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ON THE GLOBAL ATTRACTIVITY

AND THE PERIODIC CHARACTER

OF A RECURSIVE SEQUENCE
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Abstract. In this paper we investigate the global convergence result, boundedness, and
periodicity of solutions of the recursive sequence

xn+1 = axn +
bxn−1 + cxn−2

dxn−1 + exn−2

, n = 0, 1, . . . ,

where the parameters a, b, c, d and e are positive real numbers and the initial conditions
x
−2, x−1 and x0 are positive real numbers.
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1. INTRODUCTION

Our goal in this paper is to investigate the global stability character and the period-
icity of solutions of the recursive sequence

xn+1 = axn +
bxn−1 + cxn−2

dxn−1 + exn−2
, (1.1)

where the parameters a, b, c, d and e are positive real numbers and the initial condi-
tions x−2, x−1 and x0 are positive real numbers.

Recently there has been a lot of interest in studying the global attractivity, the
boundedness character and the periodicity nature of nonlinear difference equations
see for example [1–10].

The study of nonlinear rational difference equations of a higher order is quite
challenging and rewarding, and results about these equations offer prototypes towards
the development of the basic theory of the global behavior of nonlinear difference
equations of a high order, recently, many researchers have investigated the behavior
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of the solution of difference equations for example: Agarwal et al. [2] investigated the
global stability, periodicity character and gave the solution of some special cases of
the difference equation

xn+1 = a +
dxn−lxn−k

b − cxn−s

.

In [6] Elabbasy et al. investigated the global stability character, boundedness and the
periodicity of solutions of the difference equation

xn+1 =
αxn + βxn−1 + γxn−2

Axn + Bxn−1 + Cxn−2
.

Elabbasy et al. [7] investigated the global stability, periodicity character and gave
the solution of special case of the following recursive sequence

xn+1 = axn −
bxn

cxn − dxn−1
.

Elabbasy et al. [8] investigated the global stability, boundedness, periodicity character
and gave the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

Yalçınkaya et al. [23] considered the dynamics of the difference equation

xn+1 =
axn−k

b + cx
p
n

.

Also, Yalçınkaya [26] dealed with the difference equation

xn+1 = α +
xn−m

xk
n

.

Zayed et al. [28] studied the behavior of the rational recursive sequence

xn+1 =
αxn + βxn−1 + γxn−2 + δxn−3

Axn + Bxn−1 + Cxn−2 + Dxn−3
.

For some related work see [11–27].

2. SOME PRELIMINARY RESULTS

Here, we recall some basic definitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

F : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions
x−k, x−k+1, . . . , x0 ∈ I, the difference equation

xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (2.1)

has a unique solution {xn}
∞
n=−k.
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Definition 2.1 (Equilibrium Point). A point x ∈ I is called an equilibrium point of
Eq. (2.1) if

x = F (x, x, . . . , x).

That is, xn = x for n ≥ 0, is a solution of Eq. (2.1), or equivalently, x is a fixed
point of F .

Definition 2.2 (Periodicity). A sequence {xn}
∞
n=−k is said to be periodic with period

p if xn+p = xn for all n ≥ −k.

Definition 2.3 (Stability). (i) The equilibrium point x of Eq. (2.1) is locally stable
if for every ǫ > 0, there exists δ > 0 such that for all x−k, x−k+1, . . . , x−1, x0 ∈ I

with

|x−k − x| + |x−k+1 − x| + . . . + |x0 − x| < δ,

we have

|xn − x| < ǫ for all n ≥ −k.

(ii) The equilibrium point x of Eq. (2.1) is locally asymptotically stable if x is
a locally stable solution of Eq. (2.1) and there exists γ > 0, such that for all
x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + . . . + |x0 − x| < γ,

we have

lim
n→∞

xn = x.

(iii) The equilibrium point x of Eq. (2.1) is a global attractor if for all
x−k, x−k+1, . . . , x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq. (2.1) is globally asymptotically stable if x is
locally stable, and x is also a global attractor of Eq. (2.1).

(v) The equilibrium point x of Eq. (2.1) is unstable if x is not locally stable.

The linearized equation of Eq. (2.1) about the equilibrium x is the linear difference
equation

yn+1 =

k
∑

i=0

∂F (x, x, . . . , x)

∂xn−i

yn−i. (2.2)

Theorem 2.4 ([16]). Assume that p, q ∈ R and k ∈ {0, 1, 2, . . .}. Then

|p| + |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, . . . .
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Remark 2.5. Theorem 2.4 can be easily extended to general linear equations of the
form

xn+k + p1xn+k−1 + . . . + pkxn = 0, n = 0, 1, . . . , (2.3)

where p1, p2, . . . , pk ∈ R and k ∈ {1, 2, . . .}. Then Eq. (2.3) is asymptotically stable
provided that

k
∑

i=1

|pi| < 1.

Consider the following equation

xn+1 = g(xn, xn−1, xn−2). (2.4)

The following two theorems will be useful for the proof of our results in this paper.

Theorem 2.6 ([17]). Let [α, β] be an interval of real numbers and assume that

g : [α, β]3 → [α, β],

is a continuous function satisfying the following properties:

(a) g(x, y, z) is a non-decreasing in x and y in [α, β] for each z ∈ [α, β], and is

non-increasing in z ∈ [α, β] for each x and y in [α, β];
(b) if (m, M) ∈ [α, β] × [α, β] is a solution of the system

M = g(M, M, m) and m = g(m, m, M),

then

m = M.

Then Eq. (2.4) has a unique equilibrium x ∈ [α, β] and every solution of Eq. (2.4)
converges to x.

Theorem 2.7 ([17]). Let [α, β] be an interval of real numbers and assume that

g : [α, β]3 → [α, β],

is a continuous function satisfying the following properties:

(a) g(x, y, z) is non-decreasing in x and z in [α, β] for each y ∈ [α, β], and is

non-increasing in y ∈ [α, β] for each x and z in [α, β];
(b) if (m, M) ∈ [α, β] × [α, β] is a solution of the system

M = g(M, m, M) and m = g(m, M, m),

then

m = M.
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Then Eq. (2.4) has a unique equilibrium x ∈ [α, β] and every solution of Eq. (2.4)
converges to x.

The paper proceeds as follows. In Section 3 we show that when 2 |(be − dc)| <

(d+ e)(b+ c), then the equilibrium point of Eq. (1.1) is locally asymptotically stable.
In Section 4 we prove that the solution is bounded when a < 1 and the solution of
Eq. (1.1) is unbounded if a > 1. In Section 5 we prove that there exists a period two
solution of Eq. (1.1). In Section 6 we prove that the equilibrium point of Eq. (1.1)
is global attractor. Finally, we give numerical examples of some special cases of Eq.
(1.1) and then draw it by using Matlab.

3. LOCAL STABILITY OF THE EQUILIBRIUM POINT OF EQ. (1.1)

This section deals with the local stability character of the equilibrium point of Eq.
(1.1)

Eq. (1.1) has equilibrium point and is given by

x = ax +
b + c

d + e
.

If a < 1, then the only positive equilibrium point of Eq. (1.1) is given by

x =
b + c

(1 − a)(d + e)
.

Let f : (0,∞)3 −→ (0,∞) be a continuous function defined by

f(u, v, w) = au +
bv + cw

dv + ew
. (3.1)

Therefore it follows that

∂f(u, v, w)

∂u
= a,

∂f(u, v, w)

∂v
=

(be − dc)w

(dv + ew)2
,

∂f(u, v, w)

∂w
=

(dc − be)u

(dv + ew)2
.

Then we see that

∂f(x, x, x)

∂u
= a = −a2,

∂f(x, x, x)

∂v
=

(be − dc)

(d + e)2x
=

(be − dc)(1 − a)

(d + e)(b + c)
= −a1,

∂f(x, x, x)

∂w
=

(dc − be)

(d + e)2x
=

(dc − be)(1 − a)

(d + e)(b + c)
= −a0.
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Then the linearized equation of Eq. (1.1) about x is

yn+1 + a2yn + a1yn−1 + a0yn−2 = 0, (3.2)

whose characteristic equation is

λ2 + a2λ
2 + a1λ + a0 = 0. (3.3)

Theorem 3.1. Assume that

2 |(be − dc)| < (d + e)(b + c).

Then the positive equilibrium point of Eq. (1.1) is locally asymptotically stable.

Proof. It follows by Theorem 2.4 that, Eq. (3.2) is asymptotically stable if all roots
of Eq. (3.3) lie in the open disc |λ| < 1 that is if

|a2| + |a1| + |a0| < 1,

|a| +

∣

∣

∣

∣

(be − dc)(1 − a)

(d + e)(b + c)

∣

∣

∣

∣

+

∣

∣

∣

∣

(dc − be)(1 − a)

(d + e)(b + c)

∣

∣

∣

∣

< 1,

and so

2

∣

∣

∣

∣

(be − dc)(1 − a)

(d + e)(b + c)

∣

∣

∣

∣

< (1 − a), a < 1,

or

2 |be − dc| < (d + e)(b + c).

The proof is complete.

4. BOUNDEDNESS OF SOLUTIONS OF EQ. (1.1)

Here we study the boundedness nature of the solutions of Eq. (1.1).

Theorem 4.1. Every solution of Eq. (1.1) is bounded if a < 1.

Proof. Let {xn}
∞
n=−2 be a solution of Eq. (1.1). It follows from Eq. (1.1) that

xn+1 = axn +
bxn−1 + cxn−2

dxn−1 + exn−2
= axn +

bxn−1

dxn−1 + exn−2
+

cxn−2

dxn−1 + exn−2
.

Then

xn+1 ≤ axn +
bxn−1

dxn−1
+

cxn−2

exn−2
= axn +

b

d
+

c

e
for all n ≥ 1.

By using a comparison, we can write the right hand side as follows

yn+1 = ayn +
b

d
+

c

e
,
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then

yn = any0 + constant,

and this equation is locally asymptotically stable because a < 1, and converges to the
equilibrium point y = be+cd

de(1−a) .

Therefore

lim sup
n→∞

xn ≤
be + cd

de(1 − a)
.

Thus the solution is bounded.

Theorem 4.2. Every solution of Eq. (1.1) is unbounded if a > 1.

Proof. Let {xn}
∞
n=−2 be a solution of Eq. (1.1). Then from Eq. (1.1) we see that

xn+1 = axn +
bxn−1 + cxn−2

dxn−1 + exn−2
> axn for all n ≥ 1.

We see that the right hand side can be written as follows

yn+1 = ayn ⇒ yn = any0,

and this equation is unstable because a > 1, and lim
n→∞

yn = ∞. Then by using the

ratio test {xn}
∞
n=−2 is unbounded from above.

5. EXISTENCE OF PERIODIC SOLUTIONS

In this section we study the existence of periodic solutions of Eq. (1.1). The following
theorem states the necessary and sufficient conditions that this equation has periodic
solutions of prime period two.

Theorem 5.1. Eq. (1.1) has positive prime period two solutions if and only if

(i) (b − c)(d − e)(1 + a) + 4(bae + cd) > 0, d > e, b > c.

Proof. First suppose that there exists a prime period two solution

. . . , p, q, p, q, . . . ,

of Eq. (1.1). We will prove that Condition (i) holds.
We see from Eq. (1.1) that

p = aq +
bp + cq

dp + eq
,

and

q = ap +
bq + cp

dq + ep
.
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Then

dp2 + epq = adpq + aeq2 + bp + cq, (5.1)

and

dq2 + epq = adpq + aep2 + bq + cp. (5.2)

Subtracting (5.1) from (5.2) gives

d(p2 − q2) = −ae(p2 − q2) + (b − c)(p − q).

Since p 6= q, it follows that

p + q =
(b − c)

(d + ae)
. (5.3)

Again, adding (5.1) and (5.2) yields

d(p2 + q2) + 2epq = 2adpq + ae(p2 + q2) + (b + c)(p + q),

(d − ae)(p2 + q2) + 2(e − ad)pq = (b + c)(p + q). (5.4)

It follows by (5.3), (5.4) and the relation

p2 + q2 = (p + q)2 − 2pq for all p, q ∈ R,

that

2(e − d)(1 + a)pq =
2(bae + cd)(b − c)

(d + ae)2
.

Thus

pq =
(bae + cd)(b − c)

(d + ae)2(e − d)(1 + a)
. (5.5)

Now it is clear from Eq. (5.3) and Eq. (5.5) that p and q are the two distinct roots
of the quadratic equation

t2 −

(

(b − c)

(d + ae)

)

t +

(

(bae + cd)(b − c)

(d + ae)2(e − d)(1 + a)

)

= 0,

(d + ae)t2 − (b − c)t +

(

(bae + cd)(b − c)

(d + ae)(e − d)(1 + a)

)

= 0, (5.6)

and so

[b − c]2 −
4(bae + cd)(b − c)

(e − d)(1 + a)
> 0,

or

[b − c]2 +
4(bae + cd)(b − c)

(d − e)(1 + a)
> 0.

(b − c)(d − e)(1 + a) + 4(bae + cd) > 0.

Therefore inequalities (i) holds.
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Second suppose that inequalities (i) are true. We will show that Eq. (1.1) has a
prime period two solution.

Assume that

p =
b − c + ζ

2(d + ae)
,

and

q =
b − c − ζ

2(d + ae)
,

where ζ =
√

[b − c]
2
− 4(bae+cd)(b−c)

(e−d)(1+a) .

We see from inequalities (i) that

(b − c)(d − e)(1 + a) + 4(bae + cd) > 0, b > c, d > e,

which is equivalent to

(b − c)2 >
4(bae + cd)(b − c)

(e − d)(1 + a)
.

Therefore p and q are distinct real numbers.
Set

x−2 = q, x−1 = p and x0 = q.

We wish to show that

x1 = x−1 = p and x2 = x0 = q.

It follows from Eq. (1.1) that

x1 = aq +
bp + cq

dp + eq
= a

(

b − c − ζ

2(d + ae)

)

+
b
(

b−c+ζ
2(d+ae)

)

+ c
(

b−c−ζ
2(d+ae)

)

d
(

b−c+ζ
2(d+ae)

)

+ e
(

b−c−ζ
2(d+ae)

) .

Dividing the denominator and numerator by 2(d + ae) gives

x1 =
ab − ac − aζ

2(d + ae)
+

b (b − c + ζ) + c (b − c − ζ)

d (b − c + ζ) + e (b − c − ζ)
=

=
ab − ac − aζ

2(d + ae)
+

(b − c) [(b + c) + ζ]

(d + e)(b − c) + (d − e)ζ
.
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Multiplying the denominator and numerator of the right side by (d+e)(b−c)−(d−e)ζ
gives

x1 =
ab − ac − aζ

2(d + ae)
+

(b − c) [(b + c) + ζ] [(d + e)(b − c) − (d − e)ζ]

[(d + e)(b − c) + (d − e)ζ] [(d + e)(b − c) − (d − e)ζ]
=

=
ab − ac − aζ

2(d + ae)
+

+
(b − c)

{

(d + e)
(

b2 − c2
)

+ ζ [(d + e)(b − c) − (d − e)(b + c)] − (d − e)ζ2
}

(d + e)2(b − c)2 − (d − e)2ζ2
=

=
ab − ac − aζ

2(d + ae)
+

+
(b − c)

{

(d + e)
(

b2 − c2
)

+ 2ζ(eb − cd) − (d − e)
(

[b − c]
2
− 4(bae+cd)(b−c)

(e−d)(1+a)

)}

(d + e)2(b − c)2 − (d − e)2
(

[b − c]
2
− 4(bae+cd)(b−c)

(e−d)(1+a)

) =

=
ab − ac − aζ

2(d + ae)
+

+
(b − c)

{

(d + e)
(

b2 − c2
)

+ 2ζ(eb − cd) − (d − e) (b − c)
2
− 4(bae+cd)(b−c)

(1+a)

}

(d + e)2(b − c)2 − (d − e)2
(

[b − c]
2
− 4(bae+cd)(b−c)

(e−d)(1+a)

) =

=
ab − ac − aζ

2(d + ae)
+

(b − c)
{

2(b − c)
[

dc + eb − 2(bae+cd)
(1+a)

]

+ 2ζ(eb − cd)
}

4(b − c)
[

ed(b − c) + (e−d)(bae+cd)
(1+a)

] .

Multiplying the denominator and numerator of the right side by (1 + a) we obtain

x1 =
ab − ac − aζ

2(d + ae)
+

(b − c) [(dc + eb)(1 + a) − 2(bae + cd)] + ζ(1 + a)(eb − cd)

2 [ed(b − c)(1 + a) + (e − d)(bae + cd)]
=

=
ab − ac − aζ

2(d + ae)
+

(b − c)(eb − dc)(1 − a) + ζ(1 + a)(eb − cd)

2 [ed(b − c)(1 + a) + (e − d)(bae + cd)]
=

=
ab − ac − aζ

2(d + ae)
+

(eb − dc) {(b − c)(1 − a) + ζ(1 + a)}

2(eb − cd)(d + ae)
=

=
ab − ac − aζ

2(d + ae)
+

(b − c)(1 − a) + ζ(1 + a)

2(d + ae)
=

=
ab − ac − aζ + (b − c)(1 − a) + ζ(1 + a)

2(d + ae)
=

b − c + ζ

2(d + ae)
= p.

Similarly as before one can easily show that

x2 = q.

Then it follows by induction that

x2n = q and x2n+1 = p for all n ≥ −1.
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Thus Eq. (1.1) has the prime period two solution

. . . , p, q, p, q, . . . ,

where p and q are the distinct roots of the quadratic equation (5.6) and the proof is
complete.

6. GLOBAL ATTRACTIVITY OF THE EQUILIBRIUM POINT OF EQ. (1.1)

In this section we investigate the global asymptotic stability of Eq. (1.1).

Lemma 6.1. For any values of the quotient b
d

and c
e
, the function f(u, v, w) defined

by Eq. (3.1) has the monotonicity behavior in its two arguments.

Proof. The proof follows by some computations and it will be omitted.

Theorem 6.2. The equilibrium point x is a global attractor of Eq. (1.1) if one of the

following statements holds:

(1) be ≥ dc and c ≥ b, (6.1)

(2) be ≤ dc and c ≤ b. (6.2)

Proof. Let α and β be real numbers and assume that g : [α, β]3 −→ [α, β] is a function
defined by

g(u, v, w) = au +
bv + cw

dv + ew
.

Then

∂g(u, v, w)

∂u
= a,

∂g(u, v, w)

∂v
=

(be − dc)w

(dv + ew)2
,

∂g(u, v, w)

∂w
=

(dc − be)u

(dv + ew)2
.

We consider two cases:
Case 1. Assume that (6.1) is true, then we can easily see that the function g(u, v, w)
is increasing in u, v and decreasing in w.

Suppose that (m, M) is a solution of the system M = g(M, M, m) and m =
g(m, m, M). Then from Eq. (1.1), we see that

M = aM +
bM + cm

dM + em
, m = am +

bm + cM

dm + eM
,

or

M(1 − a) =
bM + cm

dM + em
, m(1 − a) =

bm + cM

dm + eM
,
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then

d(1 − a)M2 + e(1 − a)Mm = bM + cm, d(1 − a)m2 + e(1 − a)Mm = bm + cM.

Subtracting this two equations we obtain

(M − m){d(1 − a)(M + m) + (c − b)} = 0,

under the conditions c ≥ b, a < 1, we see that

M = m.

It follows by Theorem 2.6 that x is a global attractor of Eq. (1.1) and then the proof
is complete.
Case 2. Assume that (6.2) is true, let α and β be real numbers and assume that
g : [α, β]3 −→ [α, β] is a function defined by g(u, v, w) = au + bv+cw

dv+ew
, then we can

easily see that the function g(u, v, w) is increasing in u, w and decreasing in v.
Suppose that (m, M) is a solution of the system M = g(M, m, M) and m =

g(m, M, m). Then from Eq. (1.1), we see that

M = aM +
bm + cM

dm + eM
, m = am +

bM + cm

dM + em
,

or

M(1 − a) =
bm + cM

dm + eM
, m(1 − a) =

bM + cm

dM + em
,

then

d(1 − a)Mm + e(1 − a)M2 = bm + cM, d(1 − a)mM + e(1 − a)m2 = bM + cm.

Subtracting we obtain

(M − m){e(1 − a)(M + m) + (b − c)} = 0,

under the conditions b ≥ c, a < 1, we see that

M = m.

It follows by Theorem 2.7 that x is a global attractor of Eq. (1.1) and then the proof
is complete.

7. NUMERICAL EXAMPLES

To confirm the results of this paper, we consider numerical examples which represent
different types of solutions to Eq. (1.1).

Example 7.1. We assume x−2 = 1, x−1 = 3, x0 = 5, a = 0.5, b = 0.1, c = 3, d = 2,
e = 1. See Figure 1.
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Example 7.2. See Figure 2, since x−2 = 2, x−1 = 0.5, x0 = 4, a = 0.8, b = 8, c = 2,
d = 7, e = 5.

Example 7.3. We consider x−2 = 12, x−1 = 0.5, x0 = 14, a = 1, b = 1.5, c = 0.6,
d = 0.3, e = 0.4. See Figure 3.

Example 7.4. See Figure 4, since x−2 = 6, x−1 = 11, x0 = 4, a = 2, b = 7, c = 1,
d = 5, e = 2.
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Example 7.5. Figure 5 shows the solutions when a = 2, b = 7, c = 1, d = 5, e = 2,

x−2 = q, x−1 = p, x0 = q.

(

Since p, q =
b−c±

q

[b−c]2− 4(bae+cd)(b−c)
(e−d)(1+a)

2(d+ae)

)

.
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