Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we collect some properties of strongly midconvex functions. First, counterparts of the classical theorems of Bernstein-Doetsch, Ostrowski and Sierpiński are presented. A version of Rod é support theorem for strongly midconvex functions and a Kuhn-type result on the relation between strongly midconvex functions and strongly t-convex functions are obtained. Finally, a connection between strong midconvexity and generalized convexity in the sense of Beckenbach is established
Czasopismo
Rocznik
Tom
Strony
15--26
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
autor
autor
- University of Bielsko-Biała Department of Mathematics and Computer Science ul. Willowa 2, 43-309 Bielsko-Biała, Poland [Nikodem, K.], knikodem@ath.bielsko.pl
Bibliografia
- [1] E.F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937), 363-371.
- [2] E.F. Beckenbach, R.H. Bing, On generalized convex functions, Trans. Amer. Math. Soc. 58 (1945), 220-230.
- [3] Z. Daroczy, Zs. Pales, Convexity with given infinite weight sequences, Stochastica 11 (1987) 1, 5-12.
- [4] J.-B. Hiriart-Urruty, C. Lemarechal, Fundamentals of Convex Analysis, Springer-Verlag, Berlin-Heidelberg, 2001.
- [5] M.V. Jovanovič, A note on strongly convex and strongly quasiconvex functions, Math. Notes 60/5 (1996), 778-779.
- [6] H. Konig, On the abstract Hahn-Banach theorem due to Rodé, Aequationes Math. 34 (1987), 89-95.
- [7] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN-Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985, 2nd Edition: Birkhauser, Basel-Boston-Berlin, 2009.
- [8] N. Kuhn, A note on t-convex functions, General Inequalities, 4 (Oberwolfach, 1983) (W. Walter, ed.), International Series of Numerical Mathematics, vol. 71, Birkhäuser, Basel-Boston-Stuttgart, 1984, 269-276.
- [9] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193-199.
- [10] L. Montrucchio, Lipschitz continuous policy functions for strongly concave optimization problems, J. Math. Econ. 16 (1987), 259-273.
- [11] K. Nikodem, On the support of midconvex operators, Aequationes Math. 42 (1991), 182-189.
- [12] K. Nikodem, Zs. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 5 (2011) 1, 83-87.
- [13] E.S. Polovinkin, Strongly convex analysis, Sb. Mathematics 187/2 (1996), 259-286.
- [14] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72-75.
- [15] A.W. Roberts, D.E. Varberg, Convex Functions, Academic Press, New York-London, 1973.
- [16] G. Rode, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. 31 (1978), 474-481.
- [17] J.P. Vial, Strong convexity of sets and functions, J. Math. Economy 9 (1982), 187-205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0003-0025