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ON OPERATORS OF TRANSITION IN KREIN SPACES

A. Grod, S. Kuzhel, V. Sudilovskaya

Abstract. The paper is devoted to investigation of operators of transition and the corre-
sponding decompositions of Krein spaces. The obtained results are applied to the study of
relationship between solutions of operator Riccati equations and properties of the associated
operator matrix L. In this way, we complete the known result (see Theorem 5.2 in the paper
of S. Albeverio, A. Motovilov, A. Skhalikov, Integral Equ. Oper. Theory 64 (2004), 455–486)
and show the equivalence between the existence of a strong solution K (‖K‖ < 1) of the
Riccati equation and similarity of the J-self-adjoint operator L to a self-adjoint one.
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1. INTRODUCTION

Let H be a Hilbert space with inner product (·, ·) and with non-trivial fundamental
symmetry J (i.e., J = J∗, J2 = I, and J 6= ±I).

The space H endowed with the indefinite inner product (indefinite metric) [·, ·] :=
(J ·, ·) is called a Krein space (H, [·, ·]). In what follows we will refer to [6] for general
results of the Krein spaces theory.

The development of PT -symmetric quantum mechanics (PTQM) achieved during
the past decade (see [7] and the references therein) leads to a lot of new useful notions
and motivates the further development of the Krein spaces theory [3,12]. In particular,
the notion of C-symmetry for pseudo-Hermitian Hamiltonians (which is one of the key
concepts of PTQM) gives rise to the definition of C-symmetry for operators acting in
Krein spaces [2, 3].

The property of C-symmetry for an operator A is equivalent to its fundamental
reducibility with respect to decomposition (2.11) [8], where LK and M∗K are maximal
positive and maximal negative subspaces of the Krein space (H, [·, ·]). Decompositions
(2.11) are completely characterized by the collection of operators of transition, which
are closely related to the concept of angular operators in the Krein space [6].
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Operators of transition enable one to simplify many results of the Krein spaces
theory which were initially formulated in terms of angular operators [9] and they can
provide some useful operator framework for various investigations where geometric
properties of the underlying Krein space have considerable importance.

In the present paper, we illustrate this point of view by considering well-known
relationship [1, 4, 5, 13] between solutions of the operator Riccati equations (3.2) and
properties of 2× 2-block operator matrices L (3.1) with unbounded operator entries
(Section 3). In particular, we prove the inverse statement to [4, Theorem 5.2] and,
as a result, we establish the equivalence between the existence of a strong solution K
(‖K‖ < 1) of operator Riccati equation (3.3) and the similarity of the J-self-adjoint
operator L to a self-adjoint one (Theorem 3.4).

Another aim of the present paper is to generalize operators of transition for the
case of ‘nonsymmetric’ decompositions (2.4), which are more general than (2.11). In
this case, the basic properties of operators of transitions remain true (Section 2).
We believe that these results can be useful for the study of general (not necessarily
J-self-adjoint) operator matrices L.

The following notations are used throughout the paper. D(A) and R(A) denote
the domain and the range of a linear operator A. A �D means the restriction of A
onto a set D. The symbol B(H0,H1) denotes the set of bounded linear operators from
a Hilbert space H0 to a Hilbert space H1. The notation ρ(A) is used for the resolvent
of A.

2. OPERATORS OF TRANSITION

2.1. DEFINITION OF OPERATORS OF TRANSITION

Let (H, [·, ·]) be a Krein space with fundamental symmetry J . The corresponding
orthogonal projections P± = 1

2 (I±J) determine the fundamental decomposition of H

H = H+ ⊕ H−, H− = P−H, H+ = P+H. (2.1)

A subspace L of H is called hypermaximal neutral if

L = L[⊥] = {x ∈ H : [x, y] = 0, ∀y ∈ L}.

A subspace L ⊂ H is called uniformly positive (uniformly negative) if [x, x] ≥
a2‖x‖2 (−[x, x] ≥ a2‖x‖2) for a fixed a ∈ R for all x ∈ L. The subspaces H± in (2.1)
are examples of uniformly positive and uniformly negative subspaces and, moreover,
they are maximal, i.e., H+ (H−) is not proper subspace of uniformly positive (resp.
negative) subspace.

For any K ∈ B(H+,H−) and Q ∈ B(H−,H+) we put

LK = {x = x+ +Kx+ : ∀x+ ∈ H+},

MQ = {y = y− +Qy− : ∀y− ∈ H−}.
(2.2)
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It is well known [6] that maximal uniformly positive (negative) subspaces of the
Krein space (H, [·, ·]) are described by the first (second) formula in (2.2) with ‖K‖ < 1
(‖Q‖ < 1). Hypermaximal neutral subspaces can be described by formulas (2.2) under
the assumption that K (Q) is a unitary mapping of H+ onto H− (of H− onto H+).

It follows from (2.2) that LK = (I + T )H+ and MQ = (I + T )H−, where

T = KP+ +QP− (2.3)

is a bounded operator in H. The operator T takes the form T =
(

0 Q
K 0

)
with

respect to the fundamental decomposition (2.1).

Lemma 2.1. The subspaces LK and MQ are linearly independent and

H = LK+̇MQ (2.4)

if and only if I + T is a boundedly invertible operator in H (i.e., 0 ∈ ρ(I + T )).

The proof of Lemma 2.1 is quite obvious and similar statements (formulated in
slightly different manner) are well known (see e.g., [4, Lemma 2.6]).

Definition 2.2. If the relation (2.4) holds, then the operator T defined by (2.3)
is called an operator of transition from the fundamental decomposition (2.1) to the
decomposition (2.4).

The collection of operators of transition admits a simple description which does
not use the decomposition (2.4).

Proposition 2.3. Let T ∈ B(H) and let J be a fixed fundamental symmetry in H.
Then T is an operator of transition with respect to the fundamental decomposition
(2.1) if and only if the following conditions hold:

JT = −TJ and 0 ∈ ρ(I + T ). (2.5)

Proof. If T is an operator of transition, then there exists a decomposition (2.4) and
T is defined by (2.3). The formula (2.3) means that JT = −TJ . Furthermore,
0 ∈ ρ(I + T ) by Lemma 2.1.

Conversely, if T satisfies (2.5), then the first relation in (2.5) leads to the pre-
sentation (2.3) of T with KP+ = T �H+ and QP− = T �H− ; the second relation
ensures the decomposition (2.4) (due to Lemma 2.1). Therefore, T is an operator of
transition.

It is clear that there is a one-to-one correspondence between the set of all possible
bounded operators T satisfying (2.5) and the set of all possible decompositions of the
form (2.4).

Denote by PL and PM the projections onto LK and MQ with respect to the
decomposition (2.4).
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Lemma 2.4. Let T be an operator of transition from (2.1) to (2.4). Then:

P+ = (I + T )−1(PL + TPM), P− = (I + T )−1(PM + TPL);

PL = (I − T )−1(P+ − TP−), PM = (I − T )−1(P− − TP+),

where orthogonal projections P± = 1
2 (I±J) correspond to the fundamental decompo-

sition (2.1).

Proof. The assertion of Lemma 2.4 was established in [9, Proposition 9.1] under the
additional assumption that LK is a maximal uniformly positive subspace and MQ =
L

[⊥]
K . This proof can be directly extended to the general case. For convenience of

readers, we outline principal steps.
For any x ∈ H, in view of (2.2) and (2.3), we have

(I + T )x = (I + T )(P+ + P−)x = l +m,

where l = (I + T )P+x ∈ LK and m = (I + T )P−x ∈ MQ. Hence, (I + T )P+x =
PL(I + T )x and (I + T )P−x = PM(I + T )x. Since 0 ∈ ρ(I + T ), we conclude

P+ = (I + T )−1(PL + PLT ), P− = (I + T )−1(PM + PMT ). (2.6)

Let us show that PLT = TPM and PMT = TPL. Since PL+PM = I, it is sufficient
to verify the first relation. By (2.4), an arbitrary z ∈ H has the decomposition
z = l +m, where l = (I + T )x+, m = (I + T )x−, x± ∈ H±. Therefore,

PLTz = PLT (l +m) = PL(I + T )[Tx+ + Tx−] = (I + T )Tx− = TPMz.

Combining this with (2.6), we obtain the required expressions for P±. Solving them
with respect to PL and PM and taking into account that I−T is a boundedly invertible
operator (since JT = −TJ and 0 ∈ ρ(I+T )), we derive the formulas for PL and PM.
Lemma 2.4 is proved.

Corollary 2.5. The following identity holds:

PLP+ − PMP− = P+PL − P−PM.

Proof. It follows from Lemma 2.4 and the identity JT = −TJ that

P+PL − P−PM = (I + T )−1(PL − PM) =

= (I + T )−1(I − T )−1(I + T )J = (I − T )−1J = PLP+ − PMP−.

The concept of operators of transition T enables one to characterize various specific
decompositions (2.4) of H by imposing additional restrictions onto T .

Proposition 2.6. Let T be an operator of transition from (2.1) to (2.4) (i.e., T
satisfies the conditions (2.5)). Then the following statements hold:

(i) the subspaces LK and MQ in (2.4) are hypermaximal neutral ⇐⇒ T is a unitary
operator in H;
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(ii) the subspaces LK and MQ are J-orthogonal (i.e., [x, y] = 0, ∀x ∈ LK , y ∈MQ)
⇐⇒ T is self-adjoint in H;

(iii) LK and MQ are, respectively, uniformly positive and uniformly negative sub-
spaces ⇐⇒ T is a strong contraction (‖T‖ < 1) in H.

Proof. (i) the subspaces LK and MQ defined by (2.2) are hypermaximal neutral in the
Krein space (H, [·, ·]) ⇐⇒ K : H+ → H− and Q : H− → H+ are unitary mappings [6].
These properties are equivalent to the unitarity of T (due to (2.3)).

(ii) J-orthogonality of LK and MQ are equivalent to the property K∗ = Q [6]
⇐⇒ T is self-adjoint in H (since T is defined by (2.3)).

(iii) subspaces LK and MQ are, respectively, uniformly positive and uniformly
negative ⇐⇒ ‖K‖ < 1 and ‖Q‖ < 1 [6] ⇐⇒ T is a strong contraction.

2.2. THE OPERATOR C AND ITS PROPERTIES

The bounded operator C = PL − PM describes the subspaces LK and MQ in (2.4) as
well:

LK =
1
2
(I + C)H, MQ =

1
2
(I − C)H. (2.7)

It follows from Lemma 2.4 that

C = PL − PM = (I − T )−1J(I − T ) = J(I + T )−1(I − T ). (2.8)

It is clear that C is a bounded operator in H and C2 = I.
Using Corollary 2.5 we can define the operator

U = PLP+ − PMP− = P+PL − P−PM. (2.9)

Lemma 2.7. The operator U satisfies the relations

U = (I − T )−1J, UJ = CU, UC = JU (2.10)

and its restrictions U �H+ , U �H− , U �LK
, and U �MQ

determine boundedly invertible
mappings of H+, H−, LK , and MQ onto LK , MQ, H+, and H−, respectively.

Proof. The first relation in (2.10) follows from the proof of Corollary 2.5. Using (2.9)
one concludes

UJ = U(P+ − P−) = PLP+ + PMP− = (PL − PM)U = CU.

The relation UC = JU is proved in the same manner.
The first identity in (2.10) and (2.7) mean that U : H+ → LK and U : H− →MQ.

Further, since U = (I−T )−1J , one concludes that 0 ∈ ρ(U). Combining this with the
decompositions (2.1) and (2.4) we arrive at the conclusion that the operators U �H±

are boundedly invertible mappings of H± onto LK and MQ, respectively. The other
cases can be considered by analogy.
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Assume that LK in (2.4) is a maximal uniformly positive subspace of the Krein
space (H, [·, ·]) and the subspace MQ is J-orthogonal to LK . Then MQ turns out to
be a maximal uniformly negative subspace of (H, [·, ·]) and Q = K∗ [6]. According to
items (ii) and (iii) of Proposition 2.6, the operator of transition T from (2.1) to the
decomposition

H = LK [+̇]MK∗ (2.11)

([+] means the orthogonality with respect to the indefinite metric [·, ·]) is a self-adjoint
strong contraction in H. The collection of operators of transition T with these prop-
erties (i.e., T = T ∗ and ‖T‖ < 1) is in one-to-one correspondence with the set of
all possible decompositions (2.11) of H, where subspaces LK and MK∗ = L

[⊥]
K are,

respectively, maximal uniformly positive and maximal uniformly negative.

Lemma 2.8. The operator C in (2.8) admits the representation C = JeY , where
Y is a bounded self-adjoint operator in H such that JY = −Y J if and only if the
corresponding operator of transition T in (2.8) is a self-adjoint strong contraction.

Proof. If T is a self-adjoint strong contraction in H, then its spectrum is contained in
I = (−1, 1) and formula (2.8) can be rewritten as C = JeY , where

Y = f(T ), f(λ) = ln
1− λ
1 + λ

is a bounded self-adjoint operator in H. Since JT = −TJ , the projection valued
measure Eδ associated with T satisfies the relation JEδ = E−δJ for an arbitrary
Borel set δ [10]. Using this relation and taking into account that f(λ) = ln 1−λ

1+λ is an
odd function on I we obtain

JY = J

∫
I
f(λ)dEλ =

∫
I
f(λ)dE−λJ = −Y J.

Conversely, if C = JeY (JY = −Y J), then C is determined by (2.8) with T =
(I − eY )(I + eY )−1. This means that T = T ∗ and ‖T‖ < 1. Since JeY = e−Y J we
get JT = −TJ .

3. OPERATOR RICCATI EQUATION

3.1. PRELIMINARIES

Let A0 and A1 be densely defined closed operators acting in the Hilbert spaces
H0(≡ H+) and H1(≡ H−), respectively and let B ∈ B(H−,H+), C ∈ B(H+,H−).
Then the operator matrix

L =
(
A0 B
C A1

)
, D(L) = D(A0)⊕D(A1) (3.1)

is a densely defined closed operator on the Hilbert space H = H+ ⊕ H−.
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The operator-matrix L is determined with respect to the decomposition
H = H+ ⊕ H−. Considering this decomposition as a fundamental one (see (2.1))
we can interpret H as a Krein space (H, [·, ·]) with the fundamental symmetry

J =
(
I 0
0 −I

)
.

The following operator Riccati equations are naturally associated with the opera-
tor matrix L:

KA0 −A1K +KBK = C, QA1 −A0Q+QCQ = B. (3.2)

An operatorK ∈ B(H+,H−) is called a strong solution of the first Riccati equation
in (3.2) if

R(K �D(A0)) ⊂ D(A1) and KA0x−A1Kx+KBKx = Cx, ∀x ∈ D(A0).

A strong solution Q ∈ B(H−,H+) of the second Riccati equation is defined in a similar
way [4, 13].

The next result is well known (see, e.g., [4, Lemma 2.4]).

Lemma 3.1. An operator K ∈ B(H+,H−) (Q ∈ B(H−,H+)) is a strong solution of
the first (second) Riccati equation if and only if the subspace LK (MQ) in (2.2) is
invariant for the operator L.

Proposition 3.2. With the notation as before, the following statements are equiva-
lent:

(i) the operator L can be decomposed

L = L++̇L−, L+ = L �LK
, L− = L �MQ

with respect to the decomposition (2.4);
(ii) the operators K and Q in (2.2) are strong solutions of the Riccati equations (3.2)

and 0 ∈ ρ(I + T ), where T =
(

0 Q
K 0

)
;

(iii) the operator ULU commutes with J , where U is defined by (2.9).

Proof. The equivalence of (i) and (ii) follows from Lemmas 2.1, 3.1.
The statement (i) is equivalent to the commutation relation LC = CL, where C

is defined by (2.8). In that case, using (2.10), one gets JULU = UCLU = ULCU =
ULUJ . Conversely, if JULU = ULUJ , then UCLU = ULCU (due to (2.10)) and,
hence CL = LC (since 0 ∈ ρ(U)). Therefore, (ii)⇐⇒ (iii).

3.2. THE CASE OF J-SELF-ADJOINT OPERATOR L

An operator L in the Krein space (H, [·, ·]) is called J-self-adjoint if L is self-adjoint
with respect to the indefinite metric [·, ·]. It is clear that L is J-self-adjoint if and
only if L∗J = JL, where L∗ is the standard adjoint operator in the Hilbert space H.



56 A. Grod, S. Kuzhel, V. Sudilovskaya

Lemma 3.3. The operator L defined by (3.1) is J-self-adjoint in the Krein space
(H, [·, ·]) if and only if A0 and A1 are self-adjoint operators in the Hilbert spaces H+

and H−, respectively and C = −B∗.

The proof of the Lemma immediately follows from the relation L∗J = JL and
(3.1) if one takes into account that the initial inner product (·, ·) of H coincides with
[·, ·] on H+ and with −[·, ·] on H−.

Theorem 3.4. Assume that the operator matrix L defined by (3.1) is a J-self-adjoint
operator in the Krein space (H, [·, ·]). Then L is similar to a self-adjoint operator in
H if and only if the Riccati equation

KA0 −A1K +KBK = −B∗ (3.3)

has a strong solution K ∈ B(H+,H−) such that ‖K‖ < 1.

Proof. The implication: strong solution ⇒ the similarity was proved in [4, Theorem
5.2]. We just repeat its principal stages.

Indeed, in that case, the second Riccati equation in (3.2) takes the form

QA1 −A0Q−QB∗Q = B (3.4)

and it coincides with the adjoint K∗A1 −A0K
∗ −K∗B∗K∗ = B of (3.3). Therefore,

if K ∈ B(H+,H−) is a strong solution of (3.3), then Q = K∗ ∈ B(H−,H+) is a strong
solution of (3.4) (see [4, Remark 2.2]). Moreover ‖Q‖ = ‖K∗‖ < 1 since ‖K‖ < 1.
This means that the corresponding operator T = KP+ + K∗P− defined by (2.3) is
self-adjoint and ‖T‖ < 1. According to Proposition 2.6, T is the operator of transition
from (2.1) to (2.11).

Since K and K∗ are strong solutions of the Riccati equations (3.3) and (3.4) the
subspaces LK and MK∗ in (2.11) are invariant with respect to L (Lemma 3.1). This
is equivalent to the commutation relation

CL = LC, (3.5)

where C is defined by (2.8).
Since T is a self-adjoint strong contraction, the operator C admits the presentation

C = JeY (Lemma 2.8). This allows one to rewrite (3.5) as follows L∗eY = eY L (since
L∗J = JL). The latter relation means that L is similar to the self-adjoint operator
B = eY/2Le−Y /2 in H.

Conversely, assume that L is similar to a self-adjoint operator in H. Then there
exists a J-orthogonal decomposition H = L[+̇]M, where the maximal uniformly pos-
itive subspace L and the maximal uniformly negative subspace M are invariant with
respect to L (see e.g., [3, Theorem 3] or [11, Theorem 6.1]). In that case subspaces L
and M are determined by (2.2), where the corresponding operators K and Q satisfy
the relations

‖K‖ < 1, ‖Q‖ < 1, Q = K∗.

It follows from Lemma 3.1 thatK is a strong solution of the Riccati equation (3.3).
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Corollary 3.5. If the Riccati equation (3.3) has a strong solution K ∈ B(H+,H−)
such that ‖K‖ < 1, then L is a self-adjoint operator in the Hilbert space H with respect
to the new inner product (·, ·)C = [C·, ·].

Proof. Since ‖K‖ < 1, the corresponding operator of transition T is a self-adjoint
strong contraction. This means that C = JeY (Lemma 2.8) and, hence, (·, ·)C =
[C·, ·]J = (eY ·, ·) = (eY/2·, eY/2·) is a new inner product in H which is equivalent to
the initial inner product (·, ·). The operator L is self-adjoint in H with respect to
(·, ·)C since B = eY/2Le−Y /2 is self-adjoint in H with respect to (·, ·) (see the proof of
Theorem 3.4).

Theorem 3.6. Let L be defined by (3.1) and let K ∈ B(H+,H−) satisfy the condition
0 ∈ ρ(I −K∗K). Then the following assertions are equivalent:

(i) the operator L is a J-self-adjoint operator in the Krein space (H, [·, ·]) and K is
a strong solution of the Riccati equation (3.3);

(ii) the operator ULU commutes with J and, simultaneously, it is self-adjoint in H.

Proof. It is clear that the operator T = KP+ +K∗P− satisfies the relation

I − T 2 = (I − T )(I + T ) = (I −K∗K)⊕ (I −KK∗),

where the decomposition is taken with respect to (2.1). This means that 0 ∈ ρ(I+T )
(see, e.g., [4, Lemma 2.6 and Remark 2.7]). Therefore, T is the operator of transition
from (2.1) to the decomposition H = LK [+̇]MK∗ .

Assume that L is a J-self-adjoint operator and K is a strong solution of the
Riccati equation (3.3). Then, repeating the proof of Theorem 3.4 we conclude that
the subspaces LK and MK∗ are invariant with respect to L. By Proposition 3.2 this
means that the operator ULU commutes with J . Further, using the first relation in
(2.10) and taking into account the identity JL = L∗J , one gets

(ULU)∗ = J(I − T )−1L∗J(I − T )−1 =

= J [(I − T )−1JL(I − T )−1J ]J = J [ULU ]J = ULUJ2 = ULU.
(3.6)

Thus, ULU is a self-adjoint operator in H.
Conversely, if ULU commutes with J and it is self-adjoint, then

J(I − T )−1L∗J(I − T )−1 = (ULU)∗ = ULU =

= ULUJ2 = J [ULU ]J = J(I − T )−1JL(I − T )−1

and, hence, L∗J = JL. Thus, L is a J-self-adjoint operator. Using Proposition 3.2, we
arrive at the conclusion that K is a strong solution of the Riccati equation (3.3).

Remark 3.7. The condition (ii) means that ULU is decomposed into two self-adjoint
operators acting in the subspaces H± of the fundamental decomposition (2.1). How-
ever, in general, L is not similar to a self-adjoint operator (since ULU is not a simi-
larity transformation).
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