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1. INTRODUCTION

Recall that the function ¢ : D — R defined on a convex subset of a linear space is
convex, if the inequality
o(te + (1 - t)y) <te) + (1 -t)e(y)

holds for all z,y € D and for all ¢ € [0, 1].
In this paper we consider convex functions fulfilling some stronger condition (cf.

[3,6]).
Definition 1.1. Let D C R™ be a convex set and let ¢ > 0. We say that the function
p: D — Ris strongly conver with modulus c, if

p(tz+ (1 - t)y) <to(a) + (1 —t)p(y) —ct(l —t)]z -yl (1.1)
for all ,y € D and for all ¢t € [0, 1].

Obviously every strongly convex function is convex. Observe also that, for in-
stance, affine functions are not strongly convex, because they fulfil (1.1) only with
x=y.

Strong convexity has a nice characterization ([3, p. 73, Proposition 1.1.2]).
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Proposition 1.2. Let D C R" be a convex set. The function ¢ : D — R is strongly
conver with modulus ¢ if and only if the function ¢ — c|| - ||? is convex.

To prove this result it is enough to use the formula ||z|| = y/(z, z), x € R™. Thus
strong convexity can be considered also for functions defined on convex subsets of
inner product spaces with exactly the same characterization. Going a step further,
we could replace in Definition 1.1 the Euclidean space R™ with any normed space 2.
In this setting it is worth mentioning that if the statement of Proposition 1.2 holds,
then 2" is necessarily the inner product space. It was recently proved in [5].

The goal of this paper is to give some probabilistic interpretations of strong con-
vexity. First let us rephrase standard convexity in the language of random vari-
ables. Given a random variable X, by E[X] we denote its expectation and by D?[X]
its variance. We will always assume that all random variables are real-valued and
non—degenerate and their expectations do exist. One of the most familiar and ele-
mentary inequalities in the probability theory reads as follows:

E[f(X)] = f(E[X]), (1.2)

where f is convex over the convex hull of the range of the random variable X (see
[2]). Conversely, if (1.2) holds, then f is a convex function.

2. RESULTS
Let Z C R be an interval. We have the following probabilistic characterization of
strong convexity.
Theorem 2.1. The function ¢ : T — R is strongly convexr with modulus c if and only
if

¢ (E[X]) < Ep(X)] - cD*[X] (2.1)
for any integrable random variable taking values in L.
Proof. By Proposition 1.2, ¢ is strongly convex with modulus ¢ if and only if g(z) =
() — cx? is convex, which, by (1.2), is equivalent to

2
¢ (E[X]) — ¢(E[X])” < E[p(X)] - cE[X?],

This inequality can be rewritten as

o (E[X]) < E[p(X)] - ¢(E[X?] - (E[X])).

Because D?[X] = E[X?] — (E[X])Q, the proof is complete. O

Now let us turn attention to some particular cases of the “if part” of Theorem 2.1.

For the arbitrary ¢ € (0,1) and z1, 22 € Z consider the random variable X such
that P(X = 21) = ¢, P(X = x9) =1 —t. Then E[X]| = & = tz1 + (1 — t)z2 and
D?[X] = t(x; — 2)2 + (1 — t)(22 — %)%, Hence we obtain some inequality, which, in
fact, is equivalent to the inequality (1.1) defining strong convexity.
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Corollary 2.2. The function ¢ : T — R is strongly convex with modulus ¢ if and
only if

otz + (1= t)z2) < to(z1) + (1 — t)p(z2) — c(t(zr — 2)* + (1 — t)(z2 — 2)?)
for any x1,72 € Z and t € (0,1).

The next result we state concerns the Jensen—type inequality for strongly convex
functions.

Corollary 2.3. If the function ¢ : T — R is strongly convex with modulus c, then

@(zn: til'i) < En:ti@(xi) - Citi(% -
i=1 i=1 i=1

for any x1,...,xn €L and ty,...,t, >0 summing up to 1.

Proof. Let X be a random variable such that P(X = ;) =t;, i =1,...,n. Then

7:itixi7 DZ[X] :iti(l‘
i=1 i=1

Now it is enough to use Theorem 2.1. O

By the similar reasoning we arrive at the integral Jensen—type inequality for
strongly convex functions.

Corollary 2.4. Let (2,3, u) be a probability measure space, h : Q@ — I be a Lebesgue
integrable function and let ¢ : T — R be a strongly convex function with modulus c.

o o [ndn) < [eomydn—c [(h—mpau,
Q Q

Q
where m = [, hdp.

Proof. By Proposition 1.2 the function g(z) = p(x) — ca?

apply to g the integral Jensen inequality

g(/hdu) S/(goh)du

Q Q

/h%m /hdu :Q/

Q Q

is convex. It is enough to

and observe that

O

The above two results were recently proved in [4] by using the support technique.
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3. GEOMETRICAL INTERPRETATIONS

Fix ¢ > 0 and for arbitrary a,b € R consider the function h(x) = cx? + ax + b. Take
x1, 22 € Z and the random variable X such that P(X = z;) =t, P(X =x2) =1 — ¢,
where 0 < t < 1. On the Figure 1 we can see that the expectation E[h(X)] lies on
the chord joining points (:cl, h(a:l)) and (acg, h(xg)) Moreover, the quantity

E[h(X)] — h(E[X]) = ¢D*[X]

is independent on a and b (because, geometrically speaking, we could translate the
picture to another place).

h(z) =cx? +ax+0b

E[r(X)]

h(E[X])

Fig. 1. The geometrical interpretation of variance

Now take z1,z2 € Z with 1 < x9 and fix zy € (z1,22). For t € (0,1) such that
xo = txy + (1 — t)zy and for the random variable X constructed as above we have
E[X] = xo. Let the function ¢ : T — R be strongly convex with modulus c¢. We
choose the constants a,b such that for h(z) = cx? + ax + b there is h(x1) = o(x1),
h(ze) = p(xz2). Using the interpretation given on Figure 1 we can easily see that
cD?[X] = E[h(X)] — h(E[X]). Using the inequality (2.1) we arrive at

Elp(X)] - o (EX]) = ¢D?[X] = E[h(X)] - h(E[X]). (3.1)

By the construction (see also Figure 2) we have E[h(X)] = E[p(X)]. Hence
¢(E[X]) < h(E[X]), which means that ¢(zo) < h(zg). The geometrical interpretation
of this inequality is shown on Figure 2: the graph of a strongly convex function (with
modulus ¢) between any 1,2z € Z lies below the graph of its quadratic interpolant
h(x) = cx?® + ax + b at the points z1, 2. This also shows the connections between
strong convexity and generalized convexity in the sense of Beckenbach (cf. [1]): any
strongly convex function with modulus ¢ is convex with respect to a two-parameter
family of quadratic functions {x +— cx? + ax +b : a,b € R}. This is proved and
explained in detail in the paper [4].
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o(x)

h(z) =cx? +azx+b

E[p(X)] = E[h(X)]
cD?[X]

h(E[X])

Elp(X)] — »(E[X])

¢(E[X])

Fig. 2. The geometrical interpretation of strong convexity

Observe now that the inequality (3.1), as a consequence of Theorem 2.1, holds in
fact for any integrable random variable taking values in Z. Its left hand side equals
to the so—called Jensen gap of ¢ (which is strongly convex with modulus ¢), while
the right hand side is the Jensen gap of an arbitrary quadratic function of the form
h(z) = cx® + ax + b (this gap is independent on a and b). Thus inequality (3.1)
means that the Jensen gap of any strongly convex function with modulus c is greater
or equal to the Jensen gap of any quadratic polynomial with leading coefficient c.
Figure 3 illustrates it for a random variable with discrete distribution and Figure 4
— for a random variable with continuous distribution.

Notice that on Figure 4 the locations of the points E[X] and ¢(E[X]) are deter-
mined by the density functions of the appropriate random variables (which are drawn
as dotted lines).

It is interesting that the converse is also true: if the Jensen gap of some function ¢
is (for any random variable X) not less than the Jensen gap of any quadratic polyno-
mial with leading coefficient ¢, then ¢ is necessarily strongly convex with modulus c.
It easily follows by Theorem 2.1.
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»(z)

hz) =cx? +ax+0b

E[R(X)]
Elp(X)] eD?[X]
h(E[X])

Elp(X)] — ¢(E[X])

»(E[X])

Fig. 3. The inequality between Jensen gaps: discrete distribution

/ density of ¢(X) #()

h(z) = cx® +ax +b

BR(X)] b oo

E[p(X)] p-mmmmmm o ICDQ[X]
h(B[X]) f---smmmmm gt om0

E[p(X)] — ¢ (E[X])

(0 g e V4 —

/ density of X

E[X]

Fig. 4. The inequality between Jensen gaps: continuous distribution
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