PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the global attractivity and the periodic character of a recursive sequence

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we investigate the global convergence result, boundedness, and periodicity of solutions of the recursive sequence [formula], where the parameters a, b, c, d and e are positive real numbers and the initial conditions x-2, x-1 and x0 are positive real numbers.
Rocznik
Strony
431--446
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
Bibliografia
  • [1] R.P. Agarwal, Difference Equations and Inequalities, 1st ed., Marcel Dekker, New York, 1992, 2nd ed., 2000.
  • [2] R.P. Agarwal, E.M. Elsayed, Periodicity and stability of solutions of higher order rational difference equation, Adv. Stud. Contemp. Math. 17 (2008) 2, 181–201.
  • [3] M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput. 176 (2006) 2, 768–774.
  • [4] C. Cinar, On the positive solutions of the difference equation xn+1 = axn−1 / 1+bxnxn−1, Appl. Math. Comput. 156 (2004), 587–590.
  • [5] C. Cinar, On the positive solutions of the difference equation equation xn+1 = axn−1 / 1+bxnxn−1, Appl. Math. Comput. 158 (2004) 3, 793–797.
  • [6] E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J. 53 (2007), 89–100.
  • [7] E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, On the difference equation xn+1 = axn−bxn / cxn−dxn−1, Adv. Differ. Equ. vol. 2006, Article ID 82579, 1–10.
  • [8] E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, On the difference equations xn+1 = αxn−k / β+γ П k(i) =0 xn−i, J. Concr. Appl. Math. 5 (2007) 2, 101–113.
  • [9] E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, Qualitative behavior of higher order difference equation, Soochow J. Math. 33 (2007) 4, 861–873.
  • [10] E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, On the periodic nature of some max-type difference equations, Int. J. Math. Math. Sci. 2005 (2005) 14, 2227–2239.
  • [11] E.M. Elabbasy, E.M. Elsayed, On the Global attractivity of difference equation of higher order, Carpathian J. Math. 24 (2008) 2, 45–53.
  • [12] H. El-Metwally, Global behavior of an economic model, Chaos Solitons Fractals 33 (2007), 994–1005.
  • [13] H. El-Metwally, M.M. El-Afifi, On the behavior of some extension forms of some population models, Chaos Solitons Fractals 36 (2008), 104–114.
  • [14] E.M. Elsayed, On the solution of recursive sequence of order two, Fasc.Math. 40 (2008), 5–13.
  • [15] A.E. Hamza, S.G. Barbary, Attractivity of the recursive sequence xn+1 = (α −βxn)F(xn−1, . . . , xn−k), Math. Comput. Modelling 48 (2008) 11–12, 1744–1749.
  • [16] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [17] M.R.S. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall / CRC Press, 2001.
  • [18] A. Rafiq, Convergence of an iterative scheme due to Agarwal et al., Rostock. Math. Kolloq. 61 (2006), 95–105.
  • [19] M. Saleh, M. Aloqeili, On the difference equation yn+1 = A + yn / yn−k with A < 0, Appl. Math. Comput. 176 (2006) 1, 359–363.
  • [20] M. Saleh, M. Aloqeili, On the difference equation xn+1 = A + xn / xn−k, Appl. Math. Comput. 171 (2005), 862–869.
  • [21] M. Saleh, S. Abu-Baha, Dynamics of a higher order rational difference equation, Appl. Math. Comput. 181 (2006), 84–102.
  • [22] D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence xn+1 = xn−3 / 1+xn−1 , Int. J. Contemp. Math. Sci. 1 (2006) 10, 475–480.
  • [23] I. Yalçınkaya, C. Cinar, On the dynamics of the difference equation xn+1 = axn−k / b+cxp(n), Fasc. Math. 42 (2009), 133–139.
  • [24] I. Yalçınkaya, C. Cinar, M. Atalay, On the solutions of systems of difference equations, Advances in Difference Equations, vol. 2008, Article ID 143943, 9 pages, doi: 10.1155/2008/ 143943.
  • [25] I. Yalcınkaya, On the global asymptotic stability of a second-order system of difference equations, Discrete Dynamics in Nature and Society, vol. 2008, Article ID 860152, 12 pages, doi: 10.1155/2008/ 860152.
  • [26] I. Yalcınkaya, On the difference equation xn+1 = α + xn−m / xk(n), Discrete Dynamics in Nature and Society, vol. 2008, Article ID 805460, 8 pages, doi: 10.1155/2008/ 805460.
  • [27] E.M.E. Zayed, M.A. El-Moneam, On the rational recursive sequence xn+1 = axn − bxn / cxn−dx(n−k), Comm. Appl. Nonlinear Anal. 15 (2008), 47–57.
  • [28] E.M.E. Zayed, M.A. El-Moneam, On the rational recursive sequence xn+1 = αxn+βxn−1+γxn−2+δxn−3 / Axn+Bxn−1+Cxn−2+Dxn−3 , Comm. Appl. Nonlinear Anal. 12 (2005), 15–28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0003-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.