Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we discuss a class of integrodifferential equations with nonlocal conditions via a fractional derivative of the type: [formula]. Some sufficient conditions for the existence of mild solutions for the above system are given. The main tools are the resolvent operators and fixed point theorems due to Banach's fixed point theorem, Krasnoselskii's fixed point theorem and Schaefer's fixed point theorem. At last, an example is given for demonstration.
Czasopismo
Rocznik
Tom
Strony
119--135
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
autor
autor
autor
- Guizhou University Department of Mathematics Guiyang, Guizhou 550025, P.R. China, wjr9668@126.com
Bibliografia
- [1] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505.
- [2] L. Byszewski, Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems, Dynam. Systems Appl. 5 (1996), 595-605.
- [3] L. Byszewski, H. Akca, Existence of solutions of a semilinear functional differential evolution nonlocal problem, Nonlinear Anal. 34 (1998), 65-72.
- [4] L. Byszewski, H. Akca, On a mild solution of a semilinear functional-differential evolution nonlocal problem, J. Appl. Math. Stochastic Anal. 10 (1997), 265-271.
- [5] K. Balachandran, M. Chandrasekaran, The nonlocal Cauchy problem for semilinear integrodifferential equation with deviating argument, Proc. of the Edinburgh Mathematical Society 44 (2001), 63-70.
- [6] K. Balachandran, R.R. Kumar, Existence of solutions of integrodifferential evolution equations with time varying delays, Applied Mathematics E-Notes 7 (2007), 1-8.
- [7] K. Balachandran, J.Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal. 71 (2009), 4471-4475.
- [8] W. Desch, R. Grimmer, W. Schappacher, Some consideration for linear integrodifferential equations, J. Math. Anal. Appl. 104 (1984), 219-234.
- [9] Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, [in:] F. Keil, W. Mackens, H. Voss, J.Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 1999, 217-224.
- [10] M.M. El-Borai, Semigroup and some nonlinear fractional differential equations, Applied Mathematics and Computation 149 (2004), 823-831.
- [11] M.M. El-Borai, Evolution equations without semigroup, Applied Mathematics and Computation 149 (2004), 815-821.
- [12] R. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc. 273 (1982), 333-349.
- [13] R. Grimmer, J.H. Liu, Liapunov-Razumikhin methods for integrodifferential equations in Hilbert spaces, [in:] A. Fink, R. Miller and W. Kliemann (Eds.), Delay and Differential Equations, World Scientic, London, 1992, 9-24.
- [14] L. Gaul, P. Klein, S. Kempfle; Damping description involving fractional operators, Mech. Syst. Signal Process. 5 (1991), 81-88.
- [15] W.G. Glockle, T.F. Nonnenmacher; A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53.
- [16] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.
- [17] Lanying Hu, Yong Ren, R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum, (in press).
- [18] A.A. Kilbas, Hari M. Srivastava, J. Juan Trujillo, Theory and applications of fractional differential equations, [in:] North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 2006.
- [19] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
- [20] V. Lakshmikantham, Theory of fractional differential equations, Nonlinear Anal. 60 (2008), 3337-3343.
- [21] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677-2682.
- [22] J. Liang, J.H. Liu, T.J. Xiao, Nonlocal problems for integrodifferential equations, Dynamics of Continuous, Discrete and Impulsive Systems 15 (2008), 815-824.
- [23] M.A. Krasnoselskii; Topological methods in the theory of nonlinear integral equations, Pergamon Press, New York, 1964.
- [24] K.S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, John Wiley, New York, 1993.
- [25] F. Mainardi, Fractional calculus. Some basic problems in continuum and statistical mechanics, [in:] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997, 291-348.
- [26] F. Metzler, W. Schick, H. G. Kilian, T.F. Nonnenmache, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
- [27] G.M. Mophou, G.M. N'Guérékata, Mild solutions for semilinear fractional differential equations, Electron. J. Differ. Equ. 21 (2009), 1-9.
- [28] J.R. Wang, W. Wei, Y. Yang, Fractional nonlocal integrodifferential equations of mixed type with time-varying generating operators and optimal control, Opuscula Math. 30 (2010) 2, 217-234.
- [29] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
- [30] H. Schaefer, Über die Methode der priori Schranhen, Math. Ann. 129 (1955), 415-416.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0003-0032