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Abstract. In this paper, we introduce a hybrid iterative scheme for finding a common ele-
ment of the set of solutions for a system of mixed equilibrium problems, the set of common
fixed points for a nonexpansive semigroup and the set of solutions of the quasi-variational in-
clusion problem with multi-valued maximal monotone mappings and inverse-strongly mono-
tone mappings in a Hilbert space. Under suitable conditions, some strong convergence the-
orems are proved. Our results extend some recent results in the literature.
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1. INTRODUCTION

Throughout this paper we assume that H is a real Hilbert space and C is a nonempty
closed convex subset of H.

In the sequel, we denote the set of fixed points of a mapping S by F (S).
A bounded linear operator A : H → H is said to be strongly positive, if there

exists a constant γ̄ such that

〈Ax, x〉 ≥ γ̄‖x‖2, ∀ x ∈ H. (1.1)
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Let B : H → H be a single-valued nonlinear mapping and M : H → 2H be
a multi-valued mapping. The “so-called” quasi-variational inclusion problem (see,
Chang [2, 3]) is to find an u ∈ H such that

θ ∈ B(u) +M(u). (1.2)

A number of problems arising in structural analysis, mechanics and economics can
be studied in a framework of this kind of variational inclusions (see, for example [5]).

The set of solutions of quasi-variational inclusion (1.2) is denoted by VI(H,B,M).
Special Case

IfM = ∂δC , where ∂δC is the subdifferential of δC , C is a nonempty closed convex
subset of H and δC : H → [0,∞) is the indicator function of C, i.e.,

δC =

{
0, x ∈ C,
+∞, x 6∈ C,

then the quasi-variational inclusion problem (1.2) is equivalent to find u ∈ C such
that

〈B(u), v − u〉 ≥ 0, ∀v ∈ C. (1.3)

This problem is called the Hartman-Stampacchia variational inequality problem (see,
for example [7]). The set of solutions of (1.3) is denoted by VI(C, B).

Recall that a mapping B : H → H is called α-inverse strongly monotone (see
[13]), if there exists an α > 0 such that

〈Bx−By, x− y〉 ≥ α‖Bx−By‖2, ∀x, y ∈ H.

A multi-valued mapping M : H → 2H is called monotone, if for all x, y ∈ H,u ∈
Mx, and v ∈My, implies that 〈u−v, x−y〉 ≥ 0. A multi-valued mappingM : H → 2H

is called maximal monotone, if it is monotone and if for any (x, u) ∈ H ×H

〈u− v, x− y〉 ≥ 0, ∀ (y, v) ∈ Graph(M)

(the graph of mapping M) implies that u ∈Mx.

Proposition 1.1 ([13]). Let B : H → H be an α-inverse strongly monotone mapping,
then:

(a) B is 1
α -Lipschitz continuous and a monotone mapping;

(b) If λ is any constant in (0, 2α], then the mapping I − λB is nonexpansive, where
I is the identity mapping on H.

Let C be a nonempty closed convex subset of H, Θ : C×C → R be an equilibrium
bifunction (i.e., Θ(x, x) = 0, ∀x ∈ C) and let ϕ : C → R be a real-valued function.

Recently, Ceng and Yao [1] introduced the following mixed equilibrium problem
(MEP ), i.e., to find z ∈ C such that

MEP : Θ(z, y) + ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C. (1.4)
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The set of solutions of (1.4) is denoted by MEP (Θ, ϕ), i.e.,

MEP (Θ) = {z ∈ C : Θ(z, y) + ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C}.

In particular, if ϕ = 0, this problem reduces to the equilibrium problem, i.e., to
find z ∈ C such that

EP : Θ(z, y) ≥ 0, ∀y ∈ C.

Denote the set of solution of EP by EP (Θ).
On the other hand, Li et al. [6] introduced a two step iterative procedure for the

approximation of common fixed points of a nonexpansive semigroup {T (s) : 0 ≤ s <
∞} on a nonempty closed convex subset C in a Hilbert space.

Very recently, Saeidi [9] introduced a more general iterative algorithm for finding
a common element of the set of solutions for a system of equilibrium problems and
of the set of common fixed points for a finite family of nonexpansive mappings and a
nonexpansive semigroup.

Recall that a family of mappings T = {T (s) : 0 ≤ s < ∞} : C → C is called a
nonexpansive semigroup, if it satisfies the following conditions:

(a) T (s+ t) = T (s)T (t) for all s, t ≥ 0 and T (0) = I;
(b) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖, ∀x, y ∈ C.
(c) The mapping T (·)x is continuous, for each x ∈ C.

Motivated and inspired by Ceng and Yao [1], Li et al. [6] and Saeidi [9], the
purpose of this paper is to introduce a hybrid iterative scheme for finding a common
element of the set of solutions for a system of mixed equilibrium problems, the set
of common fixed points for a nonexpansive semigroup and the set of solutions of the
quasi-variational Inclusion problem with multi-valued maximal monotone mappings
and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions,
some strong convergence theorems are proved. Our results extends the recent results
in Zhang, Lee and Chan [13], Takahashi and Takahashi [11], Chang, Joseph Lee and
Chan [4], Ceng and Yao [1], Li et al. [6] and Saeidi [9].

2. PRELIMINARIES

In the sequel, we use xn ⇀ x and xn → x to denote the weak convergence and strong
convergence of the sequence {xn} in H, respectively.

Definition 2.1. Let M : H → 2H be a multi-valued maximal monotone mapping,
then the single-valued mapping JM,λ : H → H defined by

JM,λ(u) = (I + λM)−1(u), ∀u ∈ H

is called the resolvent operator associated with M , where λ is any positive number
and I is the identity mapping.
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Proposition 2.2 ([13]). (a) The resolvent operator JM,λ associated with M is
single-valued and nonexpansive for all λ > 0, i.e.,

‖JM,λ(x)− JM,λ(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H, ∀λ > 0.

(b) The resolvent operator JM,λ is 1-inverse-strongly monotone, i.e.,

‖JM,λ(x)− JM,λ(y)‖2 ≤ 〈x− y, JM,λ(x)− JM,λ(y)〉, ∀x, y ∈ H.

Definition 2.3. A single-valued mapping P : H → H is said to be hemi-continuous,
if for any x, y ∈ H, the mapping t 7→ P (x+ ty) converges weakly to Px (as t→ 0+).

It is well-known that every continuous mapping must be hemi-continuous.

Lemma 2.4 ([8]). Let E be a real Banach space, E∗ be the dual space of E, T : E →
2E
∗
be a maximal monotone mapping and P : E → E∗ be a hemi-continuous bounded

monotone mapping with D(P ) = E then the mapping S = T + P : E → 2E
∗
is a

maximal monotone mapping.

For solving the equilibrium problem for bifunction Θ : C ×C → R, let us assume
that Θ satisfies the following conditions:
(H1) Θ(x, x) = 0 for all x ∈ C.
(H2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C.
(H3) For each y ∈ C, x 7→ Θ(x, y) is concave and upper semicontinuous.
(H4) For each x ∈ C, y 7→ Θ(x, y) is convex.

A map η : C × C → H is called Lipschitz continuous, if there exists a constant
L > 0 such that

‖η(x, y)‖ ≤ L‖x− y‖, ∀x, y ∈ C.
A differentiable function K : C → R on a convex set C is called:

(i) η-convex [1] if

K(y)−K(x) ≥ 〈K ′(x), η(y, x)〉, ∀x, y ∈ C,

where K ′(x)) is the Fréchet derivative of K at x;
(ii) η-strongly convex[7] if there exists a constant µ > 0 such that

K(y)−K(x)− 〈K ′(x), η(y, x)〉 ≥
(µ

2

)
‖x− y‖2, ∀x, y ∈ C.

Let Θ : C ×C → R be an equilibrium bifunction satisfying the conditions (H1)−
(H4). Let r be any given positive number. For a given point x ∈ C, consider the
following auxiliary problem for MEP (for short,MEP (x, r)): to find y ∈ C such that

Θ(y, z) + ϕ(z)− ϕ(y) +
1
r
〈K ′(y)−K ′(x), η(z, y)〉 ≥ 0, ∀z ∈ C,

where η : C×C → H is a mapping and K ′(x) is the Fréchet derivative of a functional
K : C → R at x. Let V Θ

r : C → C be the mapping such that for each x ∈ C, V Θ
r (x)

is the solution set of MEP (x, r), i.e.,

V Θ
r (x) = {y ∈ C : Θ(y, z) + ϕ(z)− ϕ(y)+

+
1
r
〈K ′(y)−K ′(x), η(z, y)〉 ≥ 0, ∀z ∈ C}, ∀x ∈ C.

(2.1)
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Then the following conclusion holds:.

Proposition 2.5 ([1]). Let C be a nonempty closed convex subset of H, ϕ : C → R be
a lower semicontinuous and convex functional. Let Θ : C ×C → R be an equilibrium
bifunction satisfying conditions (H1)–(H4). Assume that:

(i) η : C × C → H is Lipschitz continuous with constant L > 0 such that:
(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ C, x 7→ η(y, x) is continuous from the weak topology to the

weak topology;
(ii) K : C → R is η-strongly convex with constant µ > 0 and its derivative K ′ is

continuous from the weak topology to the strong topology;
(iii) for each x ∈ C, there exist a bounded subset Dx ⊆ C and zx ∈ C such that for

any y ∈ C \Dx, the following holds:

Θ(y, zx) + ϕ(zx)− ϕ(y) +
1
r
〈K ′(y)−K ′(x), η(zx, y)〉 < 0.

Then the following holds:

(i) V Θ
r is single-valued;

(ii) V Θ
r is nonexpansive if K ′ is Lipschitz continuous with constant ν > 0 such that
µ ≥ Lν;

(iii) F (V Θ
r ) = MEP (Θ);

(iv) MEP (Θ) is closed and convex.

Lemma 2.6 ([10]). Let C be a nonempty bounded closed convex subset of H and let
= = {T (s) : 0 ≤ s <∞} be a nonexpansive semigroup on C, then for any h ≥ 0.

lim
t→∞

sup
x∈C
‖1
t

t∫
0

T (s)xds− T (h)(
1
t

t∫
0

T (s)xds)‖ = 0.

Lemma 2.7 ([6]). Let C be a nonempty bounded closed convex subset of H and let
= = {T (s) : 0 ≤ s <∞} be a nonexpansive semigroup on C. If {xn} is a sequence in
C such that xn ⇀ z and lim sups→∞ lim supn→∞ ‖T (s)xn − xn‖ = 0, then z ∈ F (=).

3. MAIN RESULTS

In order to prove the main result, we first give the following Lemma.

Lemma 3.1 ([13]). (a) u ∈ H is a solution of variational inclusion (1.2) if and only
if u = JM,λ(u− λBu), ∀λ > 0, i.e.,

V I(H,B,M) = F (JM,λ(I − λB)), ∀λ > 0.

(b) If λ ∈ (0, 2α], then V I(H,B,M) is a closed convex subset in H.
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In the sequel, we assume thatH, C, M, A, B, f, T , F , ϕi, ηi,Ki(i = 1, 2, ···N)
satisfy the following conditions:

(1) H is a real Hilbert space, C ⊂ H is a nonempty closed convex subset;
(2) A : H → H is a strongly positive linear bounded operator with coefficient γ̄ > 0,

f : H → H is a contraction mapping with a contraction constant h (0 < h < 1)
and 0 < γ < γ̄

h , B : C → H is a α-inverse-strongly monotone mapping and
M : H → 2H is a multi-valued maximal monotone mapping;

(3) T = {T (s) : 0 ≤ s <∞} : C → C is a nonexpansive semigroup;
(4) F = {Θi : i = 1, 2, · · · , N} : C × C → R is a finite family of bifunctions

satisfying conditions (H1) − (H4) and ϕi : C → R(i = 1, 2, · · · , N) is a finite
family of lowersemi-continuous and convex functionals;

(5) ηi : C ×C → H is a finite family of Lipschitz continuous mappings with constant
Li > 0(i = 1, 2, · · · , N) such that:
(a) ηi(x, y) + ηi(y, x) = 0, ∀x, y ∈ C,
(b) ηi(·, ·) is affine in the first variable,
(c) for each fixed y ∈ C, x 7→ ηi(y, x) is continuous from the weak topology to

the weak topology;
(6) Ki : C → R is a finite family of ηi-strongly convex with constant µi > 0 and

its derivative K ′i is not only continuous from the weak topology to the strong
topology but also Lipschitz continuous with constant νi > 0, µi ≥ Liνi.

In the sequel we always denote by F (T ) the set of fixed points of the nonexpansive
semi-group T , VI(H,B,M) the set of solutions to the variational inequality (1.2) and
MEP(F ) the set of solutions to the following auxiliary problem for a system of mixed
equilibrium problems:

Θ1(y(1)
n , x) + φ1(x)− φ1(y(1)

n ) +
1
r1
〈K ′(y(1)

n )−K ′(xn), η1(x, y(1)
n )〉 ≥ 0, ∀x ∈ C,

Θ2(y(2)
n , x) + φ2(x)− φ2(y(2)

n ) +
1
r2
〈K ′(y(2)

n )−K ′(y(1)
n ), η2(x, y(2)

n )〉 ≥ 0, ∀x ∈ C,

...

ΘN−1(y(N−1)
n , x) + φN−1(x)− φN−1(y(N−1)

n )+

+
1

rN−1
〈K ′(y(N−1)

n )−K ′(y(N−2)
n ), ηN−1(x, y(N−1)

n )〉 ≥ 0, ∀x ∈ C,

ΘN (yn, x) + φN (x)− φN (yn)+

+
1
rN
〈K ′(yn)−K ′(y(N−1)

n ), ηN (x, yn)〉 ≥ 0, ∀x ∈ C,

where 

y(1)
n = V Θ1

r1 xn,

y(i)
n = V Θi

ri
y(i−1)
n = V Θi

ri
V

Θi−1

r(i−1)y
(i−2)
n = V Θi

ri
· · ·V Θ2

r2 y(1)
n

= V Θi
ri
· · ·V Θ2

r2 V Θ1
r1 xn, i = 2, 3, · · · , N − 1,

yn = V ΘN
rN
· · ·V Θ2

r2 V Θ1
r1 xn,
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and V Θi
ri

: C → C, i = 1, 2, · · · , N is the mapping defined by (2.1)
In the sequel we denote by V l = V Θl

rl
· · ·V Θ2

r2 V Θ1
r1 for l ∈ {1, 2, · · · , N} and V 0 = I.

Theorem 3.2. Let H, C, A, B, M, f, T , F , ϕi, ηi,Ki(i = 1, 2, · · · , N) be the
same as above. Let {xn}, {ρn}, {ξn} and {yn} be the explicit iterative sequences
generated by x1 ∈ H and

xn+1 = αnγf(
1
tn

tn∫
0

T (s)xnds) + βnxn + ((1− βn)I − αnA)
1
tn

tn∫
0

T (s)ρnds,

ρn = JM,λ(I − λB)ξn,
ξn = JM,λ(I − λB)yn,

yn = V ΘN
rN
· · · V Θ2

r2 V Θ1
r1 xn

∀ n ≥ 1,

(3.1)
where ri(i = 1, 2, · · · , N) be a finite family of positive numbers, λ ∈
(0, 2α], {αn}, {βn} ⊂ [0, 1] and {tn} ⊂ (0,∞) is a sequence with tn ↑ ∞. If
G := F (T )

⋂
MEP (F )

⋂
V I(H,B,M) 6= ∅ and the following conditions are sat-

isfied:

(i) for each x ∈ C, there exist a bounded subset Dx ⊆ C and zx ∈ C such that for
any y ∈ C \Dx,

Θi(y, zx) + ϕi(zx)− ϕi(y) +
1
ri
〈K ′i(y)−K ′i(x), ηi(zx, y)〉 < 0.

(ii) limn→∞ αn = 0,
∑∞
n=1 αn = ∞, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, then

the sequence {xn} converges strongly to x∗ = PG (I −A+ γf)(x∗), provided that
V Θi
ri

is firmly nonexpansive where PG is the metric projection of H onto G .

Proof. We observe that from conditions (ii), we can assume, without loss of generality,
that αn ≤ (1− βn)‖A‖−1.

Since A is a linear bounded self-adjoint operator on H, then

‖A‖ = sup{|〈Au, u〉| : u ∈ H, ‖u‖ = 1}.

Since

〈((1− βn)I − αnA)u, u〉 = 1− βn − αn〈Au, u〉 ≥ 1− βn − αn‖A‖ ≥ 0,

this implies that (1− βn)I − αnA is positive. Hence we have

‖(1− βn)I − αnA‖ = sup{|〈((1− βn)I − αnA)u, u〉| : u ∈ H, ‖u‖ = 1}
= sup{1− βn − αn〈Au, u〉 : u ∈ H, ‖u‖ = 1} ≤
≤ 1− βn − αnγ̄ < 1.



472 Liu Min, Shih-sen Chang, Ping Zuo

Let Q = PG . Note that f is a contraction with coefficient h ∈ (0, 1). Then, we
have
‖Q(I −A+ γf)(x)−Q(I −A+ γf)(y)‖ ≤ ‖(I −A+ γf)(x)− (I −A+ γf)(y)‖ ≤

≤ ‖I −A‖‖x− y‖+ γ‖f(x)− f(y)‖ ≤
≤ (1− γ̄)‖x− y‖+ γh‖x− y‖ =
= (1− (γ̄ − γh))‖x− y‖,

for all x, y ∈ H. Therefore, Q(I − A + γf) is a contraction of H into itself, which
implies that there exists a unique element x∗ ∈ H such that x∗ = Q(I−A+γf)(x∗) =
PG (I −A+ γf)(x∗).

Next, we divide the proof of Theorem 3.2 into 9 steps:
Step 1. First prove the sequences {xn}, {ρn}, {ξn} and {yn} are bounded.
(a) Pick p ∈ G , since yn = V Nxn and p = V Np, we have

‖yn − p‖ = ‖V Nxn − p‖ ≤ ‖xn − p‖. (3.2)

(b) Since p ∈ V I(H,B,M) and ρn = JM,λ(I − λB)ξn, we have p = JM,λ(I − λB)p,
and so

‖ρn − p‖ = ‖JM,λ(I − λB)ξn − JM,λ(I − λB)p‖ ≤
≤ ‖(I − λB)ξn − (I − λB)p‖ ≤ ‖ξn − p‖ =
= ‖JM,λ(I − λB)yn − JM,λ(I − λB)p‖ ≤
≤ ‖yn − p‖ ≤ ‖xn − p‖.

(3.3)

Letting un = 1
tn

∫ tn
0
T (s)xnds, qn = 1

tn

∫ tn
0
T (s)ρnds, we have

‖un − p‖ = ‖ 1
tn

tn∫
0

T (s)xnds− p‖ ≤
1
tn

tn∫
0

‖T (s)xn − T (s)p‖ds ≤ ‖xn − p‖. (3.4)

Similarly, we have
‖qn − p‖ ≤ ‖ρn − p‖. (3.5)

Form (3.1), (3.2), (3.3), (3.4)and (3.5), we have

‖xn+1 − p‖ =
= ‖αnγf(un) + βnxn + ((1− βn)I − αnA)qn − p‖ =
= ‖αnγ(f(un)− f(p)) + βn(xn − p)+

+ ((1− βn)I − αnA)(qn − p) + αn(γf(p)−Ap)‖ ≤
≤ αnγh‖un − p‖+ βn‖xn − p‖+ ((1− βn)− αnγ̄)‖qn − p‖+ αn‖γf(p)−Ap‖ ≤
≤ αnγh‖xn − p‖+ βn‖xn − p‖+ ((1− βn)− αnγ̄)‖xn − p‖+ αn‖γf(p)−Ap‖ ≤
≤ (1− αn(γ̄ − γh))‖xn − p‖+ αn‖γf(p)−Ap‖ ≤

≤ max‖xn − p‖,
1

γ̄ − γh
‖γf(p)−Ap‖

...
≤ max‖x1 − p‖,

1
γ̄ − γh

‖γf(p)−Ap‖.
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This implies that {xn} is a bounded sequence in H. Therefore
{yn}, {ρn}, {ξn}, {γf(un)} and {qn} are all bounded.
Step 2. Next we prove that

‖xn+1 − xn‖ → 0 (n→∞). (3.6)

In fact, let us define a sequence {zn} by

xn+1 = (1− βn)zn + βnxn ∀n ≥ 1,

then we have

zn+1 − zn =

=
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn
=

=
αn+1γf(un+1) + ((1− βn+1)I − αn+1A)qn+1

1− βn+1
−

− αnγf(un) + ((1− βn)I − αnA)qn
1− βn

=

=
αn+1

1− βn+1
[γf(un+1)−Aqn+1]− αn

1− βn
[γf(un)−Aqn] + qn+1 − qn

and so

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤

≤ αn+1

1− βn+1
(‖γf(un+1)‖+ ‖Aqn+1‖)+

+
αn

1− βn
(‖γf(un)‖+ ‖Aqn‖) + ‖ 1

tn+1

tn+1∫
0

T (s)ρn+1ds−
1

tn+1

tn+1∫
0

T (s)ρnds‖+

+ ‖ 1
tn+1

tn+1∫
0

T (s)ρnds−
1
tn

tn∫
0

T (s)ρnds‖ − ‖xn+1 − xn‖ ≤

≤ αn+1

1− βn+1
(‖γf(un+1)‖+ ‖Aqn+1‖)+

+
αn

1− βn
(‖γf(un)‖+ ‖Aqn‖) +

1
tn+1

tn+1∫
0

‖T (s)ρn+1 − T (s)ρn‖ds+

+ ‖ 1
tn+1

tn+1∫
0

T (s)ρnds−
1
tn

tn∫
0

T (s)ρnds‖ − ‖xn+1 − xn‖.

(3.7)
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Since ρn = JM,λ(I − λB)ξn and yn+1 = V N (xn+1), yn = V N (xn), from the
nonexpansivity of V N . we have

‖ρn+1 − ρn‖ = ‖JM,λ(I − λB)ξn+1 − JM,λ(I − λB)ξn‖ ≤
≤ ‖ξn+1 − ξn‖ =
= ‖JM,λ(I − λB)yn+1 − JM,λ(I − λB)yn‖ ≤
≤ ‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖.

(3.8)

Substituting (3.8) into (3.7), we get

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤

≤ αn+1

1− βn+1
(‖γf(un+1)‖+ ‖Aqn+1‖)+

+
αn

1− βn
(‖γf(un)‖+ ‖Aqn‖) +

1
tn+1

tn+1∫
0

‖T (s)ρn+1 − T (s)ρn‖ds+

+ ‖ 1
tn+1

tn+1∫
0

T (s)ρnds−
1
tn

tn∫
0

T (s)ρnds‖ − ‖xn+1 − xn‖ ≤

≤ αn+1

1− βn+1
(‖γf(un+1)‖+ ‖Aqn+1‖)+

+
αn

1− βn
(‖γf(un)‖+ ‖Aqn‖) +

1
tn+1

tn+1∫
0

‖xn+1 − xn‖ds+

+ ‖ 1
tn+1

tn+1∫
0

T (s)ρnds−
1
tn

tn∫
0

T (s)ρnds‖ − ‖xn+1 − xn‖ ≤

≤ αn+1

1− βn+1
(‖γf(un+1)‖+ ‖Aqn+1‖) +

αn
1− βn

(‖γf(un)‖+ ‖Aqn‖)+

+ ‖ 1
tn+1

tn+1∫
0

T (s)ρnds−
1
tn

tn∫
0

T (s)ρnds‖.

(3.9)

From conditions tn ⊂ (0,∞) and tn ↑ ∞, we have

‖ 1
tn+1

tn+1∫
0

T (s)ρnds−
1
tn

tn∫
0

T (s)ρnds‖ =

= ‖ 1
tn+1

(

tn∫
0

T (s)ρnds+

tn+1∫
tn

T (s)ρnds)−
1
tn

tn∫
0

T (s)ρnds‖ ≤

≤ 1
tntn+1

tn∫
0

‖(tn − tn+1)T (s)ρn‖ds+
1

tn+1

tn+1∫
tn

‖T (s)ρn‖ds =

=
tn+1 − tn
tn+1

M +
tn+1 − tn
tn+1

M = 2M(1− tn
tn+1

)→ 0,
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where M = sups≥0,n≥1 ‖T (s)ρn‖. From (3.9) and conditions limn→∞ αn = 0 and
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, we have
lim
n→∞

‖zn − xn‖ = 0.

Consequently
lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0.

Step 3. Next we prove that
lim
n→∞

‖xn − qn‖ = 0. (3.10)

Since

‖xn − qn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − qn‖ ≤
≤ ‖xn − xn+1‖+ αn‖γf(un)−Aqn‖+ βn‖xn − qn‖,

simplifying it we have

‖xn − qn‖ ≤
1

1− βn
‖xn − xn+1‖+

αn
1− βn

‖γf(un)−Aqn‖.

Since αn → 0, ‖xn+1−xn‖ → 0, and {γf(un)−Aqn} is bounded, from the condition
limn→∞ αn = 0 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, we have ‖xn−qn‖ → 0.
Step 4. Next we prove that

‖xn+1 − T (s)xn+1‖ → 0 (n→∞). (3.11)

Since xn+1 = αnγf(un) + βnxn + ((1− βn)I − αnA)qn, then

‖xn+1 − qn‖ ≤ αn‖γf(un)−Aqn‖+ βn‖xn − qn‖.

From condition limn→∞ αn = 0 and ‖xn − qn‖ → 0, we have

‖xn+1 − qn‖ → 0. (3.12)

Let K = {w ∈ C : ‖w−p‖ ≤ max‖x1 − p‖, 1
γ̄−γh‖γf(p)−Ap‖, then K is a nonempty

bounded closed convex subset of C and T (s)-invariant. Since {xn} ⊂ K and K is
bounded, there exists r > 0 such that K ⊂ Br, it follows from Lemma 2.6 that

lim
n→∞

‖qn − T (s)qn‖ → 0. (3.13)

From (3.12) and (3.13) , we have

‖xn+1 − T (s)xn+1‖ = ‖xn+1 − qn + qn − T (s)qn + T (s)qn − T (s)xn+1‖ ≤
≤ ‖xn+1 − qn‖+ ‖qn − T (s)qn‖+ ‖T (s)qn − T (s)xn+1‖ ≤
≤ ‖xn+1 − qn‖+ ‖qn − T (s)qn‖+ ‖qn − xn+1‖ → 0.
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Step 5. Next we prove that

(i) lim
n→∞

‖V l+1xn − V lxn‖ = 0, ∀ l ∈ {0, 1, · · ·, N − 1};

(ii) Especially, lim
n→∞

‖V Nxn − xn‖ = lim
n→∞

‖yn − xn‖ = 0.
(3.14)

In fact, for any given p ∈ G and l ∈ {0, 1, · · ·, N − 1}, Since V Θl+1
rl+1 is firmly nonex-

pansive, we have

‖V l+1xn − p‖2 = ‖V Θl+1
rl+1

(V lxn)− V Θl+1
rl+1

p‖2 ≤

≤ 〈V Θl+1
rl+1

(V lxn)− p, V lxn − p〉 =

= 〈V l+1xn − p, V lxn − p〉 =

=
1
2

(‖V l+1xn − p‖2 + ‖V lxn − p‖2 − ‖V lxn − V l+1xn‖2).

It follows that

‖V l+1xn − p‖2 ≤ ‖xn − p‖2 − ‖V lxn − V l+1xn‖2. (3.15)

From (3.1), we have

‖xn+1 − p‖2 =

= ‖αnγf(un) + βnxn + ((1− βn)I − αnA)qn − p‖2 =

= ‖αn(γf(un)−Ap) + βn(xn − qn) + (I − αnA)(qn − p)‖2 ≤
≤ ‖(I − αnA)(qn − p) + βn(xn − qn)‖2 + 2αn〈γf(un)−Ap, xn+1 − p〉 ≤
≤ [‖(I − αnA)(qn − p)‖+ βn‖(xn − qn)‖]2 + 2αn〈γf(un)−Ap, xn+1 − p〉 ≤
≤ [(1− αnγ̄)‖ρn − p‖+ βn‖xn − qn‖]2 + 2αn〈γf(un)−Ap, xn+1 − p〉 =

= (1− αnγ̄)2‖ρn − p‖2 + β2
n‖xn − qn‖2 + 2(1− αnγ̄)βn‖ρn − p‖ · ‖xn − qn‖+

+ 2αn‖γf(un)−Ap‖ · ‖xn+1 − p‖.
(3.16)

Since

‖ρn − p‖ ≤ ‖ξn − p‖ ≤ ‖V Nxn − p‖ ≤ ‖V l+1xn − p‖ ∀ l ∈ {0, 1, · · ·, N − 1}.

Substituting (3.15) into (3.16), it yields

‖xn+1 − p‖2 ≤
≤ (1− αnγ̄)2{‖xn − p‖2 − ‖V lxn − V l+1xn‖2}+ β2

n‖xn − qn‖2+
+ 2(1− αnγ̄) · βn‖ρn − p‖ · ‖xn − qn‖+ 2αn‖γf(un)−Ap‖ · ‖xn+1 − p‖ =

= (1− 2αnγ̄ + (αnγ̄)2)‖xn − p‖2 − (1− αnγ̄)2‖V lxn − V l+1xn‖2 + β2
n‖xn − qn‖2+

+ 2(1− αnγ̄)βn‖ρn − p‖ · ‖xn − qn‖+ 2αn‖γf(un)−Ap‖ · ‖xn+1 − p‖.
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Simplifying it we have

(1− αnγ̄)2‖V lxn − V l+1xn‖2 ≤
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnγ̄

2‖xn − p‖2+

+ β2
n‖xn − qn‖2 + 2(1− αnγ̄)βn‖ρn − p‖ · ‖xn − qn‖+

+ 2αn‖γf(un)−Ap‖ · ‖xn+1 − p‖.

Since αn → 0, ‖xn+1 − xn‖ → 0, ‖xn − qn‖ → 0, it yields ‖V lxn − V l+1xn‖ → 0.
Step 6. Now we prove that for any given p ∈ G

lim
n→∞

‖Byn −Bp‖ = 0. (3.17)

In fact, it follows from (3.3) that

‖ρn − p‖2 ≤ ‖ξn − p‖2 = ‖JM,λ(I − λB)yn − JM,λ(I − λB)p‖2 ≤
≤ ‖(I − λB)yn − (I − λB)p‖2 =

= ‖yn − p‖2 − 2λ〈yn − p,Byn −Bp〉+ λ2‖Byn −Bp‖2 ≤
≤ ‖yn − p‖2 + λ(λ− 2α)‖Byn −Bp‖2 ≤
≤ ‖xn − p‖2 + λ(λ− 2α)‖Byn −Bp‖2.

(3.18)

Substituting (3.18) into (3.16), we obtain

‖xn+1 − p‖2 ≤
≤ (1− αnγ̄)2{‖xn − p‖2 + λ(λ− 2α)‖Byn −Bp‖2}+ β2

n‖xn − qn‖2+
+ 2(1− αnγ̄)βn‖ρn − p‖ · ‖xn − qn‖+ 2αn‖γf(un)−Ap‖ · ‖xn+1 − p‖.

Simplifying it, we have

(1− αnγ̄)2λ(2α− λ)‖Byn −Bp‖2 ≤
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnγ̄

2‖xn − p‖2 + β2
n‖xn − qn‖2+

+ 2(1− αnγ̄)βn‖ρn − p‖ · ‖xn − qn‖+ 2αn‖γf(un)−Ap‖ · ‖xn+1 − p‖.

Since αn → 0, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, ‖xn+1 − xn‖ → 0, ‖xn −
qn‖ → 0, and {γf(un) − Ap}, {xn} are bounded, these imply that ‖Byn − Bp‖ →
0 (n→∞).
Step 7. Next we prove that

lim
n→∞

‖yn − ρn‖ = 0. (3.19)

In fact, since
‖yn − ρn‖ ≤ ‖yn − ξn‖+ ‖ξn − ρn‖,

for the purpose, it is sufficient to prove

‖yn − ξn‖ → 0 and ‖ξn − ρn‖ → 0.
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(a) First we prove that ‖yn − ξn‖ → 0.
In fact, since

‖ξn − p‖2 =

=‖JM,λ(I − λB)yn − JM,λ(I − λB)p‖2 ≤
≤〈yn − λByn − (p− λBp), ξn − p〉 =

=
1
2
{‖yn − λByn − (p−λBp)‖2 + ‖ξn−p‖2 − ‖yn−λByn − (p−λBp)− (ξn−p)‖2}≤

≤ 1
2
{‖yn − p‖2 + ‖ξn − p‖2 − ‖yn − ξn − λ(Byn −Bp)‖2} ≤

≤ 1
2
{‖yn−p‖2 + ‖ξn−p‖2 − ‖yn−ξn‖2 + 2λ〈yn−ξn, Byn−Bp〉 − λ2‖Byn−Bp‖2}

we have

‖ξn−p‖2 ≤ ‖yn−p‖2−‖yn−ξn‖2 +2λ〈yn−ξn, Byn−Bp〉−λ2‖Byn−Bp‖2. (3.20)

Substituting (3.20) into (3.16), it yields that

‖xn+1 − p‖2 ≤ (1− αnγ̄)2{‖yn − p‖2 − ‖yn − ξn‖2+

+ 2λ〈yn − ξn, Byn −Bp〉 − λ2‖Byn −Bp‖2}+ β2
n‖xn − qn‖2+

+ 2(1− αnγ̄)βn‖ρn − p‖ · ‖xn− qn‖+ 2αn‖γf(un)−Ap‖ · ‖xn+1−p‖.

Simplifying it we have

(1− αnγ̄)2‖yn − ξn‖2 ≤
≤ (‖xn − xn+1‖) · (‖xn − p‖+ ‖xn+1 − p‖) + αnγ̄

2‖xn − p‖2+

+ 2(1− αnγ̄2)λ〈yn − ξn, Byn −Bp〉 − (1− αnγ̄)2λ2‖Byn −Bp‖2 + β2
n‖xn − qn‖2+

+ 2(1− αnγ̄)βn‖ρn − p‖ · ‖xn − qn‖+ 2αn‖γf(un)−Ap‖ · ‖xn+1 − p‖.

Since αn → 0, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, ‖xn − qn‖ → 0, ‖Byn −
Bp‖ → 0 (n→∞), ‖xn+1 − xn‖ → 0 and {γf(un)− Ap}, {xn}, {ρn} are bounded,
these imply that ‖yn − ξn‖ → 0 (n→∞).

(b) Next we prove that
lim
n→∞

‖ξn − ρn‖ = 0. (3.21)

In fact, since ‖ξn − ρn‖ = ‖JM,λ(I − λB)yn − JM,λ(I − λB)ξn‖ ≤ ‖yn − ξn‖ → 0,
and so ‖yn − ρn‖ = ‖yn − ξn + ξn − ρn‖ ≤ ‖yn − ξn‖+ ‖ξn − ρn‖ → 0.
Step 8. Next we prove that

lim sup
n→∞

〈γf(x∗)−Ax∗, xn+1 − x∗〉 ≤ 0. (3.22)

(a) First, we prove that

lim sup
n→∞

〈 1
tn

tn∫
0

T (s)ρnds− x∗, γf(x∗)−Ax∗〉 ≤ 0. (3.23)
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To see this, there exist a subsequence {ρni
} of {ρn} such that

lim sup
n→∞

〈 1
tn

tn∫
0

T (s)ρnds− x∗, γf(x∗)−Ax∗〉 =

= lim sup
i→∞

〈 1
tni

tni∫
0

T (s)ρnids− x∗, γf(x∗)−Ax∗〉

we may also assume that ρni
⇀ w, then qni

= 1
tni

∫ tni

0
T (s)ρni

ds ⇀ w. Since
‖xn − qn‖ → 0, we have xni

⇀ w.
Next, we prove that

w ∈ G .

(10) We first prove that w ∈ F (T ). In fact, since {xni} ⇀ w. From Lemma 2.7
and Step 4, we obtain w ∈ F (T ).

(20) Now we prove that w ∈ ∩Nl=1MEP (Θl, ϕl).
Since xni

⇀ w and noting Step 5, without loss of generality, we may assume
that V lxni

⇀ w, ∀ l ∈ {0, 1, 2, · · · , N − 1}. Hence for any x ∈ C and for any
l ∈ {0, 1, 2, · · · , N − 1}, we have

〈
K
′

l+1(V l+1xni
)−K ′l+1(V lxni

)
rl+1

, ηl+1(x,V l+1xni
)〉 ≥

≥ −Θl+1(V l+1xni
, x)− ϕl+1(x) + ϕl+1(V l+1xni

).

By the assumptions and by the condition (H2) we know that the function ϕi and the
mapping x 7→ (−Θl+1(x, y)) both are convex and lower semi-continuous, hence they

are weakly lower semi-continuous. These together with K
′
l+1(V l+1xni

)−K
′
l+1(V lxni

)

rl+1
→ 0

and V l+1xni
⇀ w, we have

0 = lim inf
i→∞

{〈
K
′

l+1(V l+1xni
)−K ′l+1(V lxni

)
rl+1

, ηl+1(x,V l+1xni)〉} ≥

≥ lim inf
i→∞

{−Θl+1(V l+1xni , x)− ϕl+1(x) + ϕl+1(V l+1xni)}.

i.e.,
Θl+1(w, x) + ϕl+1(x)− ϕl+1(w) ≥ 0

for all x ∈ C and l ∈ {0, 1, · · · , N − 1}, hence w ∈ ∩Nl=1MEP (Θl, ϕl).
(30) Now we prove that w ∈ V I(H,B,M).
In fact, since B is α-inverse-strongly monotone, it follows from Proposition 1.1

that B is a 1
α -Lipschitz continuous monotone mapping and D(B) = H (where D(B)

is the domain of B). It follows from Lemma 2.4 that M + B is maximal monotone.
Let (ν, g) ∈ Graph(M + B), i.e., g − Bν ∈ M(ν). Since xni ⇀ w and noting Step
5, without loss of generality, we may assume that V lxni

⇀ w, in particular, we have
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yni
= V Nxni

⇀ w. From ‖yn − ρn‖ → 0, we can prove that ρni
⇀ w. Again since

ρni = JM,λ(I − λB)ξni , we have

ξni − λBξni ∈ (I + λM)ρni , i.e.,
1
λ

(ξni − ρni − λBξni) ∈M(ρni).

By virtue of the maximal monotonicity of M , we have

〈ν − ρni , g −Bν −
1
λ

(ξni − ρni − λBξni)〉 ≥ 0

and so

〈ν − ρni
, g〉 ≥ 〈ν − ρni

, Bν +
1
λ

(ξni
− ρni

− λBξni
)〉 =

= 〈ν − ρni
, Bν −Bρni

+Bρni
−Bξni

+
1
λ

(ξni
− ρni

)〉 ≥

≥ 0 + 〈ν − ρni
, Bρni

−Bξni
〉+ 〈ν − ρni

,
1
λ

(ξni
− ρni

)〉.

Since ‖ξn − ρn‖ → 0, ‖Bξn −Bρn‖ → 0 and ρni
⇀ w, we have

lim
ni→∞

〈ν − ρni , g〉 = 〈ν − w, g〉 ≥ 0.

Since M + B is maximal monotone, this implies that θ ∈ (M + B)(w), i.e., w ∈
V I(H,B,M), and so w ∈ G .

Since x∗ = PG (I −A+ γf)(x∗), we have

lim sup
n→∞

〈 1
tn

tn∫
0

T (s)ρnds− x∗, γf(x∗)−Ax∗〉 =

= lim sup
i→∞

〈 1
tni

tni∫
0

T (s)ρni
ds− x∗, γf(x∗)−Ax∗〉 =

= lim sup
i→∞

〈qni
− x∗, γf(x∗)−Ax∗〉 =

= 〈w − x∗, γf(x∗)−Ax∗〉 ≤ 0.

(b) Now we prove that

lim sup
n→∞

〈γf(x∗)−Ax∗, xn+1 − x∗〉 ≤ 0.

From ‖xn+1 − qn‖ → 0 and (a), we have

lim sup
n→∞

〈γf(x∗)−Ax∗, xn+1 − x∗〉 =

= lim sup
n→∞

〈γf(x∗)−Ax∗, xn+1 − qn + qn − x∗〉 ≤

≤ lim sup
n→∞

〈γf(x∗)−Ax∗, xn+1 − qn〉+ lim sup
n→∞

〈γf(x∗)−Ax∗, qn − x∗〉 ≤ 0.

Step 9. Finally we prove that
xn → x∗.
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Indeed, from (3.1) , we have

‖xn+1 − x∗‖2 =

= ‖αn(γf(un)−Ax∗) + βn(xn − x∗) + ((1− βn)I − αnA)(qn − x∗)‖2 ≤
≤ ‖βn(xn − x∗) + ((1− βn)I − αnA)(qn − x∗)‖2 + 2αn〈γf(un)−Ax∗, xn+1 − x∗〉 ≤
≤ [‖((1− βn)I − αnA)(qn − x∗)‖+ βn‖xn − x∗‖]2+

+ 2αnγ〈f(un)− f(x∗), xn+1 − x∗〉+ 2αn〈γf(x∗)−Ax∗, xn+1 − x∗〉 ≤
≤ [‖(1− βn − αnγ̄)‖ρn − x∗‖+ βn‖xn − x∗‖]2 + 2αnγh‖xn − x∗‖ · ‖xn+1 − x∗‖+

+ 2αn〈γf(x∗)−Ax∗, xn+1 − x∗〉 ≤
≤ (1− αnγ̄)2‖xn − x∗‖2 + αnγh{‖xn − x∗‖2 + ‖xn+1 − x∗‖2}+
+ 2αn〈γf(x∗)−Ax∗, xn+1 − x∗〉.

This implies that

‖xn+1 − x∗‖2 ≤

≤ (1− αnγ̄)2 + αnγh

1− αnγh
‖xn − x∗‖2 +

2αn
1− αnγh

〈γf(x∗)−Ax∗, xn+1 − x∗〉 =

= [1− 2(γ̄ − γh)αn
1− αnγh

]‖xn − x∗‖2 +
(αnγ̄)2

1− αnγh
‖xn − x∗‖2 +

2αn
1− αnγh

〈γf(x∗)−

−Ax∗, xn+1 − x∗〉 ≤

≤ [1− 2(γ̄ − γh)αn
1− αnγh

]‖xn − x∗‖2 +
2(γ̄ − γh)αn

1− αnγh
{ αnγ̄

2

2(γ̄ − γh)
‖xn − x∗‖2+

+
1

γ̄ − γh
〈γf(x∗)−Ax∗, xn+1 − x∗〉} =

= (1− ln)‖xn − x∗‖2 + δn,

where

ln =
2(γ̄ − γh)αn

1− αnγh
,

and

δn =
2(γ̄ − γh)αn

1− αnγh
{ αnγ̄

2

2(γ̄ − γh)
‖xn − x∗‖2 +

1
γ̄ − γh

〈γf(x∗)−Ax∗, xn+1 − x∗〉}.

It is easy to see that ln → 0,
∑∞
n=1 ln = ∞ and lim supn→∞

δn

ln
≤ 0. Hence the

sequence {xn} converges strongly to x∗.
This completes the proof of Theorem 3.2.
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Corollary 3.3. Let H, C, A, B, M, f, T , F , ϕi, ηi,Ki(i = 1, 2, · · · , N) be the
same as Theorem 3.2. Let {xn}, {ρn}, {ξn} and {yn} be explicit iterative sequences
generated by x1 ∈ H and

xn+1 = αnγf(
1
tn

tn∫
0

T (s)xnds) + βnxn + ((1− βn)I − αnA)
1
tn

tn∫
0

T (s)ρnds,

ρn = PC(I − λB)ξn,
ξn = PC(I − λB)yn,

yn = V ΘN
rN

. . . V Θ2
r2 V Θ1

r1 xn,

∀n ≥ 1,

(3.24)
where ri(i = 1, 2, · · · , N) are a finite family of positive numbers, λ ∈
(0, 2α], {αn}, {βn} ⊂ [0, 1] and {tn} ⊂ (0,∞) is a sequence with tn ↑ ∞. If
G := F (T )

⋂
MEP (F )

⋂
V I(C,B) 6= ∅ and the following conditions are satisfied:

(i) for each x ∈ C, there exist a bounded subset Dx ⊆ C and zx ∈ C such that for
any y ∈ C \Dx,

Θi(y, zx) + ϕi(zx)− ϕi(y) +
1
ri
〈K ′i(y)−K ′i(x), ηi(zx, y)〉 < 0,

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn} converges strongly to some point x∗ = PG (I − A + γf)(x∗),
provided that V Θi

ri
is firmly nonexpansive.

Proof. Taking M = ∂δC : H → 2H in Theorem 3.2, where δC : H → [0,∞) is the
indicator function of C, i.e.,

δC =

{
0, x ∈ C,
+∞, x 6∈ C,

then the variational inclusion problem (1.2) is equivalent to variational inequality
(1.3), i.e., to find u ∈ C such that

〈B(u), v − u〉 ≥ 0,∀v ∈ C.

Again, since M = ∂δC , the restriction of JM,λ on C is an identity mapping, i.e.,
JM,λ|C = I and so we have

PC(I − λB)kn = JM,λ(PC(I − λB)kn); PC(I − λB)yn = JM,λ(PC(I − λB)yn).

Hence the conclusion of Corollary 3.3 can be obtained form Theorem 3.2 immediately.
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