AN ALGORITHM
 FOR FINDING A COMMON SOLUTION FOR A SYSTEM OF MIXED EQUILIBRIUM PROBLEM, QUASI-VARIATIONAL INCLUSION PROBLEM
 AND FIXED POINT PROBLEM OF NONEXPANSIVE SEMIGROUP

Liu Min, Shih-sen Chang, Ping Zuo

Abstract

In this paper, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed points for a nonexpansive semigroup and the set of solutions of the quasi-variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in a Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in the literature.

Keywords: nonexpansive semigroup, mixed equilibrium problem, viscosity approximation method, quasi-variational inclusion problem, multi-valued maximal monotone mappings, α-inverse-strongly monotone mapping.

Mathematics Subject Classification: 47H09, 47H05.

1. INTRODUCTION

Throughout this paper we assume that H is a real Hilbert space and C is a nonempty closed convex subset of H.

In the sequel, we denote the set of fixed points of a mapping S by $F(S)$.
A bounded linear operator $A: H \rightarrow H$ is said to be strongly positive, if there exists a constant $\bar{\gamma}$ such that

$$
\begin{equation*}
\langle A x, x\rangle \geq \bar{\gamma}\|x\|^{2}, \quad \forall x \in H . \tag{1.1}
\end{equation*}
$$

Let $B: H \rightarrow H$ be a single-valued nonlinear mapping and $M: H \rightarrow 2^{H}$ be a multi-valued mapping. The "so-called" quasi-variational inclusion problem (see, Chang [2,3]) is to find an $u \in H$ such that

$$
\begin{equation*}
\theta \in B(u)+M(u) . \tag{1.2}
\end{equation*}
$$

A number of problems arising in structural analysis, mechanics and economics can be studied in a framework of this kind of variational inclusions (see, for example [5]).

The set of solutions of quasi-variational inclusion (1.2) is denoted by $\mathbf{V I}(\mathbf{H}, \mathbf{B}, \mathbf{M})$.

Special Case

If $M=\partial \delta_{C}$, where $\partial \delta_{C}$ is the subdifferential of δ_{C}, C is a nonempty closed convex subset of H and $\delta_{C}: H \rightarrow[0, \infty)$ is the indicator function of C, i.e.,

$$
\delta_{C}= \begin{cases}0, & x \in C, \\ +\infty, & x \notin C,\end{cases}
$$

then the quasi-variational inclusion problem (1.2) is equivalent to find $u \in C$ such that

$$
\begin{equation*}
\langle B(u), v-u\rangle \geq 0, \quad \forall v \in C \tag{1.3}
\end{equation*}
$$

This problem is called the Hartman-Stampacchia variational inequality problem (see, for example [7]). The set of solutions of (1.3) is denoted by $\mathbf{V I}(\mathbf{C}, \mathbf{B})$.

Recall that a mapping $B: H \rightarrow H$ is called α-inverse strongly monotone (see [13]), if there exists an $\alpha>0$ such that

$$
\langle B x-B y, x-y\rangle \geq \alpha\|B x-B y\|^{2}, \quad \forall x, y \in H
$$

A multi-valued mapping $M: H \rightarrow 2^{H}$ is called monotone, if for all $x, y \in H, u \in$ $M x$, and $v \in M y$, implies that $\langle u-v, x-y\rangle \geq 0$. A multi-valued mapping $M: H \rightarrow 2^{H}$ is called maximal monotone, if it is monotone and if for any $(x, u) \in H \times H$

$$
\langle u-v, x-y\rangle \geq 0, \quad \forall(y, v) \in \operatorname{Graph}(M)
$$

(the graph of mapping M) implies that $u \in M x$.
Proposition 1.1 ([13]). Let $B: H \rightarrow H$ be an α-inverse strongly monotone mapping, then:
(a) B is $\frac{1}{\alpha}$-Lipschitz continuous and a monotone mapping;
(b) If λ is any constant in ($0,2 \alpha$], then the mapping $I-\lambda B$ is nonexpansive, where I is the identity mapping on H.

Let C be a nonempty closed convex subset of $H, \Theta: C \times C \rightarrow R$ be an equilibrium bifunction (i.e., $\Theta(x, x)=0, \forall x \in C)$ and let $\varphi: C \rightarrow R$ be a real-valued function.

Recently, Ceng and Yao [1] introduced the following mixed equilibrium problem $(M E P)$, i.e., to find $z \in C$ such that

$$
\begin{equation*}
M E P: \Theta(z, y)+\varphi(y)-\varphi(z) \geq 0, \forall y \in C \tag{1.4}
\end{equation*}
$$

The set of solutions of (1.4) is denoted by $\operatorname{MEP}(\Theta, \varphi)$, i.e.,

$$
\operatorname{MEP}(\Theta)=\{z \in C: \Theta(z, y)+\varphi(y)-\varphi(z) \geq 0, \forall y \in C\}
$$

In particular, if $\varphi=0$, this problem reduces to the equilibrium problem, i.e., to find $z \in C$ such that

$$
E P: \quad \Theta(z, y) \geq 0, \forall y \in C .
$$

Denote the set of solution of EP by $E P(\Theta)$.
On the other hand, Li et al. [6] introduced a two step iterative procedure for the approximation of common fixed points of a nonexpansive semigroup $\{T(s): 0 \leq s<$ $\infty\}$ on a nonempty closed convex subset C in a Hilbert space.

Very recently, Saeidi [9] introduced a more general iterative algorithm for finding a common element of the set of solutions for a system of equilibrium problems and of the set of common fixed points for a finite family of nonexpansive mappings and a nonexpansive semigroup.

Recall that a family of mappings $\mathscr{T}=\{T(s): 0 \leq s<\infty\}: C \rightarrow C$ is called a nonexpansive semigroup, if it satisfies the following conditions:
(a) $T(s+t)=T(s) T(t)$ for all $s, t \geq 0$ and $T(0)=I$;
(b) $\|T(s) x-T(s) y\| \leq\|x-y\|, \forall x, y \in C$.
(c) The mapping $T(\cdot) x$ is continuous, for each $x \in C$.

Motivated and inspired by Ceng and Yao [1], Li et al. [6] and Saeidi [9], the purpose of this paper is to introduce a hybrid iterative scheme for finding a common element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed points for a nonexpansive semigroup and the set of solutions of the quasi-variational Inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in Zhang, Lee and Chan [13], Takahashi and Takahashi [11], Chang, Joseph Lee and Chan [4], Ceng and Yao [1], Li et al. [6] and Saeidi [9].

2. PRELIMINARIES

In the sequel, we use $x_{n} \rightharpoonup x$ and $x_{n} \rightarrow x$ to denote the weak convergence and strong convergence of the sequence $\left\{x_{n}\right\}$ in H, respectively.

Definition 2.1. Let $M: H \rightarrow 2^{H}$ be a multi-valued maximal monotone mapping, then the single-valued mapping $J_{M, \lambda}: H \rightarrow H$ defined by

$$
J_{M, \lambda}(u)=(I+\lambda M)^{-1}(u), \quad \forall u \in H
$$

is called the resolvent operator associated with M, where λ is any positive number and I is the identity mapping.

Proposition 2.2 ([13]). (a) The resolvent operator $J_{M, \lambda}$ associated with M is single-valued and nonexpansive for all $\lambda>0$, i.e.,

$$
\left\|J_{M, \lambda}(x)-J_{M, \lambda}(y)\right\| \leq\|x-y\|, \quad \forall x, y \in H, \forall \lambda>0
$$

(b) The resolvent operator $J_{M, \lambda}$ is 1-inverse-strongly monotone, i.e.,

$$
\left\|J_{M, \lambda}(x)-J_{M, \lambda}(y)\right\|^{2} \leq\left\langle x-y, J_{M, \lambda}(x)-J_{M, \lambda}(y)\right\rangle, \quad \forall x, y \in H
$$

Definition 2.3. A single-valued mapping $P: H \rightarrow H$ is said to be hemi-continuous, if for any $x, y \in H$, the mapping $t \mapsto P(x+t y)$ converges weakly to $P x$ (as $t \rightarrow 0+$).

It is well-known that every continuous mapping must be hemi-continuous.
Lemma 2.4 ([8]). Let E be a real Banach space, E^{*} be the dual space of $E, T: E \rightarrow$ $2^{E^{*}}$ be a maximal monotone mapping and $P: E \rightarrow E^{*}$ be a hemi-continuous bounded monotone mapping with $D(P)=E$ then the mapping $S=T+P: E \rightarrow 2^{E^{*}}$ is a maximal monotone mapping.

For solving the equilibrium problem for bifunction $\Theta: C \times C \rightarrow R$, let us assume that Θ satisfies the following conditions:
$\left(\mathrm{H}_{1}\right) \Theta(x, x)=0$ for all $x \in C$.
$\left(\mathrm{H}_{2}\right) \Theta$ is monotone, i.e., $\Theta(x, y)+\Theta(y, x) \leq 0$ for all $x, y \in C$.
$\left(\mathrm{H}_{3}\right)$ For each $y \in C, x \mapsto \Theta(x, y)$ is concave and upper semicontinuous.
$\left(\mathrm{H}_{4}\right)$ For each $x \in C, y \mapsto \Theta(x, y)$ is convex.
A map $\eta: C \times C \rightarrow H$ is called Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|\eta(x, y)\| \leq L\|x-y\|, \quad \forall x, y \in C
$$

A differentiable function $K: C \rightarrow R$ on a convex set C is called:
(i) η-convex [1] if

$$
K(y)-K(x) \geq\left\langle K^{\prime}(x), \eta(y, x)\right\rangle, \quad \forall x, y \in C
$$

where $\left.K^{\prime}(x)\right)$ is the Fréchet derivative of K at x;
(ii) η-strongly convex[7] if there exists a constant $\mu>0$ such that

$$
K(y)-K(x)-\left\langle K^{\prime}(x), \eta(y, x)\right\rangle \geq\left(\frac{\mu}{2}\right)\|x-y\|^{2}, \quad \forall x, y \in C
$$

Let $\Theta: C \times C \rightarrow R$ be an equilibrium bifunction satisfying the conditions $\left(H_{1}\right)-$ $\left(H_{4}\right)$. Let r be any given positive number. For a given point $x \in C$, consider the following auxiliary problem for $M E P$ (for short, $\operatorname{MEP}(x, r)$): to find $y \in C$ such that

$$
\Theta(y, z)+\varphi(z)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta(z, y)\right\rangle \geq 0, \quad \forall z \in C
$$

where $\eta: C \times C \rightarrow H$ is a mapping and $K^{\prime}(x)$ is the Fréchet derivative of a functional $K: C \rightarrow R$ at x. Let $V_{r}^{\Theta}: C \rightarrow C$ be the mapping such that for each $x \in C, V_{r}^{\Theta}(x)$ is the solution set of $\operatorname{MEP}(x, r)$, i.e.,

$$
\begin{align*}
V_{r}^{\Theta}(x)= & \{y \in C: \Theta(y, z)+\varphi(z)-\varphi(y)+ \\
& \left.+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta(z, y)\right\rangle \geq 0, \quad \forall z \in C\right\}, \quad \forall x \in C \tag{2.1}
\end{align*}
$$

Then the following conclusion holds:.
Proposition 2.5 ([1]). Let C be a nonempty closed convex subset of $H, \varphi: C \rightarrow R$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow R$ be an equilibrium bifunction satisfying conditions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$. Assume that:
(i) $\eta: C \times C \rightarrow H$ is Lipschitz continuous with constant $L>0$ such that:
(a) $\eta(x, y)+\eta(y, x)=0, \forall x, y \in C$,
(b) $\eta(\cdot, \cdot)$ is affine in the first variable,
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is continuous from the weak topology to the weak topology;
(ii) $K: C \rightarrow R$ is η-strongly convex with constant $\mu>0$ and its derivative K^{\prime} is continuous from the weak topology to the strong topology;
(iii) for each $x \in C$, there exist a bounded subset $D_{x} \subseteq C$ and $z_{x} \in C$ such that for any $y \in C \backslash D_{x}$, the following holds:

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0 .
$$

Then the following holds:
(i) V_{r}^{Θ} is single-valued;
(ii) V_{r}^{Θ} is nonexpansive if K^{\prime} is Lipschitz continuous with constant $\nu>0$ such that $\mu \geq L \nu$;
(iii) $F\left(V_{r}^{\Theta}\right)=\operatorname{MEP}(\Theta)$;
(iv) $\operatorname{MEP}(\Theta)$ is closed and convex.

Lemma 2.6 ([10]). Let C be a nonempty bounded closed convex subset of H and let $\Im=\{T(s): 0 \leq s<\infty\}$ be a nonexpansive semigroup on C, then for any $h \geq 0$.

$$
\lim _{t \rightarrow \infty} \sup _{x \in C}\left\|\frac{1}{t} \int_{0}^{t} T(s) x d s-T(h)\left(\frac{1}{t} \int_{0}^{t} T(s) x d s\right)\right\|=0 .
$$

Lemma 2.7 ([6]). Let C be a nonempty bounded closed convex subset of H and let $\Im=\{T(s): 0 \leq s<\infty\}$ be a nonexpansive semigroup on C. If $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup z$ and $\lim \sup _{s \rightarrow \infty} \lim \sup _{n \rightarrow \infty}\left\|T(s) x_{n}-x_{n}\right\|=0$, then $z \in F(\Im)$.

3. MAIN RESULTS

In order to prove the main result, we first give the following Lemma.
Lemma 3.1 ([13]). (a) $u \in H$ is a solution of variational inclusion (1.2) if and only if $u=J_{M, \lambda}(u-\lambda B u), \forall \lambda>0$, i.e.,

$$
V I(H, B, M)=F\left(J_{M, \lambda}(I-\lambda B)\right), \forall \lambda>0 .
$$

(b) If $\lambda \in(0,2 \alpha]$, then $V I(H, B, M)$ is a closed convex subset in H.

In the sequel, we assume that $H, C, M, A, B, f, \mathscr{T}, \mathscr{F}, \varphi_{i}, \eta_{i}, K_{i}(i=1,2, \cdots N)$ satisfy the following conditions:
(1) H is a real Hilbert space, $C \subset H$ is a nonempty closed convex subset;
(2) $A: H \rightarrow H$ is a strongly positive linear bounded operator with coefficient $\bar{\gamma}>0$, $f: H \rightarrow H$ is a contraction mapping with a contraction constant $h(0<h<1)$ and $0<\gamma<\frac{\bar{\gamma}}{h}, B: C \rightarrow H$ is a α-inverse-strongly monotone mapping and $M: H \rightarrow 2^{H}$ is a multi-valued maximal monotone mapping;
(3) $\mathscr{T}=\{T(s): 0 \leq s<\infty\}: C \rightarrow C$ is a nonexpansive semigroup;
(4) $\mathscr{F}=\left\{\Theta_{i}: i=1,2, \cdots, N\right\}: C \times C \rightarrow R$ is a finite family of bifunctions satisfying conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\varphi_{i}: C \rightarrow R(i=1,2, \cdots, N)$ is a finite family of lowersemi-continuous and convex functionals;
(5) $\eta_{i}: C \times C \rightarrow H$ is a finite family of Lipschitz continuous mappings with constant $L_{i}>0(i=1,2, \cdots, N)$ such that:
(a) $\eta_{i}(x, y)+\eta_{i}(y, x)=0, \forall x, y \in C$,
(b) $\eta_{i}(\cdot, \cdot)$ is affine in the first variable,
(c) for each fixed $y \in C, x \mapsto \eta_{i}(y, x)$ is continuous from the weak topology to the weak topology;
(6) $K_{i}: C \rightarrow R$ is a finite family of η_{i}-strongly convex with constant $\mu_{i}>0$ and its derivative K_{i}^{\prime} is not only continuous from the weak topology to the strong topology but also Lipschitz continuous with constant $\nu_{i}>0, \mu_{i} \geq L_{i} \nu_{i}$.

In the sequel we always denote by $F(\mathscr{T})$ the set of fixed points of the nonexpansive semi-group $\mathscr{T}, \mathrm{VI}(\mathrm{H}, \mathrm{B}, \mathrm{M})$ the set of solutions to the variational inequality (1.2) and $\operatorname{MEP}(\mathscr{F})$ the set of solutions to the following auxiliary problem for a system of mixed equilibrium problems:

$$
\left\{\begin{array}{l}
\Theta_{1}\left(y_{n}^{(1)}, x\right)+\phi_{1}(x)-\phi_{1}\left(y_{n}^{(1)}\right)+\frac{1}{r_{1}}\left\langle K^{\prime}\left(y_{n}^{(1)}\right)-K^{\prime}\left(x_{n}\right), \eta_{1}\left(x, y_{n}^{(1)}\right)\right\rangle \geq 0, \quad \forall x \in C, \\
\Theta_{2}\left(y_{n}^{(2)}, x\right)+\phi_{2}(x)-\phi_{2}\left(y_{n}^{(2)}\right)+\frac{1}{r_{2}}\left\langle K^{\prime}\left(y_{n}^{(2)}\right)-K^{\prime}\left(y_{n}^{(1)}\right), \eta_{2}\left(x, y_{n}^{(2)}\right)\right\rangle \geq 0, \quad \forall x \in C, \\
\quad \vdots \\
\Theta_{N-1}\left(y_{n}^{(N-1)}, x\right)+\phi_{N-1}(x)-\phi_{N-1}\left(y_{n}^{(N-1)}\right)+ \\
\quad+\frac{1}{r_{N-1}}\left\langle K^{\prime}\left(y_{n}^{(N-1)}\right)-K^{\prime}\left(y_{n}^{(N-2)}\right), \eta_{N-1}\left(x, y_{n}^{(N-1)}\right)\right\rangle \geq 0, \quad \forall x \in C, \\
\Theta_{N}\left(y_{n}, x\right)+\phi_{N}(x)-\phi_{N}\left(y_{n}\right)+ \\
\quad+\frac{1}{r_{N}}\left\langle K^{\prime}\left(y_{n}\right)-K^{\prime}\left(y_{n}^{(N-1)}\right), \eta_{N}\left(x, y_{n}\right)\right\rangle \geq 0, \quad \forall x \in C,
\end{array}\right.
$$

where

$$
\left\{\begin{aligned}
y_{n}^{(1)} & =V_{r_{1}}^{\Theta_{1}} x_{n}, \\
y_{n}^{(i)} & =V_{r_{i}}^{\Theta_{i}} y_{n}^{(i-1)}=V_{r_{i}}^{\Theta_{i}} V_{r_{(i-1)} \Theta_{i-1}} y_{n}^{(i-2)}=V_{r_{i}}^{\Theta_{i}} \cdots V_{r_{2}}^{\Theta_{2}} y_{n}^{(1)} \\
& =V_{r_{i}}^{\Theta_{i}} \cdots V_{r_{2}}^{\Theta_{2}} V_{r_{1}}^{\Theta_{1}} x_{n}, \quad i=2,3, \cdots, N-1, \\
y_{n} & =V_{r_{N}}^{\Theta_{N}} \cdots V_{r_{2}}^{\Theta_{2}} V_{r_{1}}^{\Theta_{1}} x_{n},
\end{aligned}\right.
$$

and $V_{r_{i}}^{\Theta_{i}}: C \rightarrow C, \quad i=1,2, \cdots, N$ is the mapping defined by (2.1)
In the sequel we denote by $\mathscr{V}^{l}=V_{r_{l}}^{\Theta_{l}} \ldots V_{r_{2}}^{\Theta_{2}} V_{r_{1}}^{\Theta_{1}}$ for $l \in\{1,2, \cdots, N\}$ and $\mathscr{V}^{0}=I$.
Theorem 3.2. Let $H, C, A, B, M, f, \mathscr{T}, \mathscr{F}, \varphi_{i}, \eta_{i}, K_{i}(i=1,2, \cdots, N)$ be the same as above. Let $\left\{x_{n}\right\},\left\{\rho_{n}\right\},\left\{\xi_{n}\right\}$ and $\left\{y_{n}\right\}$ be the explicit iterative sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
x_{n+1}=\alpha_{n} \gamma f\left(\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) \frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s, \tag{3.1}\\
\rho_{n}=J_{M, \lambda}(I-\lambda B) \xi_{n}, \\
\xi_{n}=J_{M, \lambda}(I-\lambda B) y_{n}, \\
y_{n}=V_{r_{N}}^{\Theta_{N}} \cdots V_{r_{2}}^{\Theta_{2}} V_{r_{1}}^{\Theta_{1}} x_{n}
\end{array}\right.
$$

where $r_{i}(i=1,2, \cdots, N)$ be a finite family of positive numbers, $\lambda \in$ $(0,2 \alpha],\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{t_{n}\right\} \subset(0, \infty)$ is a sequence with $t_{n} \uparrow \infty$. If $\mathscr{G}:=F(\mathscr{T}) \bigcap M E P(\mathscr{F}) \bigcap V I(H, B, M) \neq \emptyset$ and the following conditions are satisfied:
(i) for each $x \in C$, there exist a bounded subset $D_{x} \subseteq C$ and $z_{x} \in C$ such that for any $y \in C \backslash D_{x}$,

$$
\Theta_{i}\left(y, z_{x}\right)+\varphi_{i}\left(z_{x}\right)-\varphi_{i}(y)+\frac{1}{r_{i}}\left\langle K_{i}^{\prime}(y)-K_{i}^{\prime}(x), \eta_{i}\left(z_{x}, y\right)\right\rangle<0 .
$$

(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$, then the sequence $\left\{x_{n}\right\}$ converges strongly to $x^{*}=P_{\mathscr{G}}(I-A+\gamma f)\left(x^{*}\right)$, provided that $V_{r_{i}}^{\Theta_{i}}$ is firmly nonexpansive where $P_{\mathscr{G}}$ is the metric projection of H onto \mathscr{G}.

Proof. We observe that from conditions (ii), we can assume, without loss of generality, that $\alpha_{n} \leq\left(1-\beta_{n}\right)\|A\|^{-1}$.

Since A is a linear bounded self-adjoint operator on H, then

$$
\|A\|=\sup \{|\langle A u, u\rangle|: u \in H,\|u\|=1\}
$$

Since

$$
\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) u, u\right\rangle=1-\beta_{n}-\alpha_{n}\langle A u, u\rangle \geq 1-\beta_{n}-\alpha_{n}\|A\| \geq 0
$$

this implies that $\left(1-\beta_{n}\right) I-\alpha_{n} A$ is positive. Hence we have

$$
\begin{aligned}
\left\|\left(1-\beta_{n}\right) I-\alpha_{n} A\right\| & =\sup \left\{\left|\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) u, u\right\rangle\right|: u \in H,\|u\|=1\right\} \\
& =\sup \left\{1-\beta_{n}-\alpha_{n}\langle A u, u\rangle: u \in H,\|u\|=1\right\} \leq \\
& \leq 1-\beta_{n}-\alpha_{n} \bar{\gamma}<1 .
\end{aligned}
$$

Let $Q=P_{\mathscr{G}}$. Note that f is a contraction with coefficient $h \in(0,1)$. Then, we have

$$
\begin{aligned}
\|Q(I-A+\gamma f)(x)-Q(I-A+\gamma f)(y)\| & \leq\|(I-A+\gamma f)(x)-(I-A+\gamma f)(y)\| \leq \\
& \leq\|I-A\|\|x-y\|+\gamma\|f(x)-f(y)\| \leq \\
& \leq(1-\bar{\gamma})\|x-y\|+\gamma h\|x-y\|= \\
& =(1-(\bar{\gamma}-\gamma h))\|x-y\|,
\end{aligned}
$$

for all $x, y \in H$. Therefore, $Q(I-A+\gamma f)$ is a contraction of H into itself, which implies that there exists a unique element $x^{*} \in H$ such that $x^{*}=Q(I-A+\gamma f)\left(x^{*}\right)=$ $P_{\mathscr{G}}(I-A+\gamma f)\left(x^{*}\right)$.

Next, we divide the proof of Theorem 3.2 into 9 steps:
Step 1. First prove the sequences $\left\{x_{n}\right\},\left\{\rho_{n}\right\},\left\{\xi_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded.
(a) Pick $p \in \mathscr{G}$, since $y_{n}=\mathscr{V}^{N} x_{n}$ and $p=\mathscr{V}^{N} p$, we have

$$
\begin{equation*}
\left\|y_{n}-p\right\|=\left\|\mathscr{V}^{N} x_{n}-p\right\| \leq\left\|x_{n}-p\right\| . \tag{3.2}
\end{equation*}
$$

(b) Since $p \in V I(H, B, M)$ and $\rho_{n}=J_{M, \lambda}(I-\lambda B) \xi_{n}$, we have $p=J_{M, \lambda}(I-\lambda B) p$, and so

$$
\begin{align*}
\left\|\rho_{n}-p\right\| & =\left\|J_{M, \lambda}(I-\lambda B) \xi_{n}-J_{M, \lambda}(I-\lambda B) p\right\| \leq \\
& \leq\left\|(I-\lambda B) \xi_{n}-(I-\lambda B) p\right\| \leq\left\|\xi_{n}-p\right\|= \\
& =\left\|J_{M, \lambda}(I-\lambda B) y_{n}-J_{M, \lambda}(I-\lambda B) p\right\| \leq \tag{3.3}\\
& \leq\left\|y_{n}-p\right\| \leq\left\|x_{n}-p\right\| .
\end{align*}
$$

Letting $u_{n}=\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s, \quad q_{n}=\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s$, we have

$$
\begin{equation*}
\left\|u_{n}-p\right\|=\left\|\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s-p\right\| \leq \frac{1}{t_{n}} \int_{0}^{t_{n}}\left\|T(s) x_{n}-T(s) p\right\| d s \leq\left\|x_{n}-p\right\| \tag{3.4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|q_{n}-p\right\| \leq\left\|\rho_{n}-p\right\| \tag{3.5}
\end{equation*}
$$

Form (3.1), (3.2), (3.3), (3.4) and (3.5), we have

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\|= \\
& =\left\|\alpha_{n} \gamma f\left(u_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) q_{n}-p\right\|= \\
& =\| \alpha_{n} \gamma\left(f\left(u_{n}\right)-f(p)\right)+\beta_{n}\left(x_{n}-p\right)+ \\
& \quad+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(q_{n}-p\right)+\alpha_{n}(\gamma f(p)-A p) \| \leq \\
& \leq \alpha_{n} \gamma h\left\|u_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\left(\left(1-\beta_{n}\right)-\alpha_{n} \bar{\gamma}\right)\left\|q_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A p\| \leq \\
& \leq \alpha_{n} \gamma h\left\|x_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\left(\left(1-\beta_{n}\right)-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A p\| \leq \\
& \leq\left(1-\alpha_{n}(\bar{\gamma}-\gamma h)\right)\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A p\| \leq \\
& \leq \max \left\|x_{n}-p\right\|, \frac{1}{\bar{\gamma}-\gamma h}\|\gamma f(p)-A p\| \\
& \vdots \\
& \leq \max \left\|x_{1}-p\right\|, \frac{1}{\bar{\gamma}-\gamma h}\|\gamma f(p)-A p\| .
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ is a bounded sequence in H. Therefore $\left\{y_{n}\right\},\left\{\rho_{n}\right\},\left\{\xi_{n}\right\},\left\{\gamma f\left(u_{n}\right)\right\}$ and $\left\{q_{n}\right\}$ are all bounded.
Step 2. Next we prove that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0(n \rightarrow \infty) \tag{3.6}
\end{equation*}
$$

In fact, let us define a sequence $\left\{z_{n}\right\}$ by

$$
x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n} \quad \forall n \geq 1,
$$

then we have

$$
\begin{aligned}
& z_{n+1}-z_{n}= \\
& =\frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}= \\
& =\frac{\alpha_{n+1} \gamma f\left(u_{n+1}\right)+\left(\left(1-\beta_{n+1}\right) I-\alpha_{n+1} A\right) q_{n+1}}{1-\beta_{n+1}}- \\
& \quad-\frac{\alpha_{n} \gamma f\left(u_{n}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) q_{n}}{1-\beta_{n}}= \\
& =\frac{\alpha_{n+1}}{1-\beta_{n+1}}\left[\gamma f\left(u_{n+1}\right)-A q_{n+1}\right]-\frac{\alpha_{n}}{1-\beta_{n}}\left[\gamma f\left(u_{n}\right)-A q_{n}\right]+q_{n+1}-q_{n}
\end{aligned}
$$

and so

$$
\begin{align*}
& \left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq \\
& \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(u_{n+1}\right)\right\|+\left\|A q_{n+1}\right\|\right)+ \\
& \quad+\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|\gamma f\left(u_{n}\right)\right\|+\left\|A q_{n}\right\|\right)+\left\|\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}} T(s) \rho_{n+1} d s-\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}} T(s) \rho_{n} d s\right\|+ \\
& \quad+\left\|\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}} T(s) \rho_{n} d s-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s\right\|-\left\|x_{n+1}-x_{n}\right\| \leq \\
& \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(u_{n+1}\right)\right\|+\left\|A q_{n+1}\right\|\right)+ \\
& \quad+\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|\gamma f\left(u_{n}\right)\right\|+\left\|A q_{n}\right\|\right)+\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}}\left\|T(s) \rho_{n+1}-T(s) \rho_{n}\right\| d s+ \\
& \quad+\left\|\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}} T(s) \rho_{n} d s-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s\right\|-\left\|x_{n+1}-x_{n}\right\| . \tag{3.7}
\end{align*}
$$

Since $\rho_{n}=J_{M, \lambda}(I-\lambda B) \xi_{n}$ and $y_{n+1}=\mathscr{V}^{N}\left(x_{n+1}\right), y_{n}=\mathscr{V}^{N}\left(x_{n}\right)$, from the nonexpansivity of \mathscr{V}^{N}. we have

$$
\begin{align*}
\left\|\rho_{n+1}-\rho_{n}\right\| & =\left\|J_{M, \lambda}(I-\lambda B) \xi_{n+1}-J_{M, \lambda}(I-\lambda B) \xi_{n}\right\| \leq \\
& \leq\left\|\xi_{n+1}-\xi_{n}\right\|= \\
& =\left\|J_{M, \lambda}(I-\lambda B) y_{n+1}-J_{M, \lambda}(I-\lambda B) y_{n}\right\| \leq \tag{3.8}\\
& \leq\left\|y_{n+1}-y_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\| .
\end{align*}
$$

Substituting (3.8) into (3.7), we get

$$
\begin{align*}
&\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq \\
& \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(u_{n+1}\right)\right\|+\left\|A q_{n+1}\right\|\right)+ \\
&+\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|\gamma f\left(u_{n}\right)\right\|+\left\|A q_{n}\right\|\right)+\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}}\left\|T(s) \rho_{n+1}-T(s) \rho_{n}\right\| d s+ \\
& \quad+\left\|\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}} T(s) \rho_{n} d s-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s\right\|-\left\|x_{n+1}-x_{n}\right\| \leq \\
& \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(u_{n+1}\right)\right\|+\left\|A q_{n+1}\right\|\right)+ \\
&+\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|\gamma f\left(u_{n}\right)\right\|+\left\|A q_{n}\right\|\right)+\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}}\left\|x_{n+1}-x_{n}\right\| d s+ \tag{3.9}\\
& \quad+\left\|\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}} T(s) \rho_{n} d s-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s\right\|-\left\|x_{n+1}-x_{n}\right\| \leq \\
& \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(u_{n+1}\right)\right\|+\left\|A q_{n+1}\right\|\right)+\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|\gamma f\left(u_{n}\right)\right\|+\left\|A q_{n}\right\|\right)+ \\
& \quad+\left\|\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}} T(s) \rho_{n} d s-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s\right\| .
\end{align*}
$$

From conditions $t_{n} \subset(0, \infty)$ and $t_{n} \uparrow \infty$, we have

$$
\begin{aligned}
& \left\|\frac{1}{t_{n+1}} \int_{0}^{t_{n+1}} T(s) \rho_{n} d s-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s\right\|= \\
& =\left\|\frac{1}{t_{n+1}}\left(\int_{0}^{t_{n}} T(s) \rho_{n} d s+\int_{t_{n}}^{t_{n+1}} T(s) \rho_{n} d s\right)-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s\right\| \leq \\
& \leq \frac{1}{t_{n} t_{n+1}} \int_{0}^{t_{n}}\left\|\left(t_{n}-t_{n+1}\right) T(s) \rho_{n}\right\| d s+\frac{1}{t_{n+1}} \int_{t_{n}}^{t_{n+1}}\left\|T(s) \rho_{n}\right\| d s= \\
& =\frac{t_{n+1}-t_{n}}{t_{n+1}} M+\frac{t_{n+1}-t_{n}}{t_{n+1}} M=2 M\left(1-\frac{t_{n}}{t_{n+1}}\right) \rightarrow 0,
\end{aligned}
$$

where $M=\sup _{s \geq 0, n \geq 1}\left\|T(s) \rho_{n}\right\|$. From (3.9) and conditions $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \overline{\limsup } \sup _{n \rightarrow \infty} \beta_{n}<1$ that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Hence, we have

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0
$$

Consequently

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|=0
$$

Step 3. Next we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-q_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|x_{n}-q_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-q_{n}\right\| \leq \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma f\left(u_{n}\right)-A q_{n}\right\|+\beta_{n}\left\|x_{n}-q_{n}\right\|,
\end{aligned}
$$

simplifying it we have

$$
\left\|x_{n}-q_{n}\right\| \leq \frac{1}{1-\beta_{n}}\left\|x_{n}-x_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|\gamma f\left(u_{n}\right)-A q_{n}\right\| .
$$

Since $\alpha_{n} \rightarrow 0,\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, and $\left\{\gamma f\left(u_{n}\right)-A q_{n}\right\}$ is bounded, from the condition $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$, we have $\left\|x_{n}-q_{n}\right\| \rightarrow 0$. Step 4. Next we prove that

$$
\begin{equation*}
\left\|x_{n+1}-T(s) x_{n+1}\right\| \rightarrow 0(n \rightarrow \infty) . \tag{3.11}
\end{equation*}
$$

Since $x_{n+1}=\alpha_{n} \gamma f\left(u_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) q_{n}$, then

$$
\left\|x_{n+1}-q_{n}\right\| \leq \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A q_{n}\right\|+\beta_{n}\left\|x_{n}-q_{n}\right\| .
$$

From condition $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\left\|x_{n}-q_{n}\right\| \rightarrow 0$, we have

$$
\begin{equation*}
\left\|x_{n+1}-q_{n}\right\| \rightarrow 0 \tag{3.12}
\end{equation*}
$$

Let $K=\left\{w \in C:\|w-p\| \leq \max \left\|x_{1}-p\right\|, \frac{1}{\bar{\gamma}-\gamma h}\|\gamma f(p)-A p\|\right.$, then K is a nonempty bounded closed convex subset of C and $T(s)$-invariant. Since $\left\{x_{n}\right\} \subset K$ and K is bounded, there exists $r>0$ such that $K \subset B_{r}$, it follows from Lemma 2.6 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|q_{n}-T(s) q_{n}\right\| \rightarrow 0 \tag{3.13}
\end{equation*}
$$

From (3.12) and (3.13), we have

$$
\begin{aligned}
\left\|x_{n+1}-T(s) x_{n+1}\right\| & =\left\|x_{n+1}-q_{n}+q_{n}-T(s) q_{n}+T(s) q_{n}-T(s) x_{n+1}\right\| \leq \\
& \leq\left\|x_{n+1}-q_{n}\right\|+\left\|q_{n}-T(s) q_{n}\right\|+\left\|T(s) q_{n}-T(s) x_{n+1}\right\| \leq \\
& \leq\left\|x_{n+1}-q_{n}\right\|+\left\|q_{n}-T(s) q_{n}\right\|+\left\|q_{n}-x_{n+1}\right\| \rightarrow 0 .
\end{aligned}
$$

Step 5. Next we prove that

$$
\begin{align*}
& \text { (i) } \lim _{n \rightarrow \infty}\left\|\mathscr{V}^{l+1} x_{n}-\mathscr{V}^{l} x_{n}\right\|=0, \forall l \in\{0,1, \cdots, N-1\} \\
& \text { (ii) Especially, } \lim _{n \rightarrow \infty}\left\|\mathscr{V}^{N} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 . \tag{3.14}
\end{align*}
$$

In fact, for any given $p \in \mathscr{G}$ and $l \in\{0,1, \cdots, N-1\}$, Since $V_{r_{l+1}}^{\Theta_{l+1}}$ is firmly nonexpansive, we have

$$
\begin{aligned}
\left\|\mathscr{V}^{l+1} x_{n}-p\right\|^{2} & =\left\|V_{r_{l+1}}^{\Theta_{l+1}}\left(\mathscr{V}^{l} x_{n}\right)-V_{r_{l+1}}^{\Theta_{l+1}} p\right\|^{2} \leq \\
& \leq\left\langle V_{r_{l+1}}^{\Theta_{l+1}}\left(\mathscr{V}^{l} x_{n}\right)-p, \mathscr{V}^{l} x_{n}-p\right\rangle= \\
& =\left\langle\mathscr{V}^{l+1} x_{n}-p, \mathscr{V}^{l} x_{n}-p\right\rangle= \\
& =\frac{1}{2}\left(\left\|\mathscr{V}^{l+1} x_{n}-p\right\|^{2}+\left\|\mathscr{V}^{l} x_{n}-p\right\|^{2}-\left\|\mathscr{V}^{l} x_{n}-\mathscr{V}^{l+1} x_{n}\right\|^{2}\right) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left\|\mathscr{V}^{l+1} x_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|\mathscr{V}^{l} x_{n}-\mathscr{V}^{l+1} x_{n}\right\|^{2} . \tag{3.15}
\end{equation*}
$$

From (3.1), we have

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2}= \\
& =\left\|\alpha_{n} \gamma f\left(u_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) q_{n}-p\right\|^{2}= \\
& =\left\|\alpha_{n}\left(\gamma f\left(u_{n}\right)-A p\right)+\beta_{n}\left(x_{n}-q_{n}\right)+\left(I-\alpha_{n} A\right)\left(q_{n}-p\right)\right\|^{2} \leq \\
& \leq\left\|\left(I-\alpha_{n} A\right)\left(q_{n}-p\right)+\beta_{n}\left(x_{n}-q_{n}\right)\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(u_{n}\right)-A p, x_{n+1}-p\right\rangle \leq \\
& \leq\left[\left\|\left(I-\alpha_{n} A\right)\left(q_{n}-p\right)\right\|+\beta_{n}\left\|\left(x_{n}-q_{n}\right)\right\|\right]^{2}+2 \alpha_{n}\left\langle\gamma f\left(u_{n}\right)-A p, x_{n+1}-p\right\rangle \leq \\
& \leq\left[\left(1-\alpha_{n} \bar{\gamma}\right)\left\|\rho_{n}-p\right\|+\beta_{n}\left\|x_{n}-q_{n}\right\|\right]^{2}+2 \alpha_{n}\left\langle\gamma f\left(u_{n}\right)-A p, x_{n+1}-p\right\rangle= \\
& =\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|\rho_{n}-p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-q_{n}\right\|^{2}+2\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|\rho_{n}-p\right\| \cdot\left\|x_{n}-q_{n}\right\|+ \\
& \quad+2 \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A p\right\| \cdot\left\|x_{n+1}-p\right\| . \tag{3.16}
\end{align*}
$$

Since

$$
\left\|\rho_{n}-p\right\| \leq\left\|\xi_{n}-p\right\| \leq\left\|\mathscr{V}^{N} x_{n}-p\right\| \leq\left\|\mathscr{V}^{l+1} x_{n}-p\right\| \forall l \in\{0,1, \cdots, N-1\}
$$

Substituting (3.15) into (3.16), it yields

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\|^{2} \leq \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\{\left\|x_{n}-p\right\|^{2}-\left\|\mathscr{V}^{l} x_{n}-\mathscr{V}^{l+1} x_{n}\right\|^{2}\right\}+\beta_{n}^{2}\left\|x_{n}-q_{n}\right\|^{2}+ \\
& \quad+2\left(1-\alpha_{n} \bar{\gamma}\right) \cdot \beta_{n}\left\|\rho_{n}-p\right\| \cdot\left\|x_{n}-q_{n}\right\|+2 \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A p\right\| \cdot\left\|x_{n+1}-p\right\|= \\
& =\left(1-2 \alpha_{n} \bar{\gamma}+\left(\alpha_{n} \bar{\gamma}\right)^{2}\right)\left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|\mathscr{V}^{l} x_{n}-\mathscr{V}^{l+1} x_{n}\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-q_{n}\right\|^{2}+ \\
& \quad+2\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|\rho_{n}-p\right\| \cdot\left\|x_{n}-q_{n}\right\|+2 \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A p\right\| \cdot\left\|x_{n+1}-p\right\| .
\end{aligned}
$$

Simplifying it we have

$$
\begin{aligned}
& \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|\mathscr{V}^{l} x_{n}-\mathscr{V}^{l+1} x_{n}\right\|^{2} \leq \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n} \bar{\gamma}^{2}\left\|x_{n}-p\right\|^{2}+ \\
& \quad+\beta_{n}^{2}\left\|x_{n}-q_{n}\right\|^{2}+2\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|\rho_{n}-p\right\| \cdot\left\|x_{n}-q_{n}\right\|+ \\
& \quad+2 \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A p\right\| \cdot\left\|x_{n+1}-p\right\| .
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0,\left\|x_{n+1}-x_{n}\right\| \rightarrow 0,\left\|x_{n}-q_{n}\right\| \rightarrow 0$, it yields $\left\|\mathscr{V}^{l} x_{n}-\mathscr{V}^{l+1} x_{n}\right\| \rightarrow 0$.
Step 6 . Now we prove that for any given $p \in \mathscr{G}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|B y_{n}-B p\right\|=0 \tag{3.17}
\end{equation*}
$$

In fact, it follows from (3.3) that

$$
\begin{align*}
\left\|\rho_{n}-p\right\|^{2} & \leq\left\|\xi_{n}-p\right\|^{2}=\left\|J_{M, \lambda}(I-\lambda B) y_{n}-J_{M, \lambda}(I-\lambda B) p\right\|^{2} \leq \\
& \leq\left\|(I-\lambda B) y_{n}-(I-\lambda B) p\right\|^{2}= \\
& =\left\|y_{n}-p\right\|^{2}-2 \lambda\left\langle y_{n}-p, B y_{n}-B p\right\rangle+\lambda^{2}\left\|B y_{n}-B p\right\|^{2} \leq \tag{3.18}\\
& \leq\left\|y_{n}-p\right\|^{2}+\lambda(\lambda-2 \alpha)\left\|B y_{n}-B p\right\|^{2} \leq \\
& \leq\left\|x_{n}-p\right\|^{2}+\lambda(\lambda-2 \alpha)\left\|B y_{n}-B p\right\|^{2} .
\end{align*}
$$

Substituting (3.18) into (3.16), we obtain

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\|^{2} \leq \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\{\left\|x_{n}-p\right\|^{2}+\lambda(\lambda-2 \alpha)\left\|B y_{n}-B p\right\|^{2}\right\}+\beta_{n}^{2}\left\|x_{n}-q_{n}\right\|^{2}+ \\
& +2\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|\rho_{n}-p\right\| \cdot\left\|x_{n}-q_{n}\right\|+2 \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A p\right\| \cdot\left\|x_{n+1}-p\right\| .
\end{aligned}
$$

Simplifying it, we have

$$
\begin{aligned}
& \left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda(2 \alpha-\lambda)\left\|B y_{n}-B p\right\|^{2} \leq \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n} \bar{\gamma}^{2}\left\|x_{n}-p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-q_{n}\right\|^{2}+ \\
& \quad+2\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|\rho_{n}-p\right\| \cdot\left\|x_{n}-q_{n}\right\|+2 \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A p\right\| \cdot\left\|x_{n+1}-p\right\|
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0,0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sup _{n \rightarrow \infty} \beta_{n}<1,\left\|x_{n+1}-x_{n}\right\| \rightarrow 0, \| x_{n}-$ $q_{n} \| \rightarrow 0$, and $\left\{\gamma f\left(u_{n}\right)-A p\right\},\left\{x_{n}\right\}$ are bounded, these imply that $\left\|B y_{n}-B p\right\| \rightarrow$ $0(n \rightarrow \infty)$.
Step 7. Next we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-\rho_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

In fact, since

$$
\left\|y_{n}-\rho_{n}\right\| \leq\left\|y_{n}-\xi_{n}\right\|+\left\|\xi_{n}-\rho_{n}\right\|,
$$

for the purpose, it is sufficient to prove

$$
\left\|y_{n}-\xi_{n}\right\| \rightarrow 0 \text { and }\left\|\xi_{n}-\rho_{n}\right\| \rightarrow 0
$$

(a) First we prove that $\left\|y_{n}-\xi_{n}\right\| \rightarrow 0$.

In fact, since

$$
\begin{aligned}
& \left\|\xi_{n}-p\right\|^{2}= \\
& =\left\|J_{M, \lambda}(I-\lambda B) y_{n}-J_{M, \lambda}(I-\lambda B) p\right\|^{2} \leq \\
& \leq\left\langle y_{n}-\lambda B y_{n}-(p-\lambda B p), \xi_{n}-p\right\rangle= \\
& =\frac{1}{2}\left\{\left\|y_{n}-\lambda B y_{n}-(p-\lambda B p)\right\|^{2}+\left\|\xi_{n}-p\right\|^{2}-\left\|y_{n}-\lambda B y_{n}-(p-\lambda B p)-\left(\xi_{n}-p\right)\right\|^{2}\right\} \leq \\
& \leq \frac{1}{2}\left\{\left\|y_{n}-p\right\|^{2}+\left\|\xi_{n}-p\right\|^{2}-\left\|y_{n}-\xi_{n}-\lambda\left(B y_{n}-B p\right)\right\|^{2}\right\} \leq \\
& \leq \frac{1}{2}\left\{\left\|y_{n}-p\right\|^{2}+\left\|\xi_{n}-p\right\|^{2}-\left\|y_{n}-\xi_{n}\right\|^{2}+2 \lambda\left\langle y_{n}-\xi_{n}, B y_{n}-B p\right\rangle-\lambda^{2}\left\|B y_{n}-B p\right\|^{2}\right\}
\end{aligned}
$$

we have

$$
\begin{equation*}
\left\|\xi_{n}-p\right\|^{2} \leq\left\|y_{n}-p\right\|^{2}-\left\|y_{n}-\xi_{n}\right\|^{2}+2 \lambda\left\langle y_{n}-\xi_{n}, B y_{n}-B p\right\rangle-\lambda^{2}\left\|B y_{n}-B p\right\|^{2} \tag{3.20}
\end{equation*}
$$

Substituting (3.20) into (3.16), it yields that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\{\left\|y_{n}-p\right\|^{2}-\left\|y_{n}-\xi_{n}\right\|^{2}+\right. \\
& \left.+2 \lambda\left\langle y_{n}-\xi_{n}, B y_{n}-B p\right\rangle-\lambda^{2}\left\|B y_{n}-B p\right\|^{2}\right\}+\beta_{n}^{2}\left\|x_{n}-q_{n}\right\|^{2}+ \\
& +2\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|\rho_{n}-p\right\| \cdot\left\|x_{n}-q_{n}\right\|+2 \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A p\right\| \cdot\left\|x_{n+1}-p\right\| .
\end{aligned}
$$

Simplifying it we have

$$
\begin{aligned}
& \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|y_{n}-\xi_{n}\right\|^{2} \leq \\
& \leq\left(\left\|x_{n}-x_{n+1}\right\|\right) \cdot\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)+\alpha_{n} \bar{\gamma}^{2}\left\|x_{n}-p\right\|^{2}+ \\
& +2\left(1-\alpha_{n} \bar{\gamma}^{2}\right) \lambda\left\langle y_{n}-\xi_{n}, B y_{n}-B p\right\rangle-\left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda^{2}\left\|B y_{n}-B p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-q_{n}\right\|^{2}+ \\
& +2\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|\rho_{n}-p\right\| \cdot\left\|x_{n}-q_{n}\right\|+2 \alpha_{n}\left\|\gamma f\left(u_{n}\right)-A p\right\| \cdot\left\|x_{n+1}-p\right\| .
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0,0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1, \quad\left\|x_{n}-q_{n}\right\| \rightarrow 0, \quad \| B y_{n}-$ $B p\|\rightarrow 0(n \rightarrow \infty),\| x_{n+1}-x_{n} \| \rightarrow 0$ and $\left\{\gamma f\left(u_{n}\right)-A p\right\},\left\{x_{n}\right\},\left\{\rho_{n}\right\}$ are bounded, these imply that $\left\|y_{n}-\xi_{n}\right\| \rightarrow 0(n \rightarrow \infty)$.
(b) Next we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\xi_{n}-\rho_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

In fact, since $\left\|\xi_{n}-\rho_{n}\right\|=\left\|J_{M, \lambda}(I-\lambda B) y_{n}-J_{M, \lambda}(I-\lambda B) \xi_{n}\right\| \leq\left\|y_{n}-\xi_{n}\right\| \rightarrow 0$, and so $\left\|y_{n}-\rho_{n}\right\|=\left\|y_{n}-\xi_{n}+\xi_{n}-\rho_{n}\right\| \leq\left\|y_{n}-\xi_{n}\right\|+\left\|\xi_{n}-\rho_{n}\right\| \rightarrow 0$.
Step 8. Next we prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle \leq 0 \tag{3.22}
\end{equation*}
$$

(a) First, we prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s-x^{*}, \gamma f\left(x^{*}\right)-A x^{*}\right\rangle \leq 0 \tag{3.23}
\end{equation*}
$$

To see this, there exist a subsequence $\left\{\rho_{n_{i}}\right\}$ of $\left\{\rho_{n}\right\}$ such that

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\langle\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s-x^{*}, \gamma f\left(x^{*}\right)-A x^{*}\right\rangle= \\
& =\limsup _{i \rightarrow \infty}\left\langle\frac{1}{t_{n_{i}}} \int_{0}^{t_{n_{i}}} T(s) \rho_{n_{i}} d s-x^{*}, \gamma f\left(x^{*}\right)-A x^{*}\right\rangle
\end{aligned}
$$

we may also assume that $\rho_{n_{i}} \rightharpoonup w$, then $q_{n_{i}}=\frac{1}{t_{n_{i}}} \int_{0}^{t_{n_{i}}} T(s) \rho_{n_{i}} d s \rightharpoonup w$. Since $\left\|x_{n}-q_{n}\right\| \rightarrow 0$, we have $x_{n_{i}} \rightharpoonup w$.

Next, we prove that

$$
w \in \mathscr{G}
$$

$\left(1^{0}\right)$ We first prove that $w \in F(\mathscr{T})$. In fact, since $\left\{x_{n_{i}}\right\} \rightharpoonup w$. From Lemma 2.7 and Step 4, we obtain $w \in F(\mathscr{T})$.
$\left(2^{0}\right)$ Now we prove that $w \in \cap_{l=1}^{N} \operatorname{MEP}\left(\Theta_{l}, \varphi_{l}\right)$.
Since $x_{n_{i}} \rightharpoonup w$ and noting Step 5 , without loss of generality, we may assume that $\mathscr{V}^{l} x_{n_{i}} \rightharpoonup w, \forall l \in\{0,1,2, \cdots, N-1\}$. Hence for any $x \in C$ and for any $l \in\{0,1,2, \cdots, N-1\}$, we have

$$
\begin{aligned}
& \left\langle\frac{K_{l+1}^{\prime}\left(\mathscr{V}^{l+1} x_{n_{i}}\right)-K_{l+1}^{\prime}\left(\mathscr{V}^{l} x_{n_{i}}\right)}{r_{l+1}}, \eta_{l+1}\left(x, \mathscr{V}^{l+1} x_{n_{i}}\right)\right\rangle \geq \\
& \geq-\Theta_{l+1}\left(\mathscr{V}^{l+1} x_{n_{i}}, x\right)-\varphi_{l+1}(x)+\varphi_{l+1}\left(\mathscr{V}^{l+1} x_{n_{i}}\right) .
\end{aligned}
$$

By the assumptions and by the condition $\left(H_{2}\right)$ we know that the function φ_{i} and the mapping $x \mapsto\left(-\Theta_{l+1}(x, y)\right)$ both are convex and lower semi-continuous, hence they are weakly lower semi-continuous. These together with $\frac{K_{l+1}^{\prime}\left(\mathscr{V}^{l+1} x_{n_{i}}\right)-K_{l+1}^{\prime}\left(\mathscr{V}^{l} x_{n_{i}}\right)}{r_{l+1}} \rightarrow 0$ and $\mathscr{V}^{l+1} x_{n_{i}} \rightharpoonup w$, we have

$$
\begin{aligned}
0= & \liminf _{i \rightarrow \infty}\left\{\left\langle\frac{K_{l+1}^{\prime}\left(\mathscr{V}^{l+1} x_{n_{i}}\right)-K_{l+1}^{\prime}\left(\mathscr{V}^{l} x_{n_{i}}\right)}{r_{l+1}}, \eta_{l+1}\left(x, \mathscr{V}^{l+1} x_{n_{i}}\right)\right\rangle\right\} \geq \\
& \geq \liminf _{i \rightarrow \infty}\left\{-\Theta_{l+1}\left(\mathscr{V}^{l+1} x_{n_{i}}, x\right)-\varphi_{l+1}(x)+\varphi_{l+1}\left(\mathscr{V}^{l+1} x_{n_{i}}\right)\right\} .
\end{aligned}
$$

i.e.,

$$
\Theta_{l+1}(w, x)+\varphi_{l+1}(x)-\varphi_{l+1}(w) \geq 0
$$

for all $x \in C$ and $l \in\{0,1, \cdots, N-1\}$, hence $w \in \cap_{l=1}^{N} \operatorname{MEP}\left(\Theta_{l}, \varphi_{l}\right)$.
$\left(3^{0}\right)$ Now we prove that $w \in V I(H, B, M)$.
In fact, since B is α-inverse-strongly monotone, it follows from Proposition 1.1 that B is a $\frac{1}{\alpha}$-Lipschitz continuous monotone mapping and $D(B)=H$ (where $D(B)$ is the domain of B). It follows from Lemma 2.4 that $M+B$ is maximal monotone. Let $(\nu, g) \in \operatorname{Graph}(M+B)$, i.e., $g-B \nu \in M(\nu)$. Since $x_{n_{i}} \rightharpoonup w$ and noting Step 5 , without loss of generality, we may assume that $\mathscr{V}^{l} x_{n_{i}} \rightharpoonup w$, in particular, we have
$y_{n_{i}}=\mathscr{V}^{N} x_{n_{i}} \rightharpoonup w$. From $\left\|y_{n}-\rho_{n}\right\| \rightarrow 0$, we can prove that $\rho_{n_{i}} \rightharpoonup w$. Again since $\rho_{n_{i}}=J_{M, \lambda}(I-\lambda B) \xi_{n_{i}}$, we have

$$
\xi_{n_{i}}-\lambda B \xi_{n_{i}} \in(I+\lambda M) \rho_{n_{i}}, \text { i.e., } \frac{1}{\lambda}\left(\xi_{n_{i}}-\rho_{n_{i}}-\lambda B \xi_{n_{i}}\right) \in M\left(\rho_{n_{i}}\right) .
$$

By virtue of the maximal monotonicity of M, we have

$$
\left\langle\nu-\rho_{n_{i}}, g-B \nu-\frac{1}{\lambda}\left(\xi_{n_{i}}-\rho_{n_{i}}-\lambda B \xi_{n_{i}}\right)\right\rangle \geq 0
$$

and so

$$
\begin{aligned}
\left\langle\nu-\rho_{n_{i}}, g\right\rangle & \geq\left\langle\nu-\rho_{n_{i}}, B \nu+\frac{1}{\lambda}\left(\xi_{n_{i}}-\rho_{n_{i}}-\lambda B \xi_{n_{i}}\right)\right\rangle= \\
& =\left\langle\nu-\rho_{n_{i}}, B \nu-B \rho_{n_{i}}+B \rho_{n_{i}}-B \xi_{n_{i}}+\frac{1}{\lambda}\left(\xi_{n_{i}}-\rho_{n_{i}}\right)\right\rangle \geq \\
& \geq 0+\left\langle\nu-\rho_{n_{i}}, B \rho_{n_{i}}-B \xi_{n_{i}}\right\rangle+\left\langle\nu-\rho_{n_{i}}, \frac{1}{\lambda}\left(\xi_{n_{i}}-\rho_{n_{i}}\right)\right\rangle .
\end{aligned}
$$

Since $\left\|\xi_{n}-\rho_{n}\right\| \rightarrow 0,\left\|B \xi_{n}-B \rho_{n}\right\| \rightarrow 0$ and $\rho_{n_{i}} \rightharpoonup w$, we have

$$
\lim _{n_{i} \rightarrow \infty}\left\langle\nu-\rho_{n_{i}}, g\right\rangle=\langle\nu-w, g\rangle \geq 0
$$

Since $M+B$ is maximal monotone, this implies that $\theta \in(M+B)(w)$, i.e., $w \in$ $V I(H, B, M)$, and so $w \in \mathscr{G}$.

Since $x^{*}=P_{\mathscr{G}}(I-A+\gamma f)\left(x^{*}\right)$, we have

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\langle\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s-x^{*}, \gamma f\left(x^{*}\right)-A x^{*}\right\rangle= \\
& =\limsup _{i \rightarrow \infty}\left\langle\frac{1}{t_{n_{i}}} \int_{0}^{t_{n_{i}}} T(s) \rho_{n_{i}} d s-x^{*}, \gamma f\left(x^{*}\right)-A x^{*}\right\rangle= \\
& =\limsup _{i \rightarrow \infty}\left\langle q_{n_{i}}-x^{*}, \gamma f\left(x^{*}\right)-A x^{*}\right\rangle= \\
& =\left\langle w-x^{*}, \gamma f\left(x^{*}\right)-A x^{*}\right\rangle \leq 0
\end{aligned}
$$

(b) Now we prove that

$$
\limsup _{n \rightarrow \infty}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle \leq 0
$$

From $\left\|x_{n+1}-q_{n}\right\| \rightarrow 0$ and (a), we have

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle= \\
& =\limsup _{n \rightarrow \infty}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-q_{n}+q_{n}-x^{*}\right\rangle \leq \\
& \leq \limsup _{n \rightarrow \infty}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-q_{n}\right\rangle+\limsup _{n \rightarrow \infty}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, q_{n}-x^{*}\right\rangle \leq 0
\end{aligned}
$$

Step 9. Finally we prove that

$$
x_{n} \rightarrow x^{*}
$$

Indeed, from (3.1), we have

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\|^{2}= \\
& =\left\|\alpha_{n}\left(\gamma f\left(u_{n}\right)-A x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(q_{n}-x^{*}\right)\right\|^{2} \leq \\
& \leq\left\|\beta_{n}\left(x_{n}-x^{*}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(q_{n}-x^{*}\right)\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(u_{n}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle \leq \\
& \leq \\
& \quad\left[\left\|\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(q_{n}-x^{*}\right)\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|\right]^{2}+ \\
& \quad+2 \alpha_{n} \gamma\left\langle f\left(u_{n}\right)-f\left(x^{*}\right), x_{n+1}-x^{*}\right\rangle+2 \alpha_{n}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle \leq \\
& \leq\left[\left\|\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\right\| \rho_{n}-x^{*}\left\|+\beta_{n}\right\| x_{n}-x^{*} \|\right]^{2}+2 \alpha_{n} \gamma h\left\|x_{n}-x^{*}\right\| \cdot\left\|x_{n+1}-x^{*}\right\|+ \\
& \quad+2 \alpha_{n}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle \leq \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n} \gamma h\left\{\left\|x_{n}-x^{*}\right\|^{2}+\left\|x_{n+1}-x^{*}\right\|^{2}\right\}+ \\
& +2 \alpha_{n}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\| & x_{n+1}-x^{*} \|^{2} \leq \\
\leq & \frac{\left(1-\alpha_{n} \bar{\gamma}\right)^{2}+\alpha_{n} \gamma h}{1-\alpha_{n} \gamma h}\left\|x_{n}-x^{*}\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha_{n} \gamma h}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle= \\
= & {\left[1-\frac{2(\bar{\gamma}-\gamma h) \alpha_{n}}{1-\alpha_{n} \gamma h}\right]\left\|x_{n}-x^{*}\right\|^{2}+\frac{\left(\alpha_{n} \bar{\gamma}\right)^{2}}{1-\alpha_{n} \gamma h}\left\|x_{n}-x^{*}\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha_{n} \gamma h}\left\langle\gamma f\left(x^{*}\right)-\right.} \\
& \left.-A x^{*}, x_{n+1}-x^{*}\right\rangle \leq \\
\leq & {\left[1-\frac{2(\bar{\gamma}-\gamma h) \alpha_{n}}{1-\alpha_{n} \gamma h}\right]\left\|x_{n}-x^{*}\right\|^{2}+\frac{2(\bar{\gamma}-\gamma h) \alpha_{n}}{1-\alpha_{n} \gamma h}\left\{\frac{\alpha_{n} \bar{\gamma}^{2}}{2(\bar{\gamma}-\gamma h)}\left\|x_{n}-x^{*}\right\|^{2}+\right.} \\
& \left.+\frac{1}{\bar{\gamma}-\gamma h}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle\right\}= \\
= & \left(1-l_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+\delta_{n},
\end{aligned}
$$

where

$$
l_{n}=\frac{2(\bar{\gamma}-\gamma h) \alpha_{n}}{1-\alpha_{n} \gamma h}
$$

and

$$
\delta_{n}=\frac{2(\bar{\gamma}-\gamma h) \alpha_{n}}{1-\alpha_{n} \gamma h}\left\{\frac{\alpha_{n} \bar{\gamma}^{2}}{2(\bar{\gamma}-\gamma h)}\left\|x_{n}-x^{*}\right\|^{2}+\frac{1}{\bar{\gamma}-\gamma h}\left\langle\gamma f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle\right\} .
$$

It is easy to see that $l_{n} \rightarrow 0, \quad \sum_{n=1}^{\infty} l_{n}=\infty$ and $\lim \sup _{n \rightarrow \infty} \frac{\delta_{n}}{l_{n}} \leq 0$. Hence the sequence $\left\{x_{n}\right\}$ converges strongly to x^{*}.

This completes the proof of Theorem 3.2.

Corollary 3.3. Let $H, C, A, B, M, f, \mathscr{T}, \mathscr{F}, \varphi_{i}, \eta_{i}, K_{i}(i=1,2, \cdots, N)$ be the same as Theorem 3.2. Let $\left\{x_{n}\right\},\left\{\rho_{n}\right\},\left\{\xi_{n}\right\}$ and $\left\{y_{n}\right\}$ be explicit iterative sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
x_{n+1}=\alpha_{n} \gamma f\left(\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) \frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \rho_{n} d s \\
\rho_{n}=P_{C}(I-\lambda B) \xi_{n} \\
\xi_{n}=P_{C}(I-\lambda B) y_{n} \\
y_{n}=V_{r_{N}}^{\Theta_{N}} \ldots V_{r_{2}}^{\Theta_{2}} V_{r_{1}}^{\Theta_{1}} x_{n}
\end{array} \quad \forall n \geq 1,\right.
$$

where $r_{i}(i=1,2, \cdots, N)$ are a finite family of positive numbers, $\lambda \in$ $(0,2 \alpha],\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{t_{n}\right\} \subset(0, \infty)$ is a sequence with $t_{n} \uparrow \infty$. If $\mathscr{G}:=F(\mathscr{T}) \bigcap M E P(\mathscr{F}) \bigcap V I(C, B) \neq \emptyset$ and the following conditions are satisfied:
(i) for each $x \in C$, there exist a bounded subset $D_{x} \subseteq C$ and $z_{x} \in C$ such that for any $y \in C \backslash D_{x}$,

$$
\Theta_{i}\left(y, z_{x}\right)+\varphi_{i}\left(z_{x}\right)-\varphi_{i}(y)+\frac{1}{r_{i}}\left\langle K_{i}^{\prime}(y)-K_{i}^{\prime}(x), \eta_{i}\left(z_{x}, y\right)\right\rangle<0
$$

(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$,
then the sequence $\left\{x_{n}\right\}$ converges strongly to some point $x^{*}=P_{\mathscr{G}}(I-A+\gamma f)\left(x^{*}\right)$, provided that $V_{r_{i}}^{\Theta_{i}}$ is firmly nonexpansive.
Proof. Taking $M=\partial \delta_{C}: H \rightarrow 2^{H}$ in Theorem 3.2, where $\delta_{C}: H \rightarrow[0, \infty)$ is the indicator function of C, i.e.,

$$
\delta_{C}= \begin{cases}0, & x \in C, \\ +\infty, & x \notin C\end{cases}
$$

then the variational inclusion problem (1.2) is equivalent to variational inequality (1.3), i.e., to find $u \in C$ such that

$$
\langle B(u), v-u\rangle \geq 0, \forall v \in C
$$

Again, since $M=\partial \delta_{C}$, the restriction of $J_{M, \lambda}$ on C is an identity mapping, i.e., $\left.J_{M, \lambda}\right|_{C}=I$ and so we have

$$
P_{C}(I-\lambda B) k_{n}=J_{M, \lambda}\left(P_{C}(I-\lambda B) k_{n}\right) ; \quad P_{C}(I-\lambda B) y_{n}=J_{M, \lambda}\left(P_{C}(I-\lambda B) y_{n}\right)
$$

Hence the conclusion of Corollary 3.3 can be obtained form Theorem 3.2 immediately.

REFERENCES

[1] L.C. Ceng, J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214 (2008), 186-201.
[2] S. Chang, Set-valued variational inclusions in Banach space, J. Math. Anal. Appl. 248 (2000), 438-454.
[3] S. Chang, Existence and approximation of solutions of Set-valued variational inclusions in Banach space, Nonlinear Anal. 47 (2001) 1, 583-594.
[4] S. Chang, H.W. Joseph Lee, C. Chan, A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization, Nonlinear Anal. 70 (2009), 3307-3319.
[5] V.F. Demyanov, G.E. Stavroulakis, L.N. Polyakova, P.D. Panagiotopoulos, Quasi-differentiability and Nonsmooth Modeling in Mechanics. Engineering and Economics, Kluwer Academic, Dordrecht, 1996.
[6] S. Li, L. Li, Y. Su, General iterative methods for a one-parameter nonexpansive semigroup in Hilbert space, Nonlinear Anal., Theory Methods Appl. 70, No. 9 (A), 2065-2071 (2009), doi:10.1016/j.na.2008.04.007.
[7] J.L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure. Appl. Math. 20 (1967), 493-517.
[8] D. Pascali, Nolinear Mappings of Monotone Type, Sijthoff and Noordhoff International Publishers, The Netherlands, 1978.
[9] S. Saeidi, Iterative algorithms for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of families and semigroups of nonexpansive mappings, Nonlinear Anal. (2008), doi:10.1016/j.na.2008.09.009.
[10] T. Shimizu, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83.
[11] S. Takahashi, W. Takahshi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert space, J. Math. Anal. Appl. 331 (2007), 506-515.
[12] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 3, 659-678.
[13] S. Zhang, J.H. Joseph Lee, C.K. Chan, Algorithms of common solutions for quasi-variational inclusion and fixed point problems, Appl. Math. Mech. 29 (2008), 1-11.

Shih-sen Chang
changss@yahoo.cn
Yibin University
Department of Mathematics
Yibin, Sichuan 644007, China

Liu Min
liuminybsc@yahoo.com.cn
Yibin University
Department of Mathematics
Yibin, Sichuan 644007, China
Ping Zuo
Yibin University
Department of Mathematics
Yibin, Sichuan 644007, China
Received: May 3, 2010.
Revised: May 12, 2010.
Accepted: June 18, 2010.

