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RIGHT FOCAL BOUNDARY VALUE PROBLEMS
FOR DIFFERENCE EQUATIONS
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Abstract. An application is made of a new Avery et al. fixed point theorem of compression
and expansion functional type in the spirit of the original fixed point work of Leggett and
Williams, to obtain positive solutions of the second order right focal discrete boundary value
problem. In the application of the fixed point theorem, neither the entire lower nor entire
upper boundary is required to be mapped inward or outward. A nontrivial example is also
provided.
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1. INTRODUCTION

For well over a decade, substantial results have been obtained for positive solutions
and multiple positive solutions for boundary value problems for finite difference equa-
tions; see, for example [2, 5, 10,11,13,15,16,20–23,25–28].

Many of those results have been motivated by the applicability of a number of
new fixed point theorems and multiple fixed point theorems as applied to certain
discrete boundary value problems; such as the classical fixed point theorems of Guo
and Krasnosel’skii [14,17] or Leggett and Williams [19], along with several newer fixed
point theorems by Avery et al. [1, 3, 6–9], and the fixed point theorem of Ge [12].

Recently, Avery, Anderson and Henderson [4] gave a topological proof in obtaining
a Leggett-Williams type of fixed point theorem, which requires only that certain
subsets of both boundaries of a subset of a cone for which ‖x‖ > b and α(x) = a,
where α is a concave positive functional on the cone, be mapped inward and outward,
respectively. This is an expansion result which is dramatically different from the
Leggett-Williams fixed point theorem, which is in itself only a compression result.
Moreover, this new fixed point theorem [4] is more general than those obtained by
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using Guo-Krasnosel’skii compression-expansion results which mapped at least one
boundary inward or outward [1,8,14,19,24], or the topological generalizations of fixed
point theorems introduced by Kwong [18] which require boundaries to be mapped
inward or outward (invariance-like conditions). Moreover, conditions involving the
norm in the original Leggett-Williams fixed point theorem were replaced in this recent
fixed point theorem [4] by more general conditions on a convex functional.

In this paper, we give a first application of the Avery et al. fixed point theorem
[4] to right focal boundary problems for finite difference equations, by demonstrating
a technique that takes advantage of the flexibility of the new fixed point theorem in
obtaining at least one positive solution for

∆2u(k) + f(u(k)) = 0, k ∈ {0, 1, . . . , N}, (1.1)

u(0) = ∆u(N + 1) = 0, (1.2)

where f : [0,∞) → [0,∞) is continuous. In Section 2, we provide some background
definitions and we state the new fixed point theorem. In Section 3, we apply the
fixed point theorem to obtain a positive solution to (1.1), (1.2), and in Section 3, we
provide a nontrivial example of the existence result of Section 2.

2. BACKGROUND AND A FIXED POINT THEOREM

In this section, we present some definitions used for the remainder of the paper. In
addition, we include a new fixed point theorem statement whose application, in the
next section, will yield a solution of (1.1), (1.2).

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E
is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;
(ii) x ∈ P , −x ∈ P implies x = 0.

Definition 2.2. A map α is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if

α : P → [0,∞)

is continuous and
α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative continuous
convex functional on a cone P of a real Banach space E if

β : P → [0,∞)

is continuous and
β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P and t ∈ [0, 1].
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Let ψ and δ be nonnegative continuous functionals on a cone P ; then, for positive
real numbers a and b, we define the sets:

P (ψ, b) := {x ∈ P : ψ(x) ≤ b}, (2.1)

and
P (ψ, δ, a, b) := {x ∈ P : a ≤ ψ(x) and δ(x) ≤ b}. (2.2)

The following theorem [4] is the new fixed point theorem of compression-expansion
and functional type.

Theorem 2.3. Suppose P is a cone in a real Banach space E, α is a nonnegative
continuous concave functional on P , β is a nonnegative continuous convex functional
on P and T : P → P is a completely continuous operator. Assume there exist
nonnegative numbers a, b, c and d such that:

(A1) {x ∈ P : a < α(x) and β(x) < b} 6= ∅;
(A2) if x ∈ P with β(x) = b and α(x) ≥ a, then β(Tx) < b;
(A3) if x ∈ P with β(x) = b and α(Tx) < a ,then β(Tx) < b;
(A4) {x ∈ P : c < α(x) and β(x) < d} 6= ∅;
(A5) if x ∈ P with α(x) = c and β(x) ≤ d, then α(Tx) > c;
(A6) if x ∈ P with α(x) = c and β(Tx) > d, then α(Tx) > c.

If

(H1) a < c, b < d, {x ∈ P : b < β(x) and α(x) < c} 6= ∅, P (β, b) ⊂ P (α, c),
and P (α, c) is bounded,

then T has a fixed point x∗ in P (β, α, b, c).
If

(H2) c < a, d < b, {x ∈ P : a < α(x) and β(x) < d} 6= ∅, P (α, a) ⊂ P (β, d),
and P (β, d) is bounded,

then T has a fixed point x∗ in P (α, β, a, d).

3. SOLUTIONS OF (1.1), (1.2)

In this section, we impose growth conditions on f such that the right focal boundary
value problem for the finite difference equation, (1.1), (1.2), has a solution as a con-
sequence of Theorem 2.3. We note that from the nonnegativity of f , a solution u of
(1.1), (1.2) is both nonnegative and concave on {0, 1, . . . , N + 2}. In our application
of Theorem 2.3, we will deal with a completely continuous summation operator whose
kernel is the Green’s function, H(k, `), for

−∆2v = 0 (3.1)

and satisfying (1.2). In particular, for (k, `) ∈ {0, . . . , N + 2} × {0, . . . , N},

H(k, `) =
1

N + 2

{
k, k ∈ {0, . . . , `},
`+ 1, k ∈ {`+ 1, . . . , N + 2}.
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We observe that H(k, `) is nonnegative, and for each fixed ` ∈ {0, . . . , N}, H(k, `) is
nondecreasing as a function of k. In addition, it is straightforward that, for y, w ∈
{0, . . . , N + 2} with y ≤ w,

wH(y, `) ≥ yH(w, `), ` ∈ {0, . . . , N}. (3.2)

Next, let E = {v : {0, . . . , N + 2} → R} be endowed with the norm, ‖v‖ =
maxk∈{0,...,N+2} |v(k)|. Choose

τ ∈ {1, . . . , N − 1},

and define the cone P ⊂ E by

P = {v ∈ E : v is nondecreasing and nonnegative-valued on {0, . . . , N + 2},
∆2v(k) ≤ 0, k ∈ {0, . . . , N}, and (N + 2)v(τ) ≥ τv(N + 2)

}
.

We note that, for any u ∈ P and y, w ∈ {0, . . . , N + 2} with y ≤ w,

wu(y) ≥ yu(w). (3.3)

For v ∈ P , we define a nonnegative concave functional α on P by

α(v) := min
k∈{τ,...,N+2}

v(k) = v(τ),

and a nonnegative, convex functional β on P by

β(v) := max
k∈{0,...,N+2}

v(k) = v(N + 2).

We note that for v ∈ P , in terms of the functionals,

(N + 2)α(v) ≥ τβ(v).

Now, we put growth conditions on f such that (1.1), (1.2) has at least one solution
u∗ ∈ P (β, α, b, c), as a consequence of Theorem 2.3 under the expansive condition
(H1).

Theorem 3.1. If τ ∈ {1, . . . , N − 1} is fixed, b and c are positive real numbers with
3b ≤ c, and f : [0,∞)→ [0,∞) is a continuous function such that:

(i) f(w) > c(N+2)
τ(N−τ) , for w ∈ [c, c(N+2)

τ ],
(ii) f(w) is decreasing, for w ∈ [0, bτ

N+2 ], with f( bτ
N+2 ) ≥ f(w), for w ∈ [ bτ

N+2 , b], and
(iii)

∑τ
`=0

(`+1)
N+2 f( b`

N+2 ) < b− f( bτ
N+2 )[ (N+1)(N+2)−(τ+1)(τ+2)

2(N+2) ],

then the discrete right-focal problem (1.1), (1.2) has at least one positive solutions
u∗ ∈ P (β, α, b, c).
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Proof. First, we let

a =
bτ

N + 2
and d =

c(N + 2)
τ

.

Then we have,

a =
bτ

N + 2
≤ cτ

3(N + 2)
< c

and
b ≤ c

3
=

dτ

3(N + 2)
< d.

Next, we define the summation operator T : E → E by

Tu(k) =
N∑
`=0

H(k, `)f(u(`)), u ∈ E, k ∈ {0, . . . , N + 2}.

It is immediate that T is completely continuous, and it is well known that u ∈ E is a
solution of (1.1), (1.2) if, and only if u is a fixed point of T . We now show that the
conditions of Theorem 2.3 are satisfied with respect to T .

So, if we let u ∈ P , then Tu(k) =
∑N
`=0H(k, `)f(u(`)) ≥ 0 on {0, . . . , N +

2}. Moreover, ∆2(Tu)(k) = −f(u(k)) ≤ 0, and so ∆(Tu)(k) is nonincreasing on
{0, . . . , N + 1}. From properties of H(k, `), ∆(Tu)(N + 1) = 0, and so ∆(Tu)(k) ≥ 0
on {0, . . . , N + 1}. Thus, (Tu)(k) is nondecreasing on {0, . . . , N + 2}. Moreover,

Tu(τ) =
N∑
`=0

H(k, `)f(u(`)) ≥ τ

N + 2

N∑
`=0

H(N + 2, `)f(u(`)) =
τ

N + 2
Tu(N + 2).

Therefore, we have T : P → P .
We next proceed to verify properties (A1) and (A4) of Theorem 2.3 are satisfied.

First, for any L ∈ ( 2b
2N+3−τ ,

2b
N+1 ), the function uL defined by

uL(k) :=
N∑
`=0

LH(k, `) =
Lk

2(N + 2)
(2N + 3− k) ∈ {u ∈ P : a < α(u) and β(u) < b},

since
α(uL) = uL(τ) =

Lτ

2(N + 2)
(2N + 3− τ) >

bτ

N + 2
= a

and
β(uL) = uL(N + 2) =

L(N + 2)
2(N + 2)

(2N + 3− (N + 2)) < b.

Similarly, for any J ∈ ( 2c(N+2)
τ(2N+3−τ) ,

2c(N+2)
τ(N+1) ), the function uJ defined by

uJ(k) :=
N∑
`=0

JH(k, `) =
Jk

2(N + 2)
(2N + 3− k) ∈ {u ∈ P : c < α(u) and β(u) < d},
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since
α(uJ) = uJ(τ) =

Jτ

2(N + 2)
(2N + 3− τ) > c

and

β(uJ) = uJ(N + 2) =
J(N + 2)
2(N + 2)

(2N + 3− (N + 2)) =
J(N + 1)

2
<
c(N + 2)

τ
= d.

Hence we have
{u ∈ P : a < α(u) andβ(u) < b} 6= ∅,

and
{u ∈ P : c < α(u) andβ(u) < d} 6= ∅.

Therefore conditions (A1) and (A4) of Theorem 2.3 are satisfied.
Turning to (A2) of Theorem 2.3, let u ∈ P with β(u) = b and α(u) ≥ a. By the

concavity of u, for ` ∈ {0, . . . , τ}, we have

u(`) ≥
(
u(τ)
τ

)
` ≥ b`

N + 2

and for all ` ∈ {τ, . . . , N + 2}, we have

bτ

N + 2
≤ u(`) ≤ b.

Hence by (ii) and (iii), it follows that

β(Tu) =
N∑
`=0

H(N + 2, `)f(u(`)) =
N∑
`=0

(`+ 1)
N + 2

f(u(`)) ≤

≤
τ∑
`=0

(`+ 1)
N + 2

f(
b`

N + 2
) +

N∑
`=τ+1

(`+ 1)
N + 2

f(
bτ

N + 2
) <

< b−
f( bτ

N+2 )
N + 2

[
(N + 1)(N + 2)− (τ + 1)(τ + 2)

2

]
+

+
f( bτ

N+2 )
N + 2

[
(N + 1)(N + 2)− (τ + 1)(τ + 2)

2

]
= b,

and so (A2) is satisfied.
Next, we establish (A3) of Theorem 2.3, and so we let u ∈ P with β(u) = b and

α(Tu) < a. By the properties of H(k, `),

β(Tu) =
N∑
`=0

H(N + 2, `)f(u(`)) ≤

≤ N + 2
τ

N∑
`=0

H(τ, `)f(u(`)) =
N + 2
τ

α(Tu) <
a(N + 2)

τ
= b,

and (A3) also holds.



Right focal boundary value problems for difference equations 453

In dealing with (A5), let u ∈ P with α(u) = c and β(u) ≤ d. Then for ` ∈
{τ, . . . , N + 2}, we have

c ≤ u(`) ≤ d =
c(N + 2)

τ
.

By Property (i),

α(Tu) =
N∑
`=0

H(τ, `)f(u(`)) ≥
N∑

`=τ+1

H(τ, `)f(u(`)) =

=
N∑

`=τ+1

τ

N + 2
f(u(`)) >

N∑
`=τ+1

c

N − τ
= c,

and so (A5) is valid.
And now we address (A6). So, let u ∈ P with α(u) = c and β(Tu) > d. Again by

the properties of H,

α(Tu) =
N∑
`=0

H(τ, `)f(u(`)) ≥

≥ τ

N + 2

N∑
`=0

H(N + 2, `)f(u(`)) =

=
τ

N + 2
β(Tu) >

τd

N + 2
= c,

and so (A6) of Theorem 2.3 also holds.
Finally, we show that the conditions of (H1) are also in effect. To that end, if

u ∈ P (α, c), then
τ

N + 2
β(u) ≤ α(u) ≤ c,

and hence
‖x‖ = β(u) ≤ α(u)(N + 2)

τ
≤ c(N + 2)

τ
.

Thus P (α, c) is a bounded subset of P . Also, if u ∈ P (β, b), then

α(u) ≤ β(u) ≤ b < c,

and hence P (β, b) ⊂ P (α, c).
In addtion, for any M ∈ ( 2b

N+1 ,
c

N+1 ), the function uM defined by

uM (k) :=
N∑
`=0

MH(k, `) =
k−1∑
`=0

M(`+ 1)
N + 2

+
N∑
`=k

Mk

N + 2
=

Mk

2(N + 2)
(2N + 3− k)

belongs to the set P (β, α, b, c), since

α(uM ) = uM (τ) =
Mτ

2(N + 2)
(2N + 3− τ) <

cτ

2(N + 1)(N + 2)
(2N + 3− τ) < c,
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and

β(uM ) = uM (N + 2) =
M(N + 2)
2(N + 2)

(2N + 3− (N + 2)) =

=
M

2
(N + 1) >

2b
2(N + 1)

(N + 1) = b.

Thus, we also have that {u ∈ P : b < β(u) and α(u) < c} 6= ∅. Hence the conditions
of (H1) are met.

It follows from Theorem 2.3 that T has a fixed point u∗ ∈ P (β, α, b, c), and as
such u∗ is a desired solution of (1.1), (1.2). The proof is complete.

Example. Let N = 8, τ = 1, b = 1, and c = 3. Notice that c(N+2)
τ(N−τ) = 30

7 , c(N+2)
τ = 30,

and bτ
N+2 = 1

10 . We define a continuous f : [0,∞)→ [0,∞) by

f(w) =


−8w + 1, 0 ≤ w ≤ 1

9 ,

1
9 ,

1
9 ≤ w ≤ 1,

22
9 w −

7
3 , w ≥ 1.

Then:

(i) f(w) > 30
7 , for w ∈ [3, 30],

(ii) f(w) is decreasing on [0, 1
10 ], and f

(
1
10

)
≥ f(w), for w ∈ [ 1

10 , 1], and

(iii)
1∑
`=0

`+ 1
10

f

(
`

10

)
=

14
100

<
16
100

= 1− f
(

1
10

)[
9 · 10− 2 · 3

2 · 10

]
.

Therefore, by Theorem 3.1, the right focal boundary value problem,

∆2u(k) + f(u(k)) = 0, k ∈ {0, . . . , 8},

u(0) = 0 = ∆u(9),

has at least one positive solution, u∗, with

1 ≤ u∗(10) and u∗(1) ≤ 3.
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