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MINIMAL AND CO-MINIMAL PROJECTIONS
IN SPACES OF CONTINUOUS FUNCTIONS

Dominik Mielczarek

Abstract. Minimal and co-minimal projections in the space C[0, 1] are studied. We con-
struct a minimal and co-minimal projection from C[0, 1] onto a subspace Y defined in the
introduction.
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1. INTRODUCTION

LetX be a normed space over R and let Y be a linear subspace ofX. A bounded linear
operator P : X → Y is called a projection if P|Y = Id|Y . The set of all projections
from X onto Y will be denoted by P(X, Y ). A projection P0 is called minimal if

‖P0‖ = inf
{
‖P‖ : P ∈ P(X, Y )

}
.

A projection P0 is called co-minimal if

‖P0 − Id‖ = inf
{
‖P − Id‖ : P ∈ P(X, Y )

}
.

The constant
λ(X, Y ) = inf

{
‖P‖ : P ∈ P(X, Y )

}
is called the relative projection constant.

Minimal and co-minimal projections are important for two main reasons. The first
of them is the following Lebesgue inequality:

‖x− Px‖ ≤ ‖Id− P‖dist(x, Y ) ≤ (1 + ‖P‖) dist(x, Y ).

The above inequality gives us a “good” linear approximation of elements from X by
elements of Y if ‖P‖ or ‖Id − P‖ is small. The second reason is connected with
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the Hahn-Banach theorem; having a minimal projection we can linearly extend any
functional y∗ ∈ Y ∗ to X∗ by setting x∗ = y∗ ◦ P or equivalently we can speak of a
linear extension of the operator Id : Y → Y to X of the smallest possible norm.

One of the most difficult problems in the theory of projections is to find formulas
for minimal projections. The research concerning this problem has its origin in the
famous paper [9], where the minimality of the classical Fourier projection Fn (defined
on C0(2π)) onto the subspace of trigonometric polynomials of degree ≤ n was proved.
Since then many results concerning the minimality of projections have been obtained
(see e.g. [7, 8, 10, 11, 13–17, 24–27]); the interested reader is also referred to [1, 2, 4–6,
9, 12–15,17–21,23] for further information on the subject).

Throughout the paper, we regard

X = {f : [0, 1]→ R : f is continuous }

as a normed space equipped with the standard supremum norm. Suppose that a
sequence {xn}∞n=1 ⊂ [0, 1] satisfies the following conditions:

(1) {xn}∞n=1 is decreasing,
(2) limn→∞ xn = 1,
(3) x1 = 0.

For n ∈ N, we define a functional fn ∈ X∗ by

fn(g) = g(xn), g ∈ X.

We set

Y =
∞⋂

i=1

kerfi, X1 = {f ∈ X : f(1) = 0} .

We also define a sequence {gn}∞n=1 ⊂ X1 by

g1(x) =

{
− 2

x2
x+ 1 if x ∈ [0, x2

2 ],
0 for the remaining x,

gn(x) =


2

xn−xn−1
x− xn+xn−1

xn−xn−1
if x ∈ [xn+xn−1

2 , xn],
−2

xn+1−xn
x+ 1 + 2xn

xn+1−xn
if x ∈ [xn,

xn+xn+1
2 ],

0 for the remaining x.

It is easy to see that
fn(gm) = gm(xn) = δnm

for each n,m ∈ N.
In this paper we will prove formulas for minimal and co-minimal projections in

P(X, Y ). More precisely, we will show that a projection Qs ∈ P(X,Y ) given by the
formula

Qs(f) = f − f(1)−
∞∑

i=1

(f(xi)− f(1))gi, f ∈ X,

is minimal and co-minimal.
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2. MAIN RESULTS

For n ∈ N, we define an operator Sn : X1 → X1 by

Sn(h)(·) =
n∑

i=1

fi(h)gi(·) =
n∑

i=1

h(xi)gi(·), h ∈ X1.

It is plain that

|Sn(h)(x)| ≤ max
i ∈ N
|h(xi)|

n∑
i=1

gi(x) ≤ max
i ∈N
|h(xi)|

for each n ∈ N, x ∈ [0, 1] and h ∈ X1.
We start our considerations with the ensuing lemma.

Lemma 2.1. {Sn(h)}∞n=1 is a Cauchy sequence in X1 for each h ∈ X1.

Proof. Fix h ∈ X1 and n,m ∈ N such that n < m. Note that

‖Sn(h)− Sm(h)‖ = sup
x ∈ [0,1]


m∑

i=n+1

h(xi)gi(x)

 ≤
≤ sup

x ∈ [0,1]

(
max
i>n
|h(xi)|

m∑
i=n+1

gi(x)

)
≤ max

i>n
|h(xi)|.

Since h(1) = 0, it follows that limn→∞ (maxi>n |h(xi)|) = 0. This together with the
above inequalities implies that {Sn(h)}∞n=1 is a Cauchy sequence.

Remark 2.2. The reader may easily convince himself that

lim
k→∞

Sk(h)(x) =

{
h(xn)gn(x), where n is such that x ∈

[
xn−1+xn

2 , xn+xn+1
2

]
,

0, if x = 1.

Now we will prove the following theorem.

Theorem 2.3. The set P(X1, Y ) is not empty. For any projection P ∈ P(X1, Y )
there exists a sequence of functions {yn}∞n=1 ⊂ X1, which satisfies the following con-
ditions:

(1) a sequence
∞∑

i=1

fi(h)yi is convergent in X1 for each h ∈ X1,

(2) for each i, j ∈ N we get fi(yj) = δij,
(3) the operator P has the form

P (·) = Id(·)−
∞∑

i=1

fi(·)yi.
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Proof. By the Banach-Steinhaus theorem, there exists a constant M > 0 such that

www ∞∑
i=1

fi(h)yi

www ≤M, (2.1)

for each h ∈ X1, ‖h‖ = 1. Let

Ps(h) = h−
∞∑

i=1

fi(h)gi, h ∈ X1.

The operator Ps is well-defined in X1 because of Lemma 2.1 and Remark 2.2. From
(2.1) we deduce that Ps is bounded. It is easy to see that Ps ∈ P(X1, Y ). Therefore,
P(X1, Y ) 6= ∅. Now fix Q ∈ P(X1, Y ). Since Q is a projection, we have

Q(Ps(h)) = Q
(
h−

∞∑
i=1

fi(h)gi

)
= h−

∞∑
i=1

fi(h)gi, h ∈ X1. (2.2)

Condition (2.2) implies that

Q(h) = h−
∞∑

i=1

fi(h)(gi −Q(gi)), h ∈ X1.

We complete the proof by setting yi = gi −Q(gi) for each i ∈ N.

Theorem 2.4. The set P(X, Y ) is not empty. Any projection Q ∈ P(X, Y ) has the
form

Q(f) = f(1)g + P1(f − f(1)),

where g ∈ Y , f ∈ X and P1 ∈ P(X1, Y ).

Proof. Let us define an operator T : X → X1 by

T (f)(x) = f(x)− f(1), f ∈ X, x ∈ [0, 1]. (2.3)

Fix P ∈ P(X1, Y ). It is easy to see that P ◦ T is a projection from X onto Y .
Consequently, P(X, Y ) 6= ∅. Next, fix Q ∈ P(X,Y ). For any f ∈ X, we have

Q(f) = Q(f − f(1) + f(1)) = Q(f(1)) +Q(f − f(1)) = f(1)Q(1) +Q(f − f(1)).

Clearly, P1 = Q|X1
∈ P(X1, Y ) and g = Q(1) ∈ Y . The reader may easily convince

himself that for each g ∈ Y and P1 ∈ P(X1, Y ) an operator Q given by the formula

Q(f) = f(1)g + P1(f − f(1)), f ∈ X,

is a projection from X onto Y . The proof is complete.
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Remark 2.5. We have proved that each projection P ∈ P(X,Y ) has the form

P (f) = f(1)g + P1(f − f(1)) = f(1)g + P1(T (f)),

where f ∈ X, g ∈ Y , P1 ∈ P(X1, Y ) and T is defined by (2.3). In view of Theorem 2.3,
we have

P (f) = f(1)g + T (f)−
∞∑

i=1

fi(T (f))yi = f(1)g + T (f)−
∞∑

i=1

(f(xi)− f(1))yi.

Theorem 2.6. A projection Ps ∈ P(X1, Y ) given by the formula

Ps(·) = Id(·)−
∞∑

i=1

fi(·)gi,

is minimal.

Proof. Note that for each x ∈ [0, 1) and f ∈ X1 we have

Ps(f)(x) = f(x)− f(xn)gn(x),

where n ∈ N is such that x ∈
[

xn−1+xn

2 , xn+xn+1
2

]
. Consequently, ‖Ps‖ ≤ 2. Fix

Q ∈ P(X1, Y ). Now we will show that for each ε > 0 there exists f ∈ X1, ‖f‖ = 1
such that ‖Q(f)‖ > 2− ε. By Theorem 2.3,

Q(·) = Id(·)−
∞∑

i=1

fi(·)yi,

where fi(yj) = δij for i, j ∈ N. Fix n ∈ N. Since yn(xn) = 1, there exists x0 < xn

such that 0 < yn(x0) < 1 and 1 − yn(x0) < ε. Suppose that f ∈ X1 satisfies the
following conditions:

f(x0) = 1, f(xn) = −1, f(xk) = 0 if k 6= n, ‖f‖ = 1.

Since Q(f) = f + yn, we deduce that

Q(f)(x0) = f(x0) + yn(x0) > 1 + 1− ε = 2− ε,

and finally ‖Q‖ ≥ 2. The proof is complete.

Fix Q ∈ P(X,Y ). By Theorem 2.4,

Q(f) = f(1)g + P1(T (f)),

where g ∈ Y, f ∈ X and P1 ∈ P(X1, Y ). Hence,

‖Q‖ ≥ ‖Q|X1
‖ = ‖P1‖ ≥ 2. (2.4)

Now we will state and prove the principal result of this paper.
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Theorem 2.7. A projection Qs ∈ P(X,Y ) given by the formula

Qs(f) = Ps(f − f(1)), f ∈ X,

is minimal.

Proof. For the purpose of the proof, we set

Qn(f)(·) = f(·)− f(1)−
n∑

i=1

(f(xi)− f(1))gi(·), n ∈ N, f ∈ X.

From Theorem 2.3 we infer that limn→∞Qn(f) = Qs(f) for each f ∈ X. We will
show that ‖Qn(f)‖ ≤ 2 for each f ∈ X such that ‖f‖ = 1. Observe that

‖Qn(f)‖ =
wwwf − f(1)−

n∑
i=1

(f(xi)− f(1))gi

www ≤ 1 +
wwwf(1) +

n∑
i=1

(f(xi)− f(1))gi

www.
In order to finish the proof, it suffices to show thatwwwf(1) +

n∑
i=1

(f(xi)− f(1))gi

www ≤ 1.

Since the function

f(1) +
n∑

i=1

(f(xi)− f(1))gi

is piecewise linear, it follows thatwwwf(1) +
n∑

i=1

(f(xi)− f(1))gi

www ≤ max
{
|f(1)|, |f(xi)| : i = 1, . . . , n

}
≤ 1. (2.5)

The above arguments show that ‖Qn(f)‖ ≤ 2. This in turn yields ‖Qs(f)‖ =
limn→∞ ‖Qn(f)‖ ≤ 2. The proof is complete.

Theorem 2.8. A projection Qs ∈ P(X,Y ) given by the formula

Qs(f) = Ps(f − f(1)), f ∈ X,

is co-minimal.

Proof. Fix Q ∈ P(X,Y ). By equation (2.4), we obtain

‖Id−Q‖ ≥ ‖Q‖ − ‖Id‖ ≥ 2− ‖Id‖ = 1.

In order to finish the proof, it suffices to show that ‖Id−Qs‖ = 1. Observe that

‖f −Qs(f)‖ =
wwwf(1) +

∞∑
i=1

(f(xi)− f(1))gi

www = lim
n→∞

wwwf(1) +
n∑

i=1

(f(xi)− f(1))gi

www,
where f ∈ X. By equation (2.5), we obtainwwwf(1) +

n∑
i=1

(f(xi)− f(1))gi

www ≤ 1

for each f ∈ X such that ‖f‖ = 1. This completes the proof.
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