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OF ANTI-PERIODIC SOLUTIONS FOR A CLASS
OF NONLINEAR n-TH ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS
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Abstract. In this paper, we use the method of coincide degree theory to establish new
results on the existence and uniqueness of anti-periodic solutions for a class of nonlinear
n-th order functional differential equations of the form

x(n)(t) = F (t, xt, x
(n−1)
t , x(t), x(n−1)(t), x(t− τ(t)), x(n−1)(t− σ(t))).
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1. INTRODUCTION

Consider the nonlinear nth-order functional differential equation

x(n)(t) = F (t, xt, x
(n−1)
t , x(t), x(n−1)(t), x(t− τ(t)), x(n−1)(t− σ(t))), (1.1)

where F : R7 → R and τ : R → R are continuous T
2 -periodic functions, σ : R → R

is a continuous differential T2 -periodic function, σL = maxt∈[0,T ] |σ′(t)| < 1, xt(θ) =
x(t+ θ) for θ ∈ R, and T > 0 is a constant.

Clearly, when F = p(t)− f(x(n−1)(t))− g(x(t− τ(t))) Eq. (1.1) reduces to

x(n)(t) + f(x(n−1)(t)) + g(x(t− τ(t))) = p(t),

which has been discussed in [1]. And when n = 2 and F = p(t)−f(x′(t))−g(x(t−τ(t)))
or F = p(t)− f(t, x(t))x′(t)− g(x(t− τ(t))), Eq. (1.1) reduces to

x′′(t) + f(x′(t)) + g(x(t− τ(t))) = p(t) or x′′(t) + f(t, x(t))x′(t) + g(x(t− τ(t)) = p(t)
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which has been known as the delayed Rayleigh equation [2–6] or the delayed Liénard
equation [7–9], respectively. Therefore, we can consider Eq. (1.1) as a generalized
higher-order delayed Rayleigh equation or delayed Liénard equation.

Arising from problems in applied sciences, anti-periodic problems of nonlinear
differential equations have been extensively studied by many authors during the past
twenty years, see [10–18] and references therein. For example, anti-periodic trigono-
metric polynomials are important in the study of interpolation problems [19,20], and
anti-periodic wavelets are discussed in [21]. However, to the best of our knowledge,
there exists few results for the existence and uniqueness of anti-periodic solutions of
Equation (1.1) by applying the method of coincidence degree.

A primary purpose of this paper is to study the existence and uniqueness of
anti-periodic solutions of Eq. (1.1) by using the method of coincidence degree theory.

The organization of this paper is as follows. In Section 2, we give some lemmas
needed in later sections. In Section 3, by using the method of coincidence degree, we
establish some sufficient conditions for the existence and uniqueness of anti-periodic
solutions of Eq. (1.1). An illustrative example is given in Section 4.

2. PRELIMINARIES

The following continuation theorem of coincidence degree theory is crucial in the
arguments of our main results which are cited from [22].

Let X, Y be Banach spaces, L : DomL ⊂ X → dim Y be a linear mapping, and
N : X → Y be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim KerL = co dim ImL < +∞ and ImL is closed in Y. If
L is a Fredholm mapping of index zero and there exist continuous projector P : X→ X
and Q : Y→ Y such that ImP = KerL, KerQ = Im(I −Q), it follows that mapping
L|DomL∩KerP : (I−P )X→ ImL is invertible. We denote the inverse of that mapping
by KP . If Ω is an open bounded subset of X, the mapping N will be called L-compact
on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω→ X is compact.

Lemma 2.1 ([22]). Let X, Y be two Banach spaces, Ω ⊂ X be open bounded and
symmetric with 0 ∈ Ω. Suppose that L : D(L) ⊂ X→ Y is a linear Fredholm operator
of index zero with D(L) ∩ Ω 6= ∅ and N : Ω → Y is L-compact. Further, we also
assume that

(H) Lx−Nx 6= λ(−Lx−N(−x)) for all x ∈ D(L) ∩ ∂Ω, λ ∈ (0, 1].

Then equation Lx = Nx has at least one solution on D(L) ∩ Ω.

Let x : R→ R be continuous, x(t) is said to be anti-periodic on R if,

x(t+
T

2
) = −x(t), for all t ∈ R.



Existence and uniqueness of anti-periodic solutions. . . 63

We will adopt the following notations:

CkT := {x ∈ Ck(R,R), x is T -periodic}, k ∈ {0, 1, 2, · · · },

|x|2 =
( T∫

0

|x(t)|2dt
)1/2

, |x|∞ = max
t∈[0,T ]

|x(t)|, |x(k)|∞ = max
t∈[0,T ]

|x(k)(t)|,

C
k, 12
T :=

{
x ∈ CkT , x

(
t+

T

2

)
= −x(t), for all t ∈ R

}
.

It is clear that Ck,
1
2

T is a linear normed space endowed with the norm ‖ · ‖ defined by

‖x‖ = max{|x|∞, |x′|∞, · · · , |x(k)|∞}, for all x ∈ Ck,
1
2

T .

For the sake of convenience, we introduce the following assumptions:

(H1) There exist nonnegative constants α, β, γ, δ, ε and η such that

|F (t, x1, x2, x3, x4, x5, x6)− F (t, y1, y2, y3, y4, y5, y6)| ≤ α|x1 − y1|+ β|x2 − y2|+
+ γ|x3 − y3|+ δ|x4 − y4|+
+ ε|x5 − y5|+ η|x6 − y6|

for all (t, x1, x2, x3, x4, x5, x6), (t, y1, y2, y3, y4, y5, y6) ∈ R7.
(H2) There exists a nonnegative constant m such that

m|x− y| ≤ |F (t, u1, u2, u3, x, u4, u5)− F (t, u1, u2, u3, y, u4, u5)|

for all t, x, y ∈ R and some constants u1, u2, u3, u4, u5 ∈ R.
(H3) For all (t, x, y, z, g, h, j) ∈ R7,

F
(
t+

T

2
,−x,−y,−z,−g,−h,−j

)
= −F (t, x, y, z, g, h, j).

Lemma 2.2 ([23]). If x ∈ C2(R,R), x(t+ T ) = x(t), then

|x′|2 ≤
T

2π
|x′′|2.

Lemma 2.3 ([24]). If x ∈ C1
T and

∫ T
0
x(t) dt = 0, then

|x|2 ≤
T

2π
|x′|2.
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Lemma 2.4. If x ∈ CkT , then

T∫
0

|x(k)(t− σ(t))|dt ≤ 1
1− σL

T∫
0

|x(k)(t)|dt.

Proof. Since σL = max
t∈[0,T ]

|σ′(t)| < 1, then t − σ(t) has its inverse function and rep-

resents the inverse function of t − σ(t) by µ(t). Let t − σ(t) = s, then t = µ(s)
and

T∫
0

|x(k)(t− σ(t))|dt =

T−σ(T )∫
−σ(0)

µ′(s)|x(k)(s)|ds =

=

T−σ(T )∫
−σ(0)

|x(k)(s)|
1− σ′(µ(s))

ds ≤

≤ 1
1− σL

T−σ(T )∫
−σ(0)

|x(k)(s)|ds ≤

≤ 1
1− σL

T∫
0

|x(k)(s)|ds.

This completes the proof of this lemma.

Lemma 2.5. Assume that one of the following conditions is satisfied:

(H4) Suppose that (H1) holds, and
[
α( T2π )n +

(
β+ δ+ η

(1−σL)
1
2

)
T
2π + γ+ε

πn−1
Tn

2n

]
< 1.

(H5) Suppose that (H1)− (H2) hold, and 0 ≤ δ < m.

Then Eq. (1.1) has at most one anti-periodic solution.

Proof. Suppose that x1(t) and x2(t) are two anti-periodic solutions of Eq. (1.1). Then
we have

(x1(t)− x2(t))(n) = F1(t)− F2(t), (2.1)

where Fi(t) = F (t, xit, x
(n−1)
it , xi(t), x

(n−1)
i (t), xi(t − τ(t)), x(n−1)

i (t − σ(t))), i = 1, 2.
Set z(t) = x1(t)− x2(t). Hence we get from (2.1) that

z(n) = F1(t)− F2(t). (2.2)

Since z(t) = x1(t)− x2(t) is an anti-periodic function on R, then

T∫
0

z(t)dt = 0.
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It follows that there exists a constant γ̃ ∈ [0, T ] such that

z(γ̃) = 0. (2.3)

Then, we have

|z(t)| =
∣∣∣∣z(γ̃) +

t∫
eγ
z′(s)ds

∣∣∣∣ ≤
≤

t∫
eγ
|z′(s)|ds, t ∈ [γ̃, γ̃ + T ]

and

|z(t)| = |z(t− T )| =

=
∣∣∣∣z(γ̃)−

eγ∫
t−T

z′(s)ds
∣∣∣∣ ≤

≤
eγ∫

t−T

|z′(s)|ds, t ∈ [γ̃, γ̃ + T ].

Combining the above two inequalities, we obtain

|z|∞ = max
t∈[0,T ]

|z(t)| =

= max
t∈[eγ,eγ+T ]

|z(t)| ≤

≤ max
t∈[eγ,eγ+T ]

{
1
2

( t∫
eγ
|z′(s)|ds+

eγ∫
t−T

|z′(s)|ds
)}
≤

≤ 1
2

T∫
0

|z′(s)|d ≤

≤ 1
2

√
T |z′|2.

(2.4)

Now suppose that (H4) (or (H5)) holds. We shall consider two cases as follows.
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Case 1. If (H4) holds, multiplying both sides of (2.2) by z(n)(t) and then integrating
them from 0 to T , we have from (H1) and (2.4) that

|z(n)|22 =

TZ
0

|z(n)(t)|2dt =

TZ
0

|F2(t)− F1(t)||z(n)(t)|dt ≤ α
TZ

0

|x2(t+ θ)− x1(t+ θ)||z(n)(t)|dt+

+ β

TZ
0

|x(n−1)
2 (t+ θ)− x(n−1)

1 (t+ θ)||z(n)(t)|dt+ γ

TZ
0

|x2(t)− x1(t)||z(n)(t)|dt+

+ δ

TZ
0

|x(n−1)
2 (t)− x(n−1)

1 (t)||z(n)(t)|dt+ ε

TZ
0

|x2(t− τ(t))− x1(t− τ(t))||z(n)(t)|dt+

+ η

TZ
0

|x(n−1)
2 (t− σ(t))− x(n−1)

1 (t− σ(t))||z(n)(t)|dt ≤

≤ α
„ TZ

0

|x2(t+ θ)− x1(t+ θ)|2dt
« 1

2
„ TZ

0

|z(n)(t)|2dt
« 1

2
+

+ β

„ TZ
0

|x(n−1)
2 (t+ θ)− x(n−1)

1 (t+ θ)|2dt
« 1

2
„ TZ

0

|z(n)(t)|2dt
« 1

2
+

+ γ|z|∞
TZ

0

|z(n)(t)|dt+ ε|z|∞
TZ

0

|z(n)(t)|dt+ δ

„ TZ
0

|z(n−1)(t)|2dt
« 1

2
„ TZ

0

|z(n)(t)|2dt
« 1

2
+

+ η

„ TZ
0

|x(n−1)
2 (t− σ(t))− x(n−1)

1 (t− σ(t))|2dt
« 1

2
„ TZ

0

|z(n)(t)|2dt
« 1

2
≤

≤ α
„ T+θZ

θ

|x2(s)− x1(s)|2ds

« 1
2
|z(n)|2 + β

„ T+θZ
θ

|x(n−1)
2 (s)− x(n−1)

1 (s)|2ds

« 1
2
|z(n)|2+

+ γ
√
T |z|∞|z(n)|2 + ε

√
T |z|∞|z(n)|2 + δ|z(n−1)|2|z(n)|2+

+
η

(1− σL)
1
2

„ TZ
0

|x(n−1)
2 (s)− x(n−1)

1 (s)|2ds|z(n)|2
« 1

2
≤

≤ α|z|2|z(n)|2 + β|z(n−1)|2|z(n)|2 + γ
√
T ·

1

2

√
T |z′|2|z(n)|2 + ε

√
T ·

1

2

√
T |z′|2|z(n)|2+

+ δ|z(n−1)|2|z(n)|2 +
η

(1− σL)
1
2
|z(n−1)|2|z(n)|2 =

= α|z|2|z(n)|2 +

„
β + δ +

η

(1− σL)
1
2

«
|z(n−1)|2|z(n)|2 + (γ + ε)

T

2
|z′|2|z(n)|2 ≤

≤ α(
T

2π
)n|z(n)|22 +

„
β + δ +

η

(1− σL)
1
2

«
T

2π
|z(n)|22 + (γ + ε)

T

2
(
T

2π
)n−1|z(n)|22 =

=

»
α(

T

2π
)n +

„
β + δ +

η

(1− σL)
1
2

«
T

2π
+
γ + ε

πn−1

Tn

2n

–
|z(n)|22.

It follows from (H4) that
z(n)(t) ≡ 0 for all t ∈ R. (2.5)
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Since z(n−2)(0) = z(n−2)(T ), there exists a constant ξn−1 ∈ [0, T ] such that
z(n−1)(ξn−1) = 0, then, in view of (2.5), we get

z(n−1)(t) ≡ 0 for all t ∈ R. (2.6)

By using a similar argument as that in the proof of (2.6), in view of (2.3), we can
show

z(t) ≡ z′(t) ≡ . . . ≡ z(n−2)(t) ≡ 0 for all t ∈ R.

Thus, x1(t) ≡ x2(t), for all t ∈ R. Therefore, Eq. (1.1) has at most one anti-periodic
solution.
Case 2. If (H5) holds, multiplying both sides of (2.2) by z(n−1)(t) and then integrating
them from 0 to T , together with (2.4), we can obtain from (H1) and (H2) that

m|z(n−1)|22 =

T∫
0

m|x(n−1)
1 (t)− x(n−1)

2 (t)|2dt ≤

≤
T∫

0

|F (t, u1, u2, u3, x
(n−1)
1 , u4, u5)− F (t, u1, u2, u3, x

(n−1)
2 , u4, u5)|×

× |x(n−1)
1 − x(n−1)

2 |dt ≤

≤
T∫

0

δ|x(n−1)
1 (t)− x(n−1)

2 (t)||z(n−1)(t)|dt =

= δ|z(n−1)|22.

(2.7)

By using a similar argument as that in the proof of Case 1, in view of (2.3), (H5) and
(2.7), we obtain

z(t) ≡ z′(t) ≡ · · · ≡ z(n−1)(t) ≡ 0 for all t ∈ R.

Hence, x1(t) ≡ x2(t), for all t ∈ R. Therefore, Eq. (1.1) has at most one anti-periodic
solution. The proof of Lemma 2.5 is now complete.

3. MAIN RESULTS

Theorem 3.1. Let (H3) hold. Assume that either condition (H4) or condition (H5)
is satisfied. Then Eq. (1.1) has a unique anti-periodic solution.

Proof. Let

X =
{
x ∈ Cn−1, 12

T : x
(
t+

T

2

)
= −x(t), for all t ∈ R

}
and

Y =
{
x ∈ Cn−2, 12

T : x
(
t+

T

2

)
= −x(t), for all t ∈ R

}
.
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Then X and Y are two Banach spaces with the norms

‖x‖X = max{|x|∞, |x′|∞, · · · , |x(n−1)|∞}

and

‖x‖Y = max{|x|∞, |x′|∞, · · · , |x(n−2)|∞},

respectively.
Define a linear operator L : D(L) ⊂ X→ Y by setting

Lx = x(n) for all x ∈ D(L),

where D(L) = {x ∈ X : x(n) ∈ L2[0, T ]} and N : X→ Y by setting

Nx = F (t, xt, x
(n−1)
t , x(t), x(n−1)(t), x(t− τ(t)), x(n−1)(t− σ(t))).

It is easy to see that

Ker L = 0 and Im L =
{
x ∈ Y :

T∫
0

x(s)ds = 0
}

= Y.

Thus dim Ker L = 0 = codim Im L, and L is a linear Fredholm operator of index
zero.

Define the continuous projector P : X → Ker L and the averaging projector
Q : Y→ Y by

Px =
1
T

T∫
0

x(s)ds

and

Qy =
1
T

T∫
0

y(s)ds.

Hence Im P = Ker L and Ker Q = ImL. Denoting by L−1
P : Im L → D(L) ∩ Ker P

the inverse of L |D(L)∩Ker P , we have

L−1
P x(t) =

n−1∑
i=0

ti

i!
hi +

1
(n− 1)!

t∫
0

(t− s)n−1x(s)ds,
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in which hi (i = 0, 1, · · · , n− 1) are decided by EZ = B, where

E =



2 0 0 · · · 0 0
c1 2 0 · · · 0 0
c2 c1 2 · · · 0 0
...

...
...

...
...

cn−2 cn−3 cn−4 · · · 2 0
cn−1 cn−2 cn−3 · · · c1 2


n×n,

Z =



hn−1

hn−2

hn−3

...
h1

h0


n×1,

B = (b1, b2, · · · , bn)T , bi = − 1
i!

∫ T
2

0
(T2 −s)

ix(s)ds (i = 0, 1, · · · , n−1), cj = ( T
2 )j

j! (j =
1, 2, · · · , n− 1).

Clearly, QN and L−1
p (I −Q)N are continuous. Using the Arzela-Ascoli theorem,

it is not difficult to show that QN(Ω), L−1
P (I−Q)N(Ω) are relatively compact for any

open bounded set Ω ⊂ X. Therefore, N is L-compact on Ω for any open bounded set
Ω ⊂ X.

In order to apply Lemma 2.1, we need to find appropriate open bounded subset Ω
in X. Corresponding to the operator equation Lx−Nx = λ(−Lx−N(−x)), λ ∈ (0, 1],
we have

x(n) =
1

1 + λ
G(t, x)− λ

1 + λ
G(t,−x), (3.1)

where

G(t, x) = F (t, xt, x
(n−1)
t , x(t), x(n−1)(t), x(t− τ(t)), x(n−1)(t− σ(t)))

and

G(t,−x) = F (t,−xt,−x(n−1)
t ,−x(t),−x(n−1)(t),−x(t− τ(t)),−x(n−1)(t− σ(t))).

Suppose that x ∈ X is an arbitrary anti-periodic solution of Eq. (3.1). Then, by using
a similar argument as that in the proof of (2.4), we have

|x|∞ ≤
1
2

√
T |x′|2. (3.2)

In view of (H4) and (H5), we consider two cases as follows.
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Case 1. If (H4) holds, multiplying both sides of Eq. (3.1) by x(n) and then integrating
it from 0 to T , in view of Lemma 2.2 - Lemma 2.4, we obtain

|x(n)|22 =

TZ
0

|x(n)(t)|2 dt =

TZ
0

˛̨̨ 1

1 + λ
G(t, x)−

λ

1 + λ
G(t,−x)

˛̨̨
|x(n)(t)| dt ≤

≤
“ 1

1 + λ
+

λ

1 + λ

” TZ
0

max
n
|G(t, x)|, |G(t,−x)|

o
|x(n)(t)|dt =

=

TZ
0

max
n
|G(t, x)|, |G(t,−x)|

o
|x(n)(t)|dt ≤

≤
TZ

0

max
n
|G(t, x)−G(t, 0)|, |G(t,−x)−G(t, 0)|

o
|x(n)(t)|dt+

TZ
0

|G(t, 0)||x(n)(t)|dt ≤

≤ α
TZ

0

|x(t+ θ)||x(n)(t)|dt+ β

TZ
0

|x(n−1)(t+ θ)||x(n)(t)|dt+ γ

TZ
0

|x(t)||x(n)(t)|dt+

+ δ

TZ
0

|x(n−1)(t)||x(n)(t)|dt+ ε

TZ
0

|x(t− τ(t))||x(n)(t)|dt+

+ η

TZ
0

|x(n−1)(t− σ(t))||x(n)(t)|dt+

TZ
0

|G(t, 0)||x(n)(t)|dt ≤

≤ α|x|2|x(n)|2 + β|x(n−1)|2|x(n)|2 + γ
√
T ·

1

2

√
T |x′|2|x(n)|2 + ε

√
T ·

1

2

√
T |x′|2|x(n)|2+

+ δ|x(n−1)|2|x(n)|2 +
η

(1− σL)
1
2
|x(n−1)|2|x(n)|2 + max

t∈[0,T ]
|G(t, 0)|

TZ
0

|x(n)(t)|dt =

= α|x|2|x(n)|2 +

„
β + δ +

η

(1− σL)
1
2

«
|x(n−1)|2|x(n)|2 + (γ + ε)

T

2
|x′|2|x(n)|2+

+ max
t∈[0,T ]

|G(t, 0)|
√
T |x(n)|2 ≤

≤ α
“ T

2π

”n
|x(n)|22 +

„
β + δ +

η

(1− σL)
1
2

«
T

2π
|x(n)|22 + (γ + ε)

T

2

“ T
2π

”n−1
|x(n)|22+

+ max
t∈[0,T ]

|G(t, 0)|
√
T |x(n)|2 =

=

»
α
“ T

2π

”n
+

„
β + δ +

η

(1− σL)
1
2

«
T

2π
+
γ + ε

πn−1

Tn

2n

–
|x(n)|22 + max

t∈[0,T ]
|G(t, 0)|

√
T |x(n)|2,

(3.3)

which, together with (H4), implies that there exists a positive constant D1 such that

|x(j)|2 ≤
( T

2π

)n−j
|x(n)|2 < D1, j = 1, 2, · · · , n. (3.4)

Since x(j)(0) = x(j)(T ) (j = 0, 1, 2, · · · , n− 1), it follows that there exists a constant
ζj ∈ [0, T ] such that

x(j+1)(ζj) = 0
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and

|x(j+1)(t)| = |x(j+1)(ζj) +

t∫
ζj

x(j+2)(s)ds| ≤
t∫

0

|x(j+2)(t)|dt ≤
√
T |x(j+2)|2, (3.5)

where j = 0, 1, 2, · · · , n− 2, t ∈ [0, T ].
Together with (3.2) and (3.4), (3.5) implies that there exists a positive constant

D2 such that

|x(j)|∞ ≤
√
T |x(j+1)|2 ≤ D2, j = 0, 1, 2, · · · , n− 1,

which implies that, for all possible anti-periodic solutions x(t) of (3.1), there exists a
constant M1 such that

max
1≤j≤n−1

|x(j)|∞ < M1. (3.6)

Case 2. If (H5) holds, multiplying both sides of Eq. (3.1) by x(n−1)(t) and then
integrating them from 0 to T , by (H5) and (3.2), we have

m|x(n−1)|22 =

T∫
0

m|x(n−1)(t)||x(n−1)(t)|dt ≤

≤
T∫

0

|F (t, u1, u2, u3, x
(n−1)(t), u4, u5)− F (t, u1, u2, u3, 0, u4, u5)||x(n−1)(t)|dt ≤

≤
T∫

0

δ|x(n−1)(t)||x(n−1)(t)|dt =

= δ|x(n−1)|22,

which implies from (H5) that there exists a positive constant D2 > 0 such that

|x(j)|∞ ≤
√
T |x(x(j+1))|2 ≤ D2, j = 0, 1, 2, · · · , n− 2. (3.7)

Multiplying both sides of Eq. (3.1) by x(n)(t) and then integrating it from 0 to T , by
(H5), (3.2), (3.3) and (3.7), we obtain

|x(n)|22 =

T∫
0

|x(n)(t)|2dt ≤

≤ α|x|2|x(n)|2 +
(
β + δ +

η

(1− σL)
1
2

)
|x(n−1)|2|x(n)|2 + (γ + ε)

T

2
|x′|2|x(n)|2+

+ max
t∈[0,T ]

|G(t, 0)|
√
T |x(n)|2 ≤

≤ αD2|x(n)|2 +
(
β + δ +

η

(1− σL)
1
2

)
D2|x(n)|2 + (γ + ε)

T

2
D2|x(n)|2+

+ max
t∈[0,T ]

|G(t, 0)|
√
T |x(n)|2,
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it follows from (3.5) that there exists a positive constant D1

|x(n−1)(t)| ≤
√
T |x(n)|2 ≤ D1. (3.8)

Therefore, in view of (3.7) and (3.8), for all possible anti-periodic solutions x(t) of
(3.1), there exists a constant M̃1 such that

max
1≤j≤n−1

|x(j)|∞ < M̃1,

which, together with (3.6), implies that

max
1≤j≤n−1

|x(j)|∞ < M1 + M̃1 + 1 := M.

Take
Ω = {x ∈ X : ‖x‖X < M}.

It is clear that Ω satisfies all the requirement in Lemma 2.1 and that condition (H)
is satisfied. In view of all the discussions above, we conclude from Lemma 2.1 and
Lemma 2.5 that Eq. (3.1) has a unique anti-periodic solution. This completes the
proof.

4. AN EXAMPLE

Example 4.1. Let F (t, x, y, z, g, h, j) = − 1
4y cos t − 1

8g −
1
6πh −

3
8j cos4 t, for all

t, y, g, h, j ∈ R. Then the following equation

x′′ +
1
4

(cos t)x′(t+ 2) +
1
8
x′(t) +

1
6π
x(t− cos2 t) +

3
8
x′(t− sin2 t) =

1
40

sin t (4.1)

has a unique anti-periodic solution with period 2π.

Proof. By (4.1), we have α = γ = 0, δ = 1
8 , ε = 1

6π , η = 3
8 . It is obvious that

assumptions (H3) and (H4) hold. Hence, by Theorem 3.1, Eq. (4.1) has a unique
anti-periodic solution with period 2π.
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