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Abstract. Strong convexity is considered for real functions defined on a real interval.
Probabilistic characterization is given and its geometrical sense is explained. Using this
characterization some inequalities of Jensen-type are obtained.
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1. INTRODUCTION

Recall that the function ϕ : D → R defined on a convex subset of a linear space is
convex, if the inequality

ϕ
(
tx+ (1− t)y

)
≤ tϕ(x) + (1− t)ϕ(y)

holds for all x, y ∈ D and for all t ∈ [0, 1].
In this paper we consider convex functions fulfilling some stronger condition (cf.

[3, 6]).

Definition 1.1. Let D ⊂ Rn be a convex set and let c > 0. We say that the function
ϕ : D → R is strongly convex with modulus c, if

ϕ
(
tx+ (1− t)y

)
≤ tϕ(x) + (1− t)ϕ(y)− ct(1− t)‖x− y‖2 (1.1)

for all x, y ∈ D and for all t ∈ [0, 1].

Obviously every strongly convex function is convex. Observe also that, for in-
stance, affine functions are not strongly convex, because they fulfil (1.1) only with
x = y.

Strong convexity has a nice characterization ([3, p. 73, Proposition 1.1.2]).
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Proposition 1.2. Let D ⊂ Rn be a convex set. The function ϕ : D → R is strongly
convex with modulus c if and only if the function ϕ− c‖ · ‖2 is convex.

To prove this result it is enough to use the formula ‖x‖ =
√
〈x, x〉, x ∈ Rn. Thus

strong convexity can be considered also for functions defined on convex subsets of
inner product spaces with exactly the same characterization. Going a step further,
we could replace in Definition 1.1 the Euclidean space Rn with any normed space X .
In this setting it is worth mentioning that if the statement of Proposition 1.2 holds,
then X is necessarily the inner product space. It was recently proved in [5].

The goal of this paper is to give some probabilistic interpretations of strong con-
vexity. First let us rephrase standard convexity in the language of random vari-
ables. Given a random variable X, by E[X] we denote its expectation and by D2[X]
its variance. We will always assume that all random variables are real–valued and
non–degenerate and their expectations do exist. One of the most familiar and ele-
mentary inequalities in the probability theory reads as follows:

E
[
f(X)

]
≥ f

(
E[X]

)
, (1.2)

where f is convex over the convex hull of the range of the random variable X (see
[2]). Conversely, if (1.2) holds, then f is a convex function.

2. RESULTS

Let I ⊂ R be an interval. We have the following probabilistic characterization of
strong convexity.

Theorem 2.1. The function ϕ : I → R is strongly convex with modulus c if and only
if

ϕ
(
E[X]

)
≤ E[ϕ(X)]− cD2[X] (2.1)

for any integrable random variable taking values in I.

Proof. By Proposition 1.2, ϕ is strongly convex with modulus c if and only if g(x) =
ϕ(x)− cx2 is convex, which, by (1.2), is equivalent to

ϕ
(
E[X]

)
− c
(
E[X]

)2 ≤ E[ϕ(X)]− cE[X2],

This inequality can be rewritten as

ϕ
(
E[X]

)
≤ E[ϕ(X)]− c

(
E[X2]−

(
E[X]

)2)
.

Because D2[X] = E[X2]−
(
E[X]

)2, the proof is complete.

Now let us turn attention to some particular cases of the “if part” of Theorem 2.1.
For the arbitrary t ∈ (0, 1) and x1, x2 ∈ I consider the random variable X such

that P (X = x1) = t, P (X = x2) = 1 − t. Then E[X] = x̄ = tx1 + (1 − t)x2 and
D2[X] = t(x1 − x̄)2 + (1 − t)(x2 − x̄)2. Hence we obtain some inequality, which, in
fact, is equivalent to the inequality (1.1) defining strong convexity.
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Corollary 2.2. The function ϕ : I → R is strongly convex with modulus c if and
only if

ϕ
(
tx1 + (1− t)x2

)
≤ tϕ(x1) + (1− t)ϕ(x2)− c

(
t(x1 − x̄)2 + (1− t)(x2 − x̄)2

)
for any x1, x2 ∈ I and t ∈ (0, 1).

The next result we state concerns the Jensen–type inequality for strongly convex
functions.

Corollary 2.3. If the function ϕ : I → R is strongly convex with modulus c, then

ϕ
( n∑

i=1

tixi

)
≤

n∑
i=1

tiϕ(xi)− c
n∑

i=1

ti(xi − x̄)2

for any x1, . . . , xn ∈ I and t1, . . . , tn > 0 summing up to 1.

Proof. Let X be a random variable such that P (X = xi) = ti, i = 1, . . . , n. Then

E[X] = x̄ =
n∑

i=1

tixi, D2[X] =
n∑

i=1

ti(xi − x̄)2.

Now it is enough to use Theorem 2.1.

By the similar reasoning we arrive at the integral Jensen–type inequality for
strongly convex functions.

Corollary 2.4. Let (Ω,Σ, µ) be a probability measure space, h : Ω→ I be a Lebesgue
integrable function and let ϕ : I → R be a strongly convex function with modulus c.
Then

ϕ
(∫

Ω

h dµ
)
≤
∫
Ω

(ϕ ◦ h) dµ− c
∫
Ω

(h−m)2 dµ ,

where m =
∫

Ω
h dµ.

Proof. By Proposition 1.2 the function g(x) = ϕ(x) − cx2 is convex. It is enough to
apply to g the integral Jensen inequality

g
(∫

Ω

h dµ
)
≤
∫
Ω

(g ◦ h) dµ

and observe that ∫
Ω

h2 dµ−
(∫

Ω

h dµ
)2

=
∫
Ω

(h−m)2 dµ .

The above two results were recently proved in [4] by using the support technique.
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3. GEOMETRICAL INTERPRETATIONS

Fix c > 0 and for arbitrary a, b ∈ R consider the function h(x) = cx2 + ax+ b. Take
x1, x2 ∈ I and the random variable X such that P (X = x1) = t, P (X = x2) = 1− t,
where 0 < t < 1. On the Figure 1 we can see that the expectation E[h(X)] lies on
the chord joining points

(
x1, h(x1)

)
and

(
x2, h(x2)

)
. Moreover, the quantity

E[h(X)]− h
(
E[X]

)
= cD2[X]

is independent on a and b (because, geometrically speaking, we could translate the
picture to another place).

h(x) = cx2 + ax + b

x1 E[X] x2

h
`
E[X]

´

E[h(X)]

c D2[X]

Fig. 1. The geometrical interpretation of variance

Now take x1, x2 ∈ I with x1 < x2 and fix x0 ∈ (x1, x2). For t ∈ (0, 1) such that
x0 = tx1 + (1 − t)x2 and for the random variable X constructed as above we have
E[X] = x0. Let the function ϕ : I → R be strongly convex with modulus c. We
choose the constants a, b such that for h(x) = cx2 + ax + b there is h(x1) = ϕ(x1),
h(x2) = ϕ(x2). Using the interpretation given on Figure 1 we can easily see that
cD2[X] = E[h(X)]− h

(
E[X]

)
. Using the inequality (2.1) we arrive at

E[ϕ(X)]− ϕ
(
E[X]

)
≥ cD2[X] = E[h(X)]− h

(
E[X]

)
. (3.1)

By the construction (see also Figure 2) we have E[h(X)] = E[ϕ(X)]. Hence
ϕ
(
E[X]

)
≤ h

(
E[X]

)
, which means that ϕ(x0) ≤ h(x0). The geometrical interpretation

of this inequality is shown on Figure 2: the graph of a strongly convex function (with
modulus c) between any x1, x2 ∈ I lies below the graph of its quadratic interpolant
h(x) = cx2 + ax + b at the points x1, x2. This also shows the connections between
strong convexity and generalized convexity in the sense of Beckenbach (cf. [1]): any
strongly convex function with modulus c is convex with respect to a two-parameter
family of quadratic functions {x 7→ cx2 + ax + b : a, b ∈ R}. This is proved and
explained in detail in the paper [4].
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h(x) = cx2 + ax + b

ϕ(x)

x1 E[X] x2

ϕ
`
E[X]

´

h
`
E[X]

´

E[ϕ(X)] = E[h(X)]

c D2[X]

E[ϕ(X)]− ϕ
`
E[X]

´

Fig. 2. The geometrical interpretation of strong convexity

Observe now that the inequality (3.1), as a consequence of Theorem 2.1, holds in
fact for any integrable random variable taking values in I. Its left hand side equals
to the so–called Jensen gap of ϕ (which is strongly convex with modulus c), while
the right hand side is the Jensen gap of an arbitrary quadratic function of the form
h(x) = cx2 + ax + b (this gap is independent on a and b). Thus inequality (3.1)
means that the Jensen gap of any strongly convex function with modulus c is greater
or equal to the Jensen gap of any quadratic polynomial with leading coefficient c.
Figure 3 illustrates it for a random variable with discrete distribution and Figure 4
— for a random variable with continuous distribution.

Notice that on Figure 4 the locations of the points E[X] and ϕ
(
E[X]

)
are deter-

mined by the density functions of the appropriate random variables (which are drawn
as dotted lines).

It is interesting that the converse is also true: if the Jensen gap of some function ϕ
is (for any random variable X) not less than the Jensen gap of any quadratic polyno-
mial with leading coefficient c, then ϕ is necessarily strongly convex with modulus c.
It easily follows by Theorem 2.1.
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h(x) = cx2 + ax + b

ϕ(x)

x1 x2 E[X] x3 x4

ϕ
`
E[X]

´

h
`
E[X]

´E[ϕ(X)]

E[h(X)]

c D2[X]

E[ϕ(X)]− ϕ
`
E[X]

´

Fig. 3. The inequality between Jensen gaps: discrete distribution

ϕ(x)

h(x) = cx2 + ax + b

E[X]

ϕ
`
E[X]

´
h

`
E[X]

´E[ϕ(X)]
E[h(X)]

c D2[X]

E[ϕ(X)]− ϕ
`
E[X]

´

density of X

density of ϕ(X)

Fig. 4. The inequality between Jensen gaps: continuous distribution
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