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ON STRONGLY MIDCONVEX FUNCTIONS

A. Azócar, J. Giménez, K. Nikodem, J.L. Sánchez

Abstract. In this paper we collect some properties of strongly midconvex functions. First,
counterparts of the classical theorems of Bernstein-Doetsch, Ostrowski and Sierpiński are
presented. A version of Rodé support theorem for strongly midconvex functions and a
Kuhn-type result on the relation between strongly midconvex functions and strongly t-convex
functions are obtained. Finally, a connection between strong midconvexity and generalized
convexity in the sense of Beckenbach is established.
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1. INTRODUCTION

LetX be a normed space, D a convex subset ofX and let c > 0. A function f : D → R
is called strongly convex with modulus c (see e.g. [4, 15]) if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− cλ(1− λ)‖x− y‖2 (1.1)

for all x, y ∈ D and λ ∈ [0, 1]; f is said to be strongly midconvex (or strongly Jensen
convex ) with modulus c if (1.1) is assumed only for λ = 1

2 , that is

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− c

4
‖x− y‖2, x, y ∈ D. (1.2)

Recall also that the usual notions of convex and midconvex functions correspond
to the case c = 0.

Strongly convex functions have been introduced by Polyak [14] and he used them
for proving the convergence of a gradient type algorithm for minimizing a function.
They play an important role in optimization theory and mathematical economics.
Many properties and applications of them can be found in the literature (see, for
instance, [5, 9, 10,13–15,17]).
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Condition (1.2) defining strongly midconvex functions appears in [15] and [17],
but no properties are stated. (In [15, p. 268] there is a task: Show that (1.2) is
equivalent to (1.1), but it is not true.) The aim of this note is to collect some results
on strongly midconvex functions. Of course, condition (1.2) is much weaker than
(1.1). In particular there exist discontinuous and non-measurable strongly midconvex
functions defined on R, whereas strongly convex functions defined on an open subset
of Rn are continuous. On the other hand, condition (1.2) is much easier to verify than
(1.1). Therefore, it can be interesting and important for possible applications that
under weak regularity assumptions the classes of strongly midconvex and strongly
convex functions coincide. As examples of such results we present, in Section 2, some
versions of the classical theorems of Bernstein-Doetsch, Ostrowski and Sierpiński. In
Section 3 we prove a Kuhn-type theorem stating that strongly t-convex functions
are strongly midconvex. Section 4 contains a counterpart of the result of Rodé that
characterizes midconvex functions via their supports. Jensen-type inequalities are
obtained in Section 5. Finally, in Section 6, we discuss connections with the theory
of generalized convex functions due to Beckenbach.

2. BERNSTEIN-DOETSCH-TYPE RESULTS

Obviously, every strongly convex function is strongly midconvex, but not conversely.
For instance, if a : R → R is an additive discontinuous function and f : R → R
is given as f(x) := a(x) + x2, then f is strongly midconvex with modulus 1, but
it is not strongly convex (with any modulus) because it is not continuous. In the
class of continuous functions, strong midconvexity is equivalent to strong convexity
in view of Corollary 2.2 below. In fact, strong convexity can be deduced from strong
midconvexity under conditions formally much weaker than continuity. In this section
we present a few results of such type. They are versions of the classical theorems of
Bernstein-Doetsch, Ostrowski and Sierpiński (see [7], and [15]). We start with the
following lemma.

Lemma 2.1. Let D be a convex subset of a normed space and let c > 0. If f : D → R
is strongly midconvex with modulus c then

f

(
k

2n
x+
(

1− k

2n

)
y

)
≤ k

2n
f(x)+

(
1− k

2n

)
f(y)− c k

2n

(
1− k

2n

)
‖x− y‖2, (2.1)

for all x, y ∈ D and all k, n ∈ N such that k < 2n.

Proof. The proof is by induction on n. For n = 1 (2.1) reduces to (1.2). Assuming
(2.1) to hold for some n ∈ N and all k < 2n, we will prove it for n+ 1. Fix x, y ∈ D
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and take k < 2n+1. Without loss of generality we may assume that k < 2n. Then, by
(1.2) and the induction assumption, we get

f

(
k

2n+1
x+
(

1− k

2n+1

)
y

)
= f

(
1
2

(
k

2n
x+
(

1− k

2n

)
y

)
+

1
2
y

)
≤

≤ 1
2
f

(
k

2n
x+
(

1− k

2n

)
y

)
+

1
2
f(y)− c

4

∥∥∥∥ k2n
x+
(

1− k

2n

)
y − y

∥∥∥∥2

≤

≤ 1
2

(
k

2n
f(x)+

(
1− k

2n

)
f(y)− c k

2n

(
1− k

2n

)
‖x− y‖2

)
+

1
2
f(y)− c

4
k2

22n
‖x− y‖2 ≤

≤ k

2n+1
f(x)+

(
1− k

2n+1

)
f(y)− c k

2n+1

(
1− k

2n+1

)
‖x− y‖2,

which finishes the proof.

Since the set of dyadic numbers from [0, 1] is dense in [0, 1], we get the following
result as an immediate consequence of Lemma 2.1.

Corollary 2.2. Let D be a convex subset of a normed space and c > 0. Assume that
f : D → R is continuous. Then f is strongly convex with modulus c if and only if it
is strongly midconvex with modulus c.

Theorem 2.3. Let D be an open convex subset of a normed space and let c > 0. If
f : D → R is strongly midconvex with modulus c and bounded from above on a set
with nonempty interior, then it is continuous and strongly convex with modulus c.

Proof. Being strongly midconvex, f is also midconvex. Since f is bounded from above
on a set with nonempty interior, it is continuous in view of the Bernstein-Doetsch
theorem. Consequently, by Corollary 2.2, it is strongly convex with modulus c.

Theorem 2.4. Let D be an open convex subset of Rn and let c > 0. If f : D → R
is strongly midconvex with modulus c and bounded from above on a set A ⊂ D with
positive Lebesgue measure (λ(A) > 0), then it is continuous and strongly convex with
modulus c.

Proof. Suppose that f ≤M on A. Since f is strongly midconvex

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− c

4
‖x− y‖2 ≤M

for all x, y ∈ A. This means that f is bounded from above on the set A+A
2 . Since

λ(A) > 0, it follows, by the classical theorem of Steinhaus (cf. [7]), that int
(

A+A
2

)
6= ∅.

This proves the theorem in view of Theorem 2.3.

Theorem 2.5. Let D be an open convex subset of Rn and let c > 0. If f : D → R
is Lebesgue measurable and strongly midconvex with modulus c, then it is continuous
and strongly convex with modulus c.

Proof. For each m ∈ N, define the set Am := {x ∈ D : f(x) ≤ m}. Since D =
⋃
Am,

there exists m0 ∈ N such that λ(Am0) > 0. Hence, f is bounded from above on a set
of positive Lebesgue measure, which in view of Theorem 2.4 completes the proof.



18 A. Azócar, J. Giménez, K. Nikodem, J.L. Sánchez

3. KUHN-TYPE RESULTS

Let t be a fixed number in (0, 1) and let c > 0. We say that a function f : D → R is
strongly t-convex with modulus c if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)‖x− y‖2 (3.1)

for all x, y ∈ D. It is known (Kuhn’s Theorem, [8]) that t-convex functions (i.e., those
that satisfy (3.1) with c = 0) are midconvex. In this section we present a counterpart
of that theorem for strongly t-convex functions. In the proof we apply the idea used
in [3].

Theorem 3.1. Let D be a convex subset of a normed space X, and let t ∈ (0, 1) be
a fixed number. If f : D → R is strongly t-convex with modulus c, then it is strongly
midconvex with modulus c.

Proof. Fix x, y ∈ D and put z := x+y
2 .

Consider the points u := tx+(1− t)z and v := tz+(1− t)y. Then, one can easily
check that

z = (1− t)u+ tv.

Applying three times condition (3.1) in the definition of strong t-convexity, we obtain

f(z) = (1− t)f(u) + tf(v)− ct(1− t)‖u− v‖2 ≤
≤ (1− t)

[
tf(x) + (1− t)f(z)− ct(1− t)‖x− z‖2

]
+

+ t
[
tf(z) + (1− t)f(y)− ct(1− t)‖z − y‖2

]
−

− t(1− t)‖u− v‖2 =

= t(1− t)[f(x) + f(y)] + [(1− t)2 + t2]f(z)−
− ct(1− t)

[
(1− t)‖x− z‖2 + t‖z − y‖2 + ‖u− v‖2

]
,

and from this last inequality, after regrouping and simplifying, we get

2f(z) ≤ f(x) + f(y)− c[(1− t)‖x− z‖2 + t‖z − y‖2 + ‖u− v‖2
]
. (3.2)

Now, since‖x− z‖ = ‖z − y‖ = ‖u− v‖ = ‖x−y‖
2 , we have

(1− t)‖x− z‖2 + t‖z − y‖2 + ‖u− v‖2 =
‖x− y‖2

2
.

Consequently, inequality (3.2) can be written as

f

(
x+ y

2

)
= f(z) ≤ f(x) + f(y)

2
− c

4
‖x− y‖2,

which shows that f is strongly midconvex with modulus c. This finishes the proof.

Remark 3.2. From Theorem 3.1 and Corollary 2.2 we infer that if a function f :
D → R is continuous and strongly t-convex with modulus c (with arbitrarily fixed
t ∈ (0, 1)), then it is strongly convex with modulus c. Similarly we can reformulate
Theorems 2.3, 2.4 and 2.5 for strongly t-convex functions.
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4. SUPPORT THEOREM

It is well known that convex functions are characterized by having affine support
at every point of their domains (see e.g. [15]). An analogous result for midconvex
functions, stating that they have Jensen support (that is, an additive function plus a
constant) is due to Rodé [16], (cf. also [6, 11] for simpler proofs). In this section we
present a counterpart of that result for strongly midconvex functions. In the proof
we will use the following characterization of strongly midconvex functions in inner
product spaces ([12]).

Lemma 4.1. Let X be an inner product space, let D be a convex subset of X and
let c > 0. A function f : D → R is strongly midconvex with modulus c if and only if
there exists a midconvex function g : D → R such that

f(x) = g(x) + c‖x‖2

for all x ∈ D.

Proof. Assume first that f : D → R is strongly midconvex with modulus c. Define

g(x) := f(x)− c‖x‖2.

Then, applying the Jordan-von Neumann parallelogram law, we obtain

g

(
x+ y

2

)
= f

(
x+ y

2

)
− c
∥∥∥∥x+ y

2

∥∥∥∥2

≤

≤ f(x) + f(y)
2

− c

4
‖x− y‖2 − c

4
‖x+ y‖2 =

=
f(x) + f(y)

2
− c

4
(2‖x‖2 + 2‖y‖2) =

=
g(x) + g(y)

2
,

which proves that g is midconvex.
The converse implication follows analogously.

Remark 4.2. It is shown in [12] that the assumption that (X, ‖ · ‖) is an inner
product space is not redundant in Lemma 4.1. Moreover, the condition that for every
f : D → R, f is strongly midconvex if and only if f−‖·‖2 is midconvex, characterizes
inner product spaces among all normed spaces.

Now, recall that a function h : D → R is said to be a support for the function
f : D → R at a point x0 ∈ D, if h(x0) = f(x0) and h(x) ≤ f(x) for all x ∈ D.

Theorem 4.3. Let (X, 〈·, ·〉) be a real inner product space, let D be an open convex
subset of X and let c > 0. A function f : D → R is strongly midconvex with modulus
c if and only if, at every point x0 ∈ D, f has support of the form

h(x) = c‖x− x0‖2 + a(x− x0) + f(x0),

where a : X → R is an additive function (depending on x0).
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Proof. Suppose, in the first place, that f : D → R is strongly midconvex with modulus
c and fix x0 ∈ D. Then, by Lemma 4.1, there exists a midconvex function g : D → R
such that

f(x) = g(x) + c‖x‖2

for all x ∈ D. By Rodé’s Theorem, the function g has support at x0 of the form

h1(x) = a1(x− x0) + g(x0), x ∈ D,

where a1 : X → R is an additive function. Hence, the function h : D → R defined by

h(x) := c‖x‖2 + a1(x− x0) + g(x0)

supports f at x0. Now, since g(x0) = f(x0)− c‖x0‖2, we can express h as

h(x) = c(‖x‖2 − ‖x0‖2) + a1(x− x0) + f(x0) =

= c‖x− x0‖2 + 2c〈x0, x− x0〉+ a1(x− x0) + f(x0) =

= c‖x− x0‖2 + a(x− x0) + f(x0),

where a := a1 + 2c〈x0, ·〉 is also an additive function.
To prove the converse, fix arbitrary x, y ∈ D, put z0 := x+y

2 and take a support
of f at z0 of the form

h(z) = c‖z − z0‖2 + a(z − z0) + f(z0), z ∈ D.

Then
f(x) ≥ c(‖x− z0‖2) + a(x− z0) + f(z0)

and
f(y) ≥ c(‖y − z0‖2) + a(y − z0) + f(z0).

Hence

f(x) + f(y)
2

≥ c

2
(‖x− z0‖2 + ‖y − z0‖2) +

1
2
(a(x− z0) + a(y − z0)) + f(z0).

Finally, since
c

2
(‖x− z0‖2 + ‖y − z0‖2) =

c

4
(‖x− y‖2,

and the additivity of a implies that

a(x− z0) + a(y − z0) = 0,

we conclude that

f

(
x+ y

2

)
= f(z0) ≤

f(x) + f(y)
2

− c

4
‖x− y‖2,

which proves that f is strongly midconvex with modulus c.
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5. JENSEN-TYPE INEQUALITIES

In this section we present two versions of the classical Jensen inequality for strongly
midconvex functions and next we show that strongly midconvex functions are strongly
q-convex for all q ∈ Q ∩ (0, 1). Note first that that if s = (x1 + x2)/2, then

1
4
‖x1 − x2‖2 =

1
2
(
‖x1 − s‖2 + ‖x2 − s‖2

)
.

Therefore condition (1.2) in the definition of strongly midconvex function can be
written in the form

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
− c

2
(
‖x1 − s‖2 + ‖x2 − s‖2

)
, x, y ∈ D.

Extending this relation to convex combination of n points we get the following
Jensen-type inequality.

Theorem 5.1. Let D be an open and convex subset of an inner product space X.
If f : D → R is strongly midconvex with modulus c, then for all n ∈ N, and
x1, x2, . . . , xn ∈ D:

f

( n∑
i=1

xi

n

)
≤ 1
n

n∑
i=1

f(xi)−
c

n

n∑
i=1

‖xi − s‖2,

where s = 1
n

n∑
i=1

xi.

Proof. Fix x1, x2, . . . , xn ∈ D and put s := 1
n

n∑
i=1

xi . By Theorem 4.3 there exists an

additive function a such that f has at s support of the form

h(x) = c‖x− s‖2 + a(x− s) + f(s).

Thus, for each i = 1, 2, . . . , n,

f(xi) ≥ h(xi) = c‖xi − s‖2 + a(xi − s) + f(s).

Summing up these n inequalities, and using the fact that

n∑
i=1

a(xi − s) = a

( n∑
i=1

xi − ns
)

= 0,
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we have:
n∑

i=1

f(xi) ≥ c
n∑

i=1

‖xi − s‖2 +
n∑

i=1

a(xi − s) + nf(s)

=⇒ 1
n

n∑
i=1

f(xi) ≥
c

n

n∑
i=1

‖xi − s‖2 +
1
n

n∑
i=1

a(xi − s) + f(s)

=⇒ 1
n

n∑
i=1

f(xi) ≥
c

n

n∑
i=1

‖xi − s‖2 +
1
n
a

( n∑
i=1

xi − ns
)

+ f(s)

=⇒ f

( n∑
i=1

xi

n

)
= f(s) ≤ 1

n

n∑
i=1

f(xi)−
c

n

n∑
i=1

‖xi − s‖2,

which was to be proved.

Now we extend the above result to convex combinations with arbitrary rational
coefficients.

Theorem 5.2. Let D be an open and convex subset of an inner product space X. If
f : D → R is strongly midconvex with modulus c, then

f

( n∑
i=1

qixi

)
≤

n∑
i=1

qif(xi)− c
n∑

i=1

qi‖xi − s‖2,

for all x1, . . . , xn ∈ D, q1, . . . , qn ∈ Q∩ (0, 1) with q1 + . . .+ qn = 1 and s =
n∑

i=1

qixi.

Proof. Fix x1, . . . , xn ∈ D and q1 = k1/l1, . . . , qn = kn/ln ∈ Q ∩ (0, 1) with q1 +
. . . + qn = 1. Without loss of generality we may assume that l1 = . . . = ln =: l.
Then k1 + . . . + kn = l. Put y11 = . . . = y1k1 =: x1, y21 = . . . = y2k2 =: x2, . . . ,
yn1 = . . . = ynkn

=: xn. Then

s =
n∑

i=1

qixi =
1
l

n∑
i=1

ki∑
j=1

yij .

Hence, using Theorem 5.1, we obtain

f

( n∑
i=1

qixi

)
= f

(
1
l

n∑
i=1

ki∑
j=1

yij

)
≤ 1
l

n∑
i=1

ki∑
j=1

f(yij)−
c

l

n∑
i=1

ki∑
j=1

‖yij − s‖2 =

=
n∑

i=1

qif(xi)− c
n∑

i=1

qi‖xi − s‖2,

which was to be proved.
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Under the same assumptions on X and D we obtain the following corollary.

Corollary 5.3. f : D → R is strongly midconvex with modulus c if and only if

f(qx+ (1− q)y) ≤ qf(x) + (1− q)f(y) − cq(1− q)‖x− y‖2,

for all q ∈ Q ∩ (0, 1) and x, y ∈ D :

Proof. Fix x, y ∈ D , q ∈ Q ∩ (0, 1) and put s := qx+ (1− q)y.
Then, by Theorem 5.2, we get

f(qx+ (1− q)y) ≤ qf(x) + (1− q)f(y)− c
(
q‖x− s‖2 + (1− q)‖y − s‖2

)
=

= qf(x) + (1− q)f(y)− cq(1− q)‖x− y‖2.

The converse is, of course, immediate.

6. CONNECTIONS WITH GENERALIZED CONVEXITY

The geometric idea of convexity of a function is the following:
A function f is convex iff for any two distinct points on the graph of f , the line
segment joining these points lies above the corresponding part of the graph of f .

In [1] E. F. Beckenbach generalized this idea replacing the line segments by graphs
of continuous functions belonging to a two-parameter family F of functions. In this
section we will show that strong midconvexity is equivalent to generalized convexity
with respect to a certain two-parameter family.

Let F be a family of continuous real functions defined on an interval I ⊂ R. A
class of functions F ⊂ RI is said to be a two-parameter family if for any two points
(x1, y1), (x2, y2) ∈ I × R with x1 6= x2 there exists exactly one ϕ ∈ F such that

ϕ(xi) = yi for i = 1, 2.

The unique function ϕ ∈ F determined by the points (x1, y1), (x2, y2) will be denoted
by ϕ(x1,y1),(x2,y2).

Following [2] (see also [15]) we say that a function f : I → R is midconvex with
respect to F (shortly, F–midconvex ) if for any x1, x2 ∈ I, x1 < x2,

f

(
x1 + x2

2

)
≤ ϕ(x1,f(x1)),(x2,f(x2))

(
x1 + x2

2

)
.

Theorem 6.1. Let I ⊂ R be an interval and let c be a positive number. Consider the
two-parameter family Fc := {cx2 + ax + b : a, b ∈ R} ⊂ RI . A function f : I → R is
strongly midconvex with modulus c if and only if it is Fc–midconvex.
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Proof. Let x1, x2 ∈ I. If ϕ = ϕ(x1,f(x1)), (x2,f(x2)) ∈ Fc, then ϕ(x) = cx2 + ax + b,
where the coefficients a, b are uniquely determined by the conditions ϕ(xi) = f(xi),
i = 1, 2. Therefore

ϕ

(
x1 + x2

2

)
= c

(
x1 + x2

2

)2

+ a

(
x1 + x2

2

)
+ b =

= c

(
x2

1 + 2x1x2 + x2
2

4

)
+ a

(
x1 + x2

2

)
+ b =

=
1
2
(
cx2

1 + ax1 + b
)

+
1
2
(
cx2

2 + ax2 + b
)
− c

4
(
x2

1 − 2x1x2 + x2
2

)
=

=
ϕ(x1) + ϕ(x2)

2
− c

4
(
x1 − x2

)2 =

=
f(x1) + f(x2)

2
− c

4
(
x1 − x2

)2
.

Consequently, f is strongly midconvex with modulus c if and only if it is
Fc–midconvex.
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