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EXISTENCE AND STABILIZABILITY
OF STEADY-STATE

FOR SEMILINEAR PULSE-WIDTH
SAMPLER CONTROLLED SYSTEM

JinRong Wang

Abstract. In this paper, we study the steady-state of a semilinear pulse-width sampler
controlled system on infinite dimensional spaces. Firstly, by virtue of Schauder’s fixed
point theorem, the existence of periodic solutions is given. Secondly, utilizing a general-
ized Gronwall inequality given by us and the Banach fixed point theorem, the existence and
stabilizability of a steady-state for the semilinear control system with pulse-width sampler
is also obtained. At last, an example is given for demonstration.
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1. INTRODUCTION

In the design of distributed parameter control systems, one of the important problems
is to choose the controller and actuator. As the dimension of an industrial controller
in actual applications is finite, it restricts us to consider the distributed parameter
system with a finite dimensional output. In industrial process control systems on-off
actuators have been preferred by engineer’s because of their cheap price and the high
reliability.

The interest in the pulse-width sampler control systems begun as early as the
1960s. It was motivated by applications to engineering problems and neural nets
modeling. In modern times, the development of neurocomputers promises a rebirth
of interest in this field. The theory of pulse-width sampler control systems is treated as
a very important branch of engineering and mathematics. Nevertheless, it can supply
a technical-minded mathematician with a number of new and interesting problems of
a mathematical nature. There are some results such as steady-state control, stability
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analysis, robust control of pulse-width sampler systems [1–7], integral control by vari-
able sampling based on steady-state data and adaptive sampled-data integral control
[8–11].

In this paper, we will be concerned with control systems governed by a class of
semilinear equations {

ẋ(t) = Ax(t) + f (t, x(t)) + Cu(t),
z(t) = K1x(t), (1.1)

where the state variable x(t) takes a value in a reflexive Banach space X, A is the
infinitesimal generator of a compact semigroup {T (t) , t ≥ 0} on X. f : [0,∞)×X →
X is continuous. Control variable u(t) is a q dimensional vector, u(t) ∈ Rq, C:
Rq → X is a bounded linear operator. K1: X → Rp is a bounded linear operator,
z(t) is a p dimensional output of the system (1.1).

Suppose that control signal u(t) is the output of the q dimensional pulse-width
sampler controller. v(t) is the input of the q dimensional pulse-width sampler con-
troller, which is the output of some dynamical controller

v̇(t) = Jv(t) +K2z(t), (1.2)

where J is a q × q matrix, K2 is a q × p matrix. J is determined by the dynamic
characteristics of the controller, K2 is called the feedback matrix which will be cho-
sen in the latter. The output signal u(t) = (u1(t), u2(t), . . . , uq(t))T and the input
signal v(t) = (v1(t), v2(t), . . . , vq(t))T of the pulse-width sampler satisfy the following
dynamic relation:

ui(t) =
{

sign αni , nT0 ≤ t < (n+ |αni |)T0, i = 1, 2, . . . , q;
0, (n+ |αni |)T0 ≤ t < (n+ 1)T0, n = 0, 1, . . . (1.3)

and

αni
=
{
vi(nT0), |vi(nT0)| ≤ 1, i = 1, 2, . . . , q;
sign vi(nT0), |vi(nT0)| ≥ 1, n = 0, 1, . . . , (1.4)

where T0 > 0 is the sampling period of the pulse-width sampler.
We end this introduction by giving some definitions.

Definition 1.1. The closed-loop system (1.1)–(1.4) is called a pulse-width sampling
semilinear control system.

Definition 1.2. In the closed-loop system (1.1)–(1.4), the q dimensional vector αn =
(αn1 , αn2 , . . . , αnq

)T defined by (1.4) is called the duration ratio of the pulse-width
sampler in the n-th sampling period, n = 0, 1, . . ..

We defined a closed cube Ω in Rq as

Ω = {α = (α1, α2, . . . , αq)T ∈ Rq | |αi| ≤ 1, i = 1, 2, . . . , q},

then we have αn ∈ Ω, for n = 0, 1, . . ..
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Definition 1.3. In the closed-loop system (1.1)–(1.4), if there exists a q dimensional
vector

α = (α1, α2, . . . , αq)T ∈ Ω,

and a corresponding periodicity rectangular-wave control signal u(t) = u(t, α) defined
by

ui(t) = ui(t, α) =
{

sign αi, nT0 ≤ t < (n+ |αi|)T0, i = 1, 2, . . . , q;
0, (n+ |αi|)T0 ≤ t < (n+ 1)T0, n = 0, 1, . . . (1.5)

such that the closed-loop system (1.1)–(1.4) has a corresponding T0-periodic trajec-
tory x(·) = x(·, α): x(t+T0, α) = x(t, α), t ≥ 0, then the control signal (1.5) is called a
steady-state control with respect to the disturbance f . The T0-periodic trajectory x(·)
is called a steady-state corresponding to the steady-state control u(·) and the constant
vector α ∈ Ω of the defining steady-state control (1.5) is called a steady-state duration
ratio.

Definition 1.4. In the closed-loop system (1.1)–(1.4), if there exists some α ∈ Ω
such that

lim
n→∞

αn = α, where αn = (αn1 , αn2 , . . . , αnq
)T , α = (α1, α2, . . . , αq)T ,

then system (1.1)–(1.4) is called steady-state stable with respect to the distur-
bance f .

System (1.1)–(1.4) is called steady-state stabilizability if we can choose a suit-
able T0 > 0 and K2 such that system (1.1)–(1.4) is steady-state stable with respect
to the disturbance f .

2. PRELIMINARIES

Let £b(Rq, X) be the space of bounded linear operators from Rq to X, £b(X,Rp) be
the space of bounded linear operators from X to Rp. £b(Rq, X) and £b(X,Rp) are
Banach spaces endowed with the usual operator norms, respectively. C([0, T0];X) be
the Banach space of continuous functions from [0, T0] to X with the usual operator
norm.

In order to study system (1.1)–(1.4), we introduce the following assumptions:

[H1] A is the infinitesimal generator of a compact semigroup {T (t) , t ≥ 0} on X with
domain D(A).

[H2] f : [0,∞)×X → X is continuous.
[H3] f(t, x) is T0-periodic in t, i.e., f(t+ T0, x) = f(t, x), t ≥ 0.
[H4] Control signal u(t) is a rectangular wave signal u(t, α) with a period T0 defined

by (1.5) for given α ∈ Ω.

By virtue of the compactness of T (T0) and Fredholm alterative theorem, one can
complete the following results immediately.
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Lemma 2.1. Let assumption [H1] hold and the homogeneous periodic boundary prob-
lem {

ẋ(t) = Ax(t),
x(0) = x(T0).

(2.1)

has nontrivial T0-periodic solution. Then operator [I−T (T0)]−1 exists and is bounded.

We consider the integral equation on X given by

x(t, α) = [I − T (T0)]−1

t+T0∫
t

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ. (2.2)

Lemma 2.2. x(t, α) is the T0-periodic solution of the following periodic boundary
problem {

ẋ(t) = Ax(t) + f (t, x(t)) + Cu(t),
x(0) = x(T0),

(2.3)

if and only if x(t, α) is the continuous T0-periodic solution of the integral equation
(2.2).

Proof. Suppose that x(t, α) is the T0-periodic solution of (2.3), let x0 = x(0), then

x(t, α) = T (t)x0 +

t∫
0

T (t− θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ. (2.4)

Further,

x(t+ T0, α) = T (t+ T0)x0 +

t+T0∫
0

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ, (2.5)

that is

x(t, α) = T (t+ T0)x0 +

t+T0∫
0

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ. (2.6)

It comes from (2.6)−(2.4)×T (T0) that

[I − T (T0)]x(t, α) =

t+T0∫
t

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ.

By Lemma 2.1, we have

x(t, α) = [I − T (T0)]−1

t+T0∫
t

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ.
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On the other hand, let x(t, α) be the continuous T0-periodic solution of (2.2), then

dx

dt
= [I − T (T0)]−1

t+T0∫
t

AT (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ+

+ [I − T (T0)]−1
[
(f (t+ T0, x(t+ T0))− T (T0)f (t, x(t)))+

+ (Cu(t+ T0, α)− T (T0)Cu(t, α))
]

=
= Ax(t) + f (t, x(t)) .

Thus, x(t, α) satisfies (2.3). This completes the proof.

Set

ET0 =
{
x | x ∈ C([0, T0], X) and x(t) = x(t+ T0)

with the norm ‖ · ‖ET0
= sup
t∈[0,T0]

‖ · ‖ ≤M
}
,

where M = L0M0

∫ T0

0

(
‖f (θ, x(θ)) ‖+ q‖C‖£b(Rq,X)

)
dθ, M0 = supt∈[0,T0] ‖T (t)‖ and

L0 = ‖[I −T (T0)]−1‖. It is obvious that ET0 is a Banach space. Meanwhile, it is also
a closed, bounded and convex set.

Define operator P on ET0 given by

P (x)(t, α) = [I − T (T0)]−1

t+T0∫
t

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ,

where x(t, α) ∈ ET0 .
It is well known that the integral equation (2.2) has a periodic solution if and only

if P has a fixed point on ET0 . Thus, we only need to discuss the existence of the fixed
point of P .

Lemma 2.3. Operator P is a complete continuity on ET0 .

Proof. It is obvious that P maps ET0 into itself. Since f : [0,∞) × X → X is
continuous, we see that P is a continuous operator on ET0 . Next, we verify that P is
compact on ET0 . Set B = {x | x ∈ ET0 , ‖x‖ET0

≤ ρ}. Let t ∈ [0, T0], t + h ∈ [0, T0],
h > 0, x ∈ B.
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In fact,

‖P (x)(t+ h, α)− P (x)(t, α)‖ =

=
∥∥∥∥[I − T (T0)]−1

[ t+h+T0∫
t+h

T (t+ h+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ−

−
t+T0∫
t

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ

]∥∥∥∥ ≤
≤ ‖[I − T (T0)]−1‖

{ t+h+T0∫
t+T0

‖T (t+ h+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
‖dθ+

+

t+h∫
t

‖T (t+ h+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
‖dθ+

+

t+T0∫
t

‖(T (h)− I)T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
‖dθ
}
≤

≤ L0

{ t+h+T0∫
t+T0

M0

[
‖f (θ, x(θ)) ‖+ q‖C‖£b(Rq,X)

]
dθ+

+

t+h∫
t

M0

[
‖f (θ, x(θ)) ‖+ q‖C‖£b(Rq,X)

]
dθ+

+

t+T0∫
t

‖T (h)− I‖M0

[
‖f (θ, x(θ)) ‖+ q‖C‖£b(Rq,X)

]
dθ

}

and limh→0 ‖T (h)− I‖ = 0, then P is equicontinuous in [0, T0].

Moreover, it is obvious that PB is a bounded set. Denote Π = PB and Π(t) =
{(Px)(t) | x ∈ B} for t ∈ [0, T0]. Clearly, Π(0) = {x(0)} is compact, and hence, it is
only necessary to consider t > 0. For 0 < ε < t ≤ T0, define

Πε(t) = (PεB)(t) =
= {T (ε)(Px)(t− ε) | x ∈ B} =

=

[I − T (T0)]−1

t−ε+T0∫
t−ε

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ | x ∈ B

 .

By our hypothesis, T (·) is compact. It follows from the above expression that Πε(t)
is relatively compact for t ∈ (ε, T0].
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Furthermore,

sup{‖(Px)(t)− (Pεx)(t)‖ | x ∈ B} ≤

≤ sup


t∫

t−ε

M0

[
‖f (θ, x(θ)) ‖+ q‖C‖

]
dθ

+

+ sup


t+T0∫

t−ε+T0

M0

[
‖f (θ, x(θ)) ‖+ q‖C‖

]
dθ

 ≤
≤Mfε. (Mf do not depend on x)

It is shown that the set Π(t) can be approximated to an arbitrary degree of accu-
racy by a relatively compact for t ∈ [0, T0]. Hence, Π(t) itself is relatively compact
for t ∈ [0, T0].

By the Ascoli-Arzela theorem, P (x) is compact on ET0 . As a result, P (x) is a
complete continuity operator on ET0 .

We end this section by collecting a generalized Gronwall inequality which plays
an essential role in the study of nonlinear problems on infinite dimensional spaces.

Lemma 2.4 ([13, Lemma 2]). Let a ≥ 0, b ≥ 0, c ≥ 0, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 < 1. If
x ∈ C([0, T0];X) satisfies

‖x(t)‖ ≤ a+ b

t∫
0

‖x(θ)‖λ1dθ + c

T0∫
0

‖x(θ)‖λ2dθ, for all t ∈ [0, T0],

then there exists a constant M∗ = M∗(a, b, c, λ2, T0) > 0 such that

‖x(t)‖ ≤M∗ for all t ∈ [0, T0].

3. EXISTENCE AND STABILIZABILITY OF STEADY-STATE

Using Lemma 2.2, Lemma 2.3 and the Schauder fixed point theorem, P has a fixed
point on ET0 . Then we have the following result.

Lemma 3.1. Assumptions [H1]–[H4] hold. For every u(t, α), system (1.1) has a
T0-periodic solution given by

x(t, α) = [I − T (T0)]−1

t+T0∫
t

T (t+ T0 − θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ,

which is equivalent to

x(t, α) = T (t)x0 +

t∫
0

T (t− θ)
[
f (θ, x(θ)) + Cu(θ, α)

]
dθ, with x0 = x(T0).
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By Lemma 3.1, we can obtain the following result.

Theorem 3.2. Under the assumptions of Lemma 3.1, if the sampler periodic T0 has
the following properties:

iωn ∈ ρ(J), ωn =
2nπ
T0

, n = 0,±1,±2, . . . , (3.1)

where ρ(J) is the resolvent set of the matrix J , i satisfies i2 = −1, then the following
open-loop control system ẋ(t, α) = Ax(t, α) + f (t, x(t)) + Cu(t, α),

z(t) = K1x(t),
v̇(t, α) = Jv(t, α) +K2z(t, α),

(3.2)

has a unique T0-periodic solution v(t, α) given by

v(t, α) = eJt

(I − eJT0)−1

T0∫
0

eJ(T0−s)K2z(s, α)ds

+

t∫
0

eJ(t−s)K2z(s, α)ds.

Proof. Using (3.1), we know that eiωnT0 = ei2nπ = 1, that is 1 ∈ ρ(eJT0). Thus
(I − eJT0)−1 exists and is bounded. It is not difficult to see that

v(t, α) = eJtv0 +

t∫
0

eJ(t−s)K2z(s, α)ds, (3.3)

where v0 = v(0, α).
Consider

y = (I − eJT0)−1

T0∫
0

eJ(T0−s)K2z(s, α)ds

which is the unique solution of the following equation

y = eJty +

t∫
0

eJ(t−s)K2z(s, α)ds.

Let

v0 = y = (I − eJT0)−1

T0∫
0

eJ(T0−s)K2z(s, α)ds,

it comes from Lemma 3.1 that

z(t+ T0, α) = z(t, α), t ≥ 0.
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It is easy to verify that

v(t, α) = eJt

(I − eJT0)−1

T0∫
0

eJ(T0−s)K2z(s, α)ds

+

t∫
0

eJ(t−s)K2z(s, α)ds

is just the T0-periodic solution v(t, α) of the open-loop control system (3.2).

In order to discuss existence and stabilizability of the steady-state for system
(1.1)–(1.4), we define a map G: Ω ∈ Rq → Rq given by

G(α) = (I − eJT0)−1

T0∫
0

eJ(T0−s)K2K1x(s, α)ds, α ∈ Ω,

where x(·, α) is the T0-periodic solution of system (1.1) corresponding to α ∈ Ω.
In the sequel, we make [H2] a little stronger as following.
[H2′] For any x1, x2, y1, y2 ∈ X, there exists a positive constant Lf > 0 and

0 ≤ λ < 1 such that

‖f(t, x1)− f(t, x2)‖ ≤ Lf‖x1 − x2‖λ.

Lemma 3.3. Under the assumptions of Theorem 3.2 ([H2] replaced by [H2′]), there
exists a constant M1 > 0 such that

‖G(α)−G(ᾱ)‖ ≤M1‖K2‖‖α− ᾱ‖, α, ᾱ ∈ Ω.

Proof. Let x1(t, α) and x2(t, ᾱ) be the T0-periodic solution of system (1.1) corre-
sponding to α and ᾱ ∈ Ω respectively, then

x1(0)− x2(0) = x1(T0)− x2(T0) = T (T0)(x1(0)− x2(0))+

+

T0∫
0

T (T0 − θ)(f(θ, x1(θ))− f(θ, x2(θ))dθ+

+

T0∫
0

T (T0 − θ)C(u(θ, α)− u(θ, ᾱ))dθ.
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Using assumption [H2′], we obtain

‖x1(0)− x2(0)‖ ≤

≤ ‖[I − T (T0)]−1‖M0Lf

T0∫
0

‖x1(θ)− x2(θ)‖λdθ+

+ ‖[I − T (T0)]−1‖M0‖C‖£b(Rq,X)

T0∫
0

‖u(θ, α)− u(θ, ᾱ)‖Rqdθ ≤

≤ L0LfM0

T0∫
0

‖x1(θ)− x2(θ)‖λdθ+

+ L0M0C‖£b(Rq,X)

T0∫
0

‖u(θ, α)− u(θ, ᾱ)‖Rqdθ.

For 0 ≤ t ≤ T0, we obtain

‖x1(t, α)− x2(t, ᾱ)‖ ≤

≤ ‖x1(0)− x2(0)‖+ LfM0

t∫
0

‖x1(θ)− x2(θ)‖λdθ+

+M0‖C‖£b(Rq,X)

t∫
0

‖u(θ, α)− u(θ, ᾱ)‖Rqdθ ≤

≤ LfM0‖C‖£b(Rq,X)

(
L0 + 1

) T0∫
0

‖u(θ, α)− u(θ, ᾱ)‖Rqdθ+

+ LfM0

t∫
0

‖x1(θ)− x2(θ)‖λdθ + L0LfM0

T0∫
0

‖x1(θ)− x2(θ)‖λdθ.

By Lemma 2.4, there exists a M∗ > 0 such that

‖x1(t, α)− x2(t, ᾱ)‖ ≤M∗.

Furthermore, we can choose a sufficient large number M∗∗ > 0 such that

T0∫
0

‖x1(t, α)− x2(t, ᾱ)‖dt ≤M∗∗
T0∫
0

‖u(θ, α)− u(θ, ᾱ)‖Rqdθ ≤

≤M∗∗
T0∫
0

q∑
l=1

|ul(θ, αl)− ul(θ, ᾱl)|dθ.
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For αlᾱl > 0, without loss of any generality, we suppose that 0 < αl < ᾱl, then
we have

T0∫
0

|ul(θ, αl)− ul(θ, ᾱl)|dθ ≤
ᾱlT0∫
αlT0

|ul(θ, αl)− ul(θ, ᾱl)|dθ ≤ T0|αl − ᾱl|.

For αlᾱl < 0, for example, αl < 0 < ᾱl, |ᾱl| > αl, we have

T0∫
0

|ul(θ, αl)− ul(θ, ᾱl)|dθ ≤
|ᾱl|T0∫
αlT0

|ul(θ, αl)− ul(θ, ᾱl)|dθ ≤ 2T0|αl − ᾱl|.

By elemental computation,

‖G(α)−G(ᾱ)‖ ≤

≤ ‖(I − eJT0)−1‖‖eJT0‖‖K2‖‖K1‖£b(X,Rp)

T0∫
0

‖x1(s, α)− x2(s, ᾱ)‖ds ≤

≤ ‖(I − eJT0)−1‖‖eJT0‖‖K2‖‖K1‖£b(X,Rp)M
∗∗

T0∫
0

‖u(θ, α)− u(θ, ᾱ)‖Rqdθ ≤

≤ 2‖(I − eJT0)−1‖‖eJT0‖‖K2‖‖K1‖£b(X,Rp)M
∗∗T0‖α− ᾱ‖.

Let
M1 = 2‖(I − eJT0)−1‖‖eJT0‖‖K1‖£b(X,Rp)M

∗∗T0 > 0,

then
‖G(α)−G(ᾱ)‖ ≤M1‖K2‖‖α− ᾱ‖, α, ᾱ ∈ Ω.

By Lemma 3.3, we can derive the following result.

Theorem 3.4. Under the assumptions of Lemma 3.3, we can choose a suitable
‖K2‖ > 0 such that system (1.1)–(1.4) has a unique steady-state for any given f ∈ X
and the fixed point of G is just the steady-state duration ratio.

Proof. Let x(t, α) be the T0-periodic solution of system (1.1) corresponding to α ∈ Ω,
then

x(0) = x(T0) = T (T0)x(0) +

T0∫
0

T (T0 − θ)
(
f (θ, x(θ)) + Cu(θ, α)

)
dθ,

that is,

x(0) = [I − T (T0)]−1

T0∫
0

T (T0 − θ)
(
f (θ, x(θ)) + Cu(θ, α)

)
dθ.
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It is obvious that

‖x(0)‖ ≤ L0M0

T0∫
0

(‖f (θ, x(θ)) ‖+ q‖C‖£b(Rq,X))dθ ≡M2.

It comes from

G(α) = (I − eJT0)−1

T0∫
0

eJ(T0−s)K2K1T (t)x(0)ds+

+ (I − eJT0)−1

T0∫
0

eJ(T0−s)K2K1

( t∫
0

T (t− θ)
(
f (θ, x(θ)) + Cu(θ, α)

)
dθ

)
ds,

that
‖G(α)‖ ≤M3‖K2‖,

where

M3 = ‖(I − eJT0)−1‖‖eJT0‖‖K1‖£b(X,Rp)T0

(
M0M2T0 +

M2

L0

)
.

It is not difficult to see that G : Ω→ Ω is a contraction map when

0 < ‖K2‖ <
1

max(M1,M3)
.

By the Banach fixed point theorem, G has a unique fixed point α∗ ∈ Ω. Obvi-
ously, the T0-periodic solution of system (1.1) corresponding to α∗ is just the unique
steady-state.

At last, an example is given to illustrate our theory. Consider the following system
∂
∂tx(t, y) = ∆x(t, y) + x

1
3 (t, y) + sin(t, y) + Cu(t), y ∈ Ω = (0, l), t ∈ (0, 2π],

x(t, y) |y∈∂Ω= 0, t > 0,
x(0, y) = x(2π, y),
z(t) =

∫
Ω

x(t, y)dy,

(3.4)
and the output v(t) satisfies (1.2).

Define X = L2(Ω), D(A) = H2(Ω)
⋂
H1

0 (Ω), and Ax = −∂
2x
∂y2 for x ∈ D(A).

Define x(·)(y) = x(·, y), sin(·)(y) = sin(·, y), f(·, x(·))(y) = x
1
3 (·, y) + sin(·, y) and

K1x(t)(y) =
∫

Ω
x(t, y)dy.

Thus system (3.4) can be rewritten as ẋ(t) = A(t)x(t) + f(t, x) + Cu(t), t ∈ (0, 2π],
x(0) = x(2π),
z(t) = K1x(t).

(3.5)
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It satisfies all the assumptions given in Theorem 3.4, by choosing a suitable matrixK2,
system (3.4), (1.2)–(1.4) has a unique steady-state. Thus, system (3.4), (1.2)–(1.4) is
steady-state stabilizability.
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