θ+(·)x, x〉dm =
∞∑
n=0

ĝ(n)〈Φ̂(Z)nx, x〉 = 〈
∞∑
n=0

ĝ(n)Φ̂(Z)nx, x〉 =

= 〈Φp(g)x, x〉 =
∫

(ρg + (1− ρ)
∫
gdm)ϕx,xdm.

Equivalently, taking
1
ρ
g + (1− 1

ρ
)
∫
gdm instead of g in this relation, we obtain

∫
gϕx,xdm =

∫ [
1
ρ
g(s) +

(
1− 1

ρ

)∫
gdm

]
〈θ+(s)x, x〉dm =

=
∫
g(s)

[
1
ρ
〈θ+(s)x, x〉+

(
1− 1

ρ

)∫
〈θ+(s)x, x〉dm

]
dm =

=
∫
g(s)

[
1
ρ
〈θ+(s)x, x〉+

(
1− 1

ρ

)
‖x‖2

]
dm =

=
(

1− 1
ρ

)
‖x‖2 +

1
ρ

∫ ∞∑
n=0

gZ
n〈Φ̂(Z)nx, x〉dm =

=
(

1− 1
ρ

)
‖x‖2 +

1
ρ

∫
g(s)〈θ(s)x, x〉dm,

where the function θ is defined as in (3.6), that is

θ(s) = θ+(s) + θ+(s)∗ − I (a.e. (m) s ∈ X).

Clearly, we used before that
∫
gZndm = 0 for n > 0.

Since ϕx,x and 〈θ(·)x, x〉 are real functions, we get that∫
(f + g)ϕx,xdm =

∫
(f + g)〈θ(·)x, x〉dm

for f ∈ A, g ∈ Aγ , and this gives ϕx,x = 〈θ(·)x, x〉 because A is weak* Dirichlet in
L∞(m). Hence θ is the Radon-Nikodym derivative of FΦ with respect to m, and θ is
bounded a.e. (m) on X, in fact

‖θ(s)‖ ≤ 1 +
2
ρ

∞∑
n=0

‖Φ̂(Z)n‖ (a.e. (m) s ∈ X).

This ends the proof.

From this theorem it follows that, for Φ as in Theorem 2.1, the Lq(m)-boundedness
of ϕx,y in the sense of (2.1) for any x, y ∈ H and some q in the range 2 ≤ q ≤ ∞, is
equivalent to the fact that the Radon-Nikodym derivative of FΦ is a bounded function
a.e. (m) on X, if Hp

0 (m) is simply invariant. In this last case, Φ can be extended
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to whole L1(m) as in Theorem 2.1 and one has Φp = Φ1|Lp(m) for 1 < p ≤ ∞.
Moreover, if 1 ≤ p ≤ r ≤ ∞ then Φ̂r = Φ̂p|Hr(m). Hence we infer from Theorem 3.1
the following

Corollary 3.5. Suppose that for some p ∈ [1, 2] the subspace Hp
0 (m) is simply in-

variant, and let Φ be a representations of A on H satisfying Theorem 2.1. Then the
relation (3.2) holds for Φ̂r and any g ∈ Hr(m) with p ≤ r ≤ ∞.

Notice that the above results extend some facts from [12] where only the case p = 2
was considered. Remark also that the assertion r(Φ̂(Z) < 1 in the corresponding
version in [12] of Theorem 3.1 before was obtained in a different way, adapting an
argument of M. Schreiber [19].

In turn the Theorem 3.4 shows that the semispectral measure FΦ can be described
by the operator Φ̂(Z). Conversely, Φ̂(Z) can be retrieved from FΦ as follows.

Proposition 3.6. Suppose that Hp
0 (m) is a simple invariant subspace for some p ∈

[1, 2], and let Φ be a representation of A on H satisfying Theorem 2.1. Then Φ̂(Z) is
a ρ-contraction on H and we have

Φ̂(Z)(n)
ρ =

∫
Zn(s)θ(s)dm (n ∈ Z), (3.7)

where θ is function defined in (3.6).
Moreover, if there exists s0 ∈ X and λ ∈ C such that θ(s0) = λI then Φ̂(Z) is a

normal strict contraction.

Proof. The relation (3.7) follows immediately because we may integrate the series of
θ term by term (by uniform convergence in norm), having in view that

∫
Zdm = 0.

From (3.7) we infer for any analytic polynomial P and x ∈ H that

〈P (Φ̂(Z))x, x〉 =
∫

[ρ(P ◦ Z)(s) + (1− ρ)P (0)]〈θ(s)x, x〉dm =

=
∫

[ρ(P ◦ Z)(s) + (1− ρ)P (0)]ϕx,x(s)dm,

the last equality being ensured by Theorem 3.4. So, we obtain

|〈P (Φ̂(Z))x, x〉| ≤ sup
|λ|=1

|ρP (λ) + (1− ρ)P (0)|
∫
ϕx,xdm =

= ‖ρP + (1− ρ)P (0)‖‖x‖2,

whence
sup
‖x‖=1

|〈P (Φ̂(Z))x, x〉| ≤ ‖ρP + (1− ρ)P (0)‖.

This last inequality just means that Φ̂(Z) is a ρ-contraction on H (see [1, 4, 6, 22]).
Suppose now that there exists s0 ∈ X and λ ∈ C such that θ(s0) = λI. We write

θ(s0) = I + T + T ∗ where

T =
1
ρ

∞∑
n=1

Z
n
Φ̂(Z)n.
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Then our assumption yields TT ∗ = (λ − 1)T − T 2 = T ∗T, hence T is a normal
operator. Since one has

ρT = [I − Z(s0)Φ̂(Z)]−1 − I,

we get
Φ̂(Z) = Z(s0)[I − (I + ρT )−1],

therefore Φ̂(Z) is a normal operator. This also gives ‖Φ̂(Z)‖ = r(Φ̂(Z)) < 1, that is
Φ̂(Z) is a strict contraction. This ends the proof.

The converse statement fails for the second assertion of Proposition 3.6, even in
the case ρ = 1, and this fact was proved in [19, p.189], concerning the contractive
representations of the disc algebra.

Theorem 3.4 can be also completed as follows.

Theorem 3.7. Suppose that Hp
0 (m) is a simply invariant subspace for some p ∈ [1, 2]

and that H∞(m) coincides to the weak* closure of the system {Zn}n∈N. Let Φ be a
representation of A on H satisfying Theorem 2.1. Then the semispectral measure FΦ

is mutually absolutely continuous with respect to m, and for every x ∈ H, x 6= 0, the
function log〈θ(·)x, x〉 belongs to L1(m), where θ is defined in (3.6).

Proof. Since FΦ is absolutely continuous with respect to m, it remains to prove the
converse assertion.

Notice firstly that for g ∈ H∞(m) one has g =
∞∑
n=0

ĝ(n)Zn, and that {Zn}n∈N

forms an orthogonal basis inH2(m). Since L2(m) = H2(m)⊕H2
0 (m) (the bar meaning

the complex conjugate), the isomorphism τ applies L2(m0) onto L2(m), and L∞(m0)
onto L∞(m) too.

Let σ ∈ Bor(X) and 0 6= x ∈ H such that 〈FΦ(σ)x, x〉 = 0. By (3.3) we have (χσ
being the characteristic function of σ)∫

(τ−1χσ)(τ−1〈θ(·)x, x〉)dm0 =
∫
χσ〈θ(·)x, x〉)dm = 〈FΦ(σ)x, x〉 = 0.

Since one has

(τ−1〈θ(·)x, x〉)(λ) =
∞∑

n=−∞
λnΦ̂(Z)(n)

ρ (|λ| = 1),

this function is just the Radon-Nikodym derivative of the semispectral measure F̂ of
Φ̂(Z) with respect tom0 (Φ̂(Z) being a uniformly stable ρ-contraction, by Theorem 3.1
and Proposition 3.6). So, we have

∫
(τ−1χσ)d〈F̂ x, x〉 = 0, and since the measures m0

and 〈F̂ x, x〉 are equivalent (see [18]), while τ−1χσ is a positive function ((τ−1χσ)2 =
τ−1χ2

σ = τ−1χσ ≥ 0), it follows
∫

(τ−1χσ)dm0 = 0. Then we obtain

m(σ) =
∫
χσdm =

∫
(τ−1χσ)dm0 = 0,

hence the measures m and 〈FΦx, x〉 are equivalent.
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Now, by (3.3) we also have for g ∈ H∞0 (m),∫
|1− g(s)|p〈θ(s)x, x〉dm =

∫
|1− (τ−1g)(s)|pd〈F̂ x, x〉.

But τ−1H∞0 (m) = H∞0 (m0), and so taking the infimum for g ∈ H∞0 (m) in the
previous equality we obtain by Szegö’s Theorem 4.2.2 [20] that

exp
∫

log〈θ(s)x, x〉dm = exp
∫

log τ−1〈θ(·)x, x〉dm0.

Since the ρ-contraction Φ̂(Z) is completely non unitary, the right side of this equality
cannot be 0 (by Theorem 3.8 [18]), hence log〈θ(·)x, x〉 ∈ L1(m). The proof is finished.

Note that the hypothesis on H∞(m) in Theorem 3.7 is not verified for the algebra
A in Example 3.3., as was proved in [6]. In the case that H∞(m) is the weak* closure

of {Zn}n∈N, then for any g ∈ H∞(m) we have g =
∞∑
n=0

ĝ(n)Zn in H2(m). In this case,

for every Φ as above, Φ̂(g) = Φ̂2(g) is given by (3.2), and it is easy to see that this
means that the representations Φ̂ of H∞(m) on H is reduced to a functional calculus
in the sense of Gaşpar [4, 6]. Finally, let us note that the case ρ = 1 of Theorem 3.7
is contained in Theorem 2.3.2 [6].

4. APPLICATION TO THE SCALAR CASE

In this section we consider the case when Φ is a homomorphism of A, this is the
one-dimensional case H = C. In this context, we generalize to a weak* Dirichlet
algebra some classical results concerning the function algebra with the uniqueness
property for representing measures ([2, 7, 21]).

Theorem 4.1. Suppose that Hp
0 (m) is a simply invariant subspace for some p ∈ [1, 2].

Then for any homomorphism ϕ ∈M(A) with ‖ϕ‖p <∞ we have |ϕ̂(Z)| < 1 and

ϕp(g) =
∞∑
n=0

ĝ(n)ϕ̂(Z)n (g ∈ Hp(m)), (4.1)

where ϕp respectively (ϕ̂) is the bounded linear extension of ϕ to Hp(m) (respectively,
to H∞(m)), the series being absolutely convergent.
Moreover, the measure

µ =
1− |ϕ(Z)|2

|Z − ϕ(Z)|2
m (4.2)

is a representing measure for ϕ.
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Proof. Let ϕ ∈ M(A) with ‖ϕ‖p = sup{|ϕ(f)| : f ∈ A, ‖f‖p ≤ 1} < ∞. Assume, by
contrary, that |ϕ̂(Z)| = 1. Since Z is uniquely determined by a scalar λ with |λ| = 1,
one can suppose that ϕ̂(Z) = 1. Then for n ≥ 1 there exists a function fn ∈ A(T)

of the form fn(λ) =
∞∑
j=0

cjλ
j with fn(1) = n and ‖fn‖p ≤ 1, because 1 is a Choquet

point for the standard algebra A(T) ([2, 21]). So, τfn ∈ Hp(m) and we have

ϕp(τfn) = ϕp(
∞∑
j=0

cjZ
j) =

∞∑
j=0

cjϕ̂(Z)j =
∞∑
j=0

cj = fn(1) = n

and ‖τfn‖p = ‖fn‖p ≤ 1, contradicting the fact that ϕ is bounded on Hp(m). Hence
|ϕ̂(Z)| < 1.

Now, we can apply Theorem 3.1 for ϕ to obtain (4.1). Next, since |ϕ̂(Z)| < 1, the
function

θ0 =
∞∑

n=−∞
Z
n
ϕ̂(Z)(n)

is well defined and bounded a.e. (m) on X. In fact, because

θ0 =
∞∑
n=0

Z
n
ϕ̂(Z)(n) +

∞∑
n=1

Znϕ̂(Z)
n

=

=
1

1− Zϕ̂(Z)
+

Zϕ̂(Z)
1− Zϕ̂(Z)

=
1− |ϕ̂(Z)|2

|Z − ϕ̂(Z)|2
,

θ0 is positive and
∫
θ0dm = 1, hence µ = θ0m is a probability measure on X. Clearly,

we have by (4.1) for f ∈ A,∫
fdµ =

∞∑
n=−∞

ϕ̂(Z)(n)

∫
Z
n
fdm =

∞∑
n=0

f̂(n)ϕ̂(Z)n = ϕ(f),

that is µ is a representing measure for ϕ. This ends the proof.

Remark that only boundedness of ϕ on Hp(m) assures that ϕ is m − a.c. that is
ϕ has a m − a.c. representing measure, if Hp

0 (m) is simply invariant. In the general
setting of Theorem 3.1, we cannot prove r(Φ̂(Z)) < 1 without assuming that Φ is
m− a.c.

Concerning the existence of homomorphism of A which are bounded on Hp(m),
we give the following result which generalize Theorem 6.4 [21] (or Theorem V 7.1,
and Theorem VI 7.2 of [1]) in the context of weak* Dirichlet algebras.

Theorem 4.2. Suppose that Hp
0 (m) is a simple invariant subspace for some p ∈ [1, 2].

Then the set ∆p(m) of all homomorphisms of A which are bounded on Hp(m) is not
reduced to {γ}, and ∆p(m) is contained in the Gleason part of A which contains γ.
Moreover, there exists a one to one continuous map Γ from D intoM(A) such that:

(i) Γ(D) = ∆p(m), Γ(0) = γ,

(ii) For any f ∈ A, the function f̂ ◦ Γ is analytic on D, where f̂ is the Gelfand
transform of f .
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Proof. Let ∆p(m) := {ϕ ∈ M(A) : ‖ϕ‖Hp(m) < ∞}. For ϕ ∈ ∆p(m) we have by
Theorem 4.1 that |ϕ̂(Z)| < 1 where Z ∈ H∞0 (m), |Z| = 1 a.e. (m) such that Hp

0 (m) =
ZHp(m). We define the map Γ0 : ∆p(m)→ D by Γ0(ϕ) = ϕ̂(Z), ϕ ∈ ∆p(m).

Firstly, Γ0 is one to one because if Γ0(ϕ0) = Γ0(ϕ1) for ϕ0, ϕ1 ∈ ∆p(m) then by
(4.1) we have ϕ0(f) = ϕ1(f) for f ∈ A, so ϕ0 = ϕ1. Γ0 is also onto D. Indeed, for
z ∈ D we define the linear functional ϕz on A by

ϕz(f) =
∞∑
n=0

f̂(n)zn (f ∈ A).

Obviously, one has

|ϕz(f) ≤ ‖f‖p
1− |z|

,

because |f̂(n)| ≤ ‖f‖p for f ∈ A. It is also easy to see (as in the proof of Theorem 6.4
[21]) that ϕz is multiplicative on A, therefore ϕz ∈M(A). From the above estimation
we have

‖ϕz‖ ≤
1

1− |z|
,

hence ϕz ∈ ∆(m), and clearly, Γ0(ϕz) = ϕ̂z(Z) = z that is Γ0 is surjective. In
addition, by Theorem 4.1 a representing measure for ϕz is mz given by

mz =
1− |ϕ̂z(Z)|2

|Z − ϕ̂z(Z)|2
m =

1− |z|2

|Z − z|2
m.

So, the measures m and mz are mutually absolutely continuous and their correspond-
ing Radon-Nikodym derivatives are bounded a.e. (m) on X. This means that ϕz
belongs to the Gleason part ∆(γ) of A which contains γ (see [2, 21]). As Γ0 is a
bijection from ∆p(m) onto D, we infer that

{γ} $ ∆p(m) = {ϕz : z ∈ D} ⊂ ∆(γ).

Now, Γ = Γ−1
0 is one to one from D onto ∆(m) and for f ∈ A and z ∈ D we obtain

by (4.1),

(f̂ ◦ Γ)(z) = f̂(ϕz) = ϕz(f) =
∞∑
n=0

f̂(n)zn,

hence f̂ ◦Γ is an analytic function on D. Finally, Γ is a continuous map on D, relative
to the Gelfand topology inM(A), and Γ(0)(f) = f̂(0) =

∫
fdm = γ(f) for f ∈ A, so

Γ(0) = γ. This ends the proof.

Remark 4.3. If for a function algebra A on X, m is the unique representing measure
for γ ∈ M(A), then A is weak* Dirichlet in L∞(m), and any ϕ ∈ ∆(γ) has a unique
representing measure which is bounded absolutely continuous with respect to m ([2],
Cor. IV 1.2). This gives ‖ϕ‖Hp(m) < ∞ for ϕ ∈ ∆(γ), hence ∆(γ) = ∆p(m) 6= {γ}
in this case, if Hp

0 (m) is simple invariant for some p ∈ [1, 2]. Furthermore, only
assumption ∆(γ) 6= {γ} assures that Hp

0 (m) is simply invariant, in the case of unique
representing measure (see Theorem 6.4 [21], or Theorem V 7.2 [1]).
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