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BIFURCATION
IN A NONLINEAR STEADY STATE SYSTEM

Gen-Qiang Wang, Sui Sun Cheng

Abstract. The steady state solutions of a nonlinear digital cellular neural network with ω
neural units and a nonnegative variable parameter λ are sought. We show that λ = 1 is a
critical value such that the qualitative behavior of our network changes. More specifically,
when ω is odd, then for λ ∈ [0, 1), there is one positive and one negative steady state, and
for λ ∈ [1,∞), steady states cannot exist; while when ω is even, then for λ ∈ [0, 1), there
is one positive and one negative steady state, and for λ = 1, there are no nontrivial steady
states, and for λ ∈ (1,∞), there are two fully oscillatory steady states. Furthermore, the
number of existing nontrivial solutions cannot be improved. It is hoped that our results are
of interest to digital neural network designers.
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1. INTRODUCTION

Recurrent cellular neural networks with “circular structure” may yield steady periodic
distributions or patterns and hence they are of interests to (digital) neural network
designers. For motivation, let us consider a simple prototype model. Let N be the set
of nonnegative integers, Z the set of integers, and ω an integer greater than or equal
to 2. Let ω neural units u1, u2, . . . , uω be placed on the vertices of a regular polygon
in a clockwise manner. The state values of these units are respectively u(t)

1 , . . . , u
(t)
ω ,

where we will take t ∈ N since we are considering digital devices. The state values
may be updated in many possible ways (see e.g. [1–6]). Here we assume that the
neural unit on the i-th vertex is forced to change its value by its two “preceding”
neighbors in the following manner:

u
(t+1)
i+1 = λu

(t)
i−1 +

(
u

(t)
i

)3
,

349
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where λ is a nonnegative number. The above equation is valid for i = 2, 3, . . . , ω − 1
and for ω ≥ 3. But the “circular” nature of our network allows us to write

u
(t+1)
1 = λu

(t)
ω−1 +

(
u(t)
ω

)3
,

u
(t+1)
2 = λu(t)

ω +
(
u

(t)
1

)3
,

. . . = . . .

u(t+1)
ω = λu

(t)
ω−2 +

(
u

(t)
ω−1

)3
for any ω ≥ 2.

To find steady state distributions of our model, that is, time independent solutions
of the form u

(t)
i = ui, we need to solve the steady state system

u1 = λuω−1 + (uω)3 ,

u2 = λuω + (u1)3 ,
. . . = . . .

uω = λuω−2 + (uω−1)3 .

(1.1)

Clearly, the existence of such solutions depends on the parameter λ. However, the
parity of our model (that is, the parity of the positive integer ω) also plays a crucial
role. To see how the partiy affects the existence, let λ = 2. Then (u1, . . . , uω)† =
(+1,−1,+1,−1, . . .)† is a solution of our system when ω is even, but fails to be one
when ω is odd. For this reason, we will need to consider two major cases (i) ω is even,
and (ii) ω is odd. We will show, among other things, that:

(i) ω is even: for λ ∈ [0, 1), a nontrivial solution of (1.1) must either be “positive”
or “negative” and our system (1.1) has at least one positive and one negative
solution; for λ = 1, (1.1) does not have any nontrivial solutions; for λ ∈ (1,+∞),
nontrivial solutions of (1.1) must be “fully oscillatory”, and (1.1) has at least two
such solutions;

(ii) ω is odd: for λ ∈ [0, 1), a nontrivial solution of (1.1) must either be “positive”
or “negative” and our system (1.1) has at least one positive and one negative
solution; for λ ∈ [1,+∞), (1.1) does not have any nontrivial solutions.

We will rely on the well known Krasnoselski existence theorem to show our bifur-
cation results. Actually, this theorem can help us extend our investigations to more
general systems of the form

u1 = λuω−1 + fω (uω) ,
u2 = λuω + f1 (u1) ,
. . . = . . .

uω = λuω−2 + fω−1 (uω−1) ,

(1.2)

where each fi has features similar to the cubic function. Indeed, in this paper, we
will assume that each fi satisfies xfi (x) > 0 for x 6= 0, and that

lim
x→0

fk (x)
x

= 0, lim
x→±∞

fk (x)
x

= +∞, k = 1, 2, . . . , ω, (1.3)
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and we will show that the two assertions above are still true if (1.1) is replaced by
(1.2).

To set-up our investigation, we first state the Krasnoselski fixed point theorem in
the following form:

Theorem 1.1. Suppose K is a cone in the Banach space X,Ω1 and Ω2 are two
bounded open sets in X such that θ ∈ Ω1 and Ω1 ⊂ Ω2, and Φ: K → K is a completely
continuous operator. Further, suppose that any one of the following conditions is
satisfied: (i) for each u ∈ K ∩ ∂Ω1, ‖Φu‖ ≤ ‖u‖, and for each u ∈ K ∩ ∂Ω2,
‖Φu‖ ≥ ‖u‖ ; (ii) for each u ∈ K ∩ ∂Ω1, ‖Φu‖ ≥ ‖u‖, and for each u ∈ K ∩ ∂Ω2,
‖Φu‖ ≤ ‖u‖, where ∂Ω1 and ∂Ω2 represent the boundary of Ω1 and Ω2 respectively.
Then Φ has a fixed point u0 ∈ K ∩

(
Ω2\Ω1

)
.

For any positive integer ω, we will let Rω denote the set of all real column vectors
endowed with the usual linear operations as well as the norm defined by

‖u‖ =
ω∑
i=1

|ui| for u = (u1, u2, . . . , uω)† ∈ Rω.

Rω is a well known Banach space. Some of its elements will stand out in our later
discussions. In particular, a vector ϕ = (ϕ1, ϕ2, . . . , ϕω)† in Rω is said to be zero-free
if ϕm 6= 0 for m = 1, . . . , ω, positive if ϕm > 0 for m = 1, . . . , ω, negative if ϕm < 0
for m = 1, . . . , ω, and fully oscillatory if ϕmϕm+1 < 0 for m = 1, 2, . . . , ω − 1.

A solution of (1.2) is meant to be a vector ϕ = (ϕ1, . . . , ϕω)† ∈ Rω which renders
(1.2) an identiy after substitution into it. Note that if we extend it periodically to an
infinite sequence {ϕi}i∈Z in the following manner

ϕi = ϕimodω, i ∈ Z, (1.4)

then it is a periodic solution of the recurrence relation

ui+1 = λui−1 + fi (ui) , i ∈ Z, (1.5)

where
fi = fimodω, i ∈ Z. (1.6)

Here we recall that a sequence {ϕi}i∈Z is periodic with period ω if ϕi+ω = ϕi for
i ∈ Z. As for finite vectors, we may define positive, negative, zero free and fully
oscillatory sequences in a similar manner.

2. MAIN RESULTS

In order to prove the statements asserted above, we consider various cases depending
on λ.

Lemma 2.1. Suppose λ ≥ 1. Let ϕ = {ϕm}m∈Z be a solution of (1.5).



352 Gen-Qiang Wang, Sui Sun Cheng

(i) If there is an integer α such that ϕα > 0 and ϕα+1 > 0, then ϕ cannot be periodic
with period ω.

(ii) If there is an integer α such that ϕα < 0 and ϕα+1 < 0, then ϕ cannot be periodic
with period ω.

(iii) If there is an integer α such that ϕα = 0 and ϕα+1 > 0, then ϕ cannot be periodic
with period ω.

(iv) If there is an integer α such that ϕα = 0 and ϕα+1 < 0, then ϕ cannot be periodic
with period ω.

Proof. Suppose that ϕα > 0 and ϕα+1 > 0. By (1.5), we see that

ϕα+2 = fα+1 (ϕα+1) + λϕα > λϕα ≥ ϕα,
ϕα+3 = fα+2 (ϕα+2) + λϕα+1 > λϕα+1 ≥ ϕα+1.

By induction, we may then see that {ϕα+2k}∞k=0 is a strictly increasing sequence.
Thus ϕ is not a periodic sequence. Similarly, we may see that (ii) is true.

If ϕα = 0 and ϕα+1 > 0, then by (1.5), we see that ϕα+2 = fα+1 (ϕα+1) + λϕα =
fα+1 (ϕα+1) > 0. Thus ϕα+1 > 0 and ϕα+2 > 0. We may now apply (i) to conclude
our proof. (iv) is similarly proved.

Lemma 2.2. Suppose λ ≥ 1. If ϕ = {ϕi}i∈Z is a nontrivial solution of (1.5) which
is periodic with period ω, then ω must be even and ϕ is fully oscillatory.

Proof. Suppose λ ≥ 1. Note that if ϕ = {ϕi}i∈Z is a nontrivial solution of (1.5),
then since (1.5) is a three term recurrence relation, ϕαϕα+1 6= 0 for any integer α. If
ϕ = {ϕm}m∈Z is periodic with period ω, then by Lemma 2.1, it is easy to see that
ϕ is fully oscillatory. Without loss of generality, we can assume that ϕ2k > 0 and
ϕ2k+1 < 0 for k ∈ Z. If ω is odd, then ω + 1 is even, so that ϕω+1 > 0. But by the
periodicity of ϕ, we see that ϕω+1 = ϕ1 < 0, which is a contradiction. The proof is
complete.

As an immediate consequence of Lemma 2.2, we have the following nonexistence
result.

Theorem 2.3. Suppose ω is odd. If λ ≥ 1, then (1.2) cannot have any nontrivial
solutions.

Theorem 2.4. Suppose ω is even. If λ > 1, then (1.2) has two solutions which are
fully oscillatory.

Proof. Let

K =
{
u = (u1, u2, . . . , uω) ∈ Rω : (−1)k uk ≥ 0, k = 1, 2, . . . , ω

}
. (2.1)

Then K is a cone in Rω. If we define the mapping Φ: Rω → Rω by

(Φu)k = − 1
λ
fk+1 (uk+1) +

1
λ
uk+2, k = 1, 2, . . . , ω, (2.2)
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where uω+1 = u1 and uω+2 = u2. Then Φ is completely continuous, and it is easy to
verify from the definitions of fk and K that ΦK ⊂ K. Choose a positive number ε
such that ε < λ− 1. Then it follows from (1.3) that there exists ρ1 > 0 such that

|fk (x)| ≤ ε |x| , |x| ≤ ρ1, k = 1, 2, . . . , ω. (2.3)

In view of (2.2) and (2.3), for each u ∈ K and ‖u‖ = ρ1, we have

|(Φu)k| ≤
1
λ

(|fk+1 (uk+1)|+ |uk+2|) ≤
1
λ

(ε |uk+1|+ |uk+2|) , k = 1, 2, . . . , ω.

It follows that

‖Φu‖ =
ω∑
k=1

|(Φu)k| ≤
1
λ

(
ε

ω∑
k=1

|uk+1|+
ω∑
k=1

|uk+2|

)
=

1
λ

(1 + ε) ‖u‖ ≤ ‖u‖ . (2.4)

In other words, for each u ∈ K ∩ ∂Ω1, ‖Φu‖ ≤ ‖u‖, where Ω1 = {u ∈ Rω : ‖u‖ ≤ ρ1}.
Let M be a positive number such that M > λ+ 1. It follows from (1.3) that there

exist ρ2 > 0 and ρ2 > ρ1 such that

|fk (x)| ≥M |x| , k = 1, 2, . . . , ω. (2.5)

Using (2.2) and (2.5) for each u ∈ K and ‖u‖ = ρ2, we have

|(Φu)k| ≥
1
λ

(|fk+1 (uk+1)| − |uk+2|) ≥
1
λ

(M |uk+1| − |uk+2|) .

It follows that

‖Φu‖ =
ω∑
k=1

|(Φu)k| ≥
1
λ

(
M

ω∑
k=1

|uk+1| −
ω∑
k=1

|uk+2|

)
=

=
1
λ

(M − 1) ‖u‖ ≥ ‖u‖ .

(2.6)

That is, for each u ∈ K ∩ ∂Ω2, ‖Φu‖ ≥ ‖u‖, where Ω2 = {u ∈ Rω : ‖u‖ ≤ ρ2}.
It follows from relations (2.4) and (2.6) and Theorem 1.1 with Ω1 ⊂ Ω2 that the

mapping Φ has a fixed point u∗ = (u∗1, . . . , u
∗
ω)† ∈ K ∩

(
Ω2\Ω1

)
. Furthermore, by

Theorem 2.1, it is fully oscillatory.
Similarly if we set

K ′ =
{
u = (u1, u2, . . . , uω) ∈ Rω : (−1)k+1

uk ≥ 0, k = 1, 2, . . . , ω
}
, (2.7)

then we can find another ω-periodic nontrivial solution which is fully oscillatory. The
proof is complete.

Theorem 2.5. If λ = 1, then (1.2) cannot have any nontrivial solutions.
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Proof. In case ω is odd, then we may see from Theorem 2.3 that our result is true.
In case ω is even, let ϕ be a nontrivial solution of (1.2). Then its periodic extension,
which we may write as ϕ = {ϕm}m∈Z, is a nontrivial solution of (1.5) which is
periodic with period ω. By Lemma 2.1, ϕ is zero-free and fully oscillatory. Without
loss of generality, we may assume that ϕ2k > 0 and ϕ2k+1 < 0 for k ∈ Z. From (1.5)
we know that for any k ∈ Z, ϕ2k+2 − ϕ2k = f2k+1 (ϕ2k+1) < 0. Thus {ϕ2k}k∈Z is
a strictly decreasing sequence. So ϕ0 > ϕω. But by the periodicity of ϕ we have
ϕ0 = ϕω. A contradiction is obtained. The proof is complete.

Lemma 2.6. Suppose 0 ≤ λ < 1. Let ϕ = {ϕm}m∈Z be a solution of (1.5).

(i) If there is an integer α such that ϕα = 0 and ϕα+1 > 0, then ϕ cannot be periodic
with period ω.

(ii) If there is an integer α such that ϕα = 0 and ϕα+1 < 0, then ϕ cannot be periodic
with period ω.

Proof. If ϕα = 0 and ϕα+1 > 0, by (1.5) we have

ϕα+2 = fα+1 (ϕα+1) + λϕα = fα+1 (ϕα+1) > 0,
ϕα+3 = fα+2 (ϕα+2) + λϕα+1 > 0.

By induction, we may then see that ϕm > 0 for m ≥ α + 1. Thus there cannot be
a positive integer ω such that ϕα+ω = ϕα = 0. Similarly, we may also show (ii).

Theorem 2.7. Suppose 0 ≤ λ < 1. Then any nontrivial solution of (1.2) is either
positive or negative.

Proof. Suppose ϕ is a nontrivial solution of (1.2). We will prove that ϕ is either
positive or negative. First, its periodic extension, which we may also write as ϕ =
{ϕm}m∈Z is a nontrivial solution of (1.5) which is periodic with period ω. From
Lemma 2.6, we know that ϕ is zero-free, thus we must consider the following three
cases only:

(i) there is an integer α such that ϕα > 0 and ϕα+1 > 0,
(ii) there is an integer α such that ϕα < 0 and ϕα+1 < 0,
(iii) there is an integer α such that ϕα+2k > 0 and ϕα+2k+1 < 0 for k ≥ 0.

In case (i), by (1.5) we have

ϕα+2 = fα+1 (ϕα+1) + λϕα > 0,
ϕα+3 = fα+2 (ϕα+2) + λϕα+1 > 0.

By induction, we may then see that ϕm > 0 for m ≥ α. Note that ϕ has period ω.
Thus ϕ is positive.

Similarly, we may also show that (ii) implies ϕ is negative.
In case (iii), by (1.5) we have

ϕα+2 = fα+1 (ϕα+1) + λϕα < λϕα < ϕα,

ϕα+4 = fα+3 (ϕα+3) + λϕα+2 < λϕα+2 < ϕα+2.
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By induction, {ϕα+2k}∞k=0 is a strictly decreasing sequence. This is contrary to the
periodicity of ϕ. The proof is complete.

Theorem 2.8. If 0 ≤ λ < 1, then (1.2) has two nontrivial solutions, one is positive
and the other is negative.

Proof. Let

K = {u = (u1, u2, . . . , uω) ∈ Rω : uk ≥ 0, k = 1, 2, . . . , ω} . (2.8)

Then K is a cone in Rω. If we define the mapping Φ: Rω → Rω by

(Φu)k = fk−1 (uk−1) + λuk−2, k = 1, 2, . . . , ω, (2.9)

where u−1 = uω−1 and u0 = uω, then Φ is completely continuous, and it is easy to
verify that ΦK ⊂ K. Choose a positive number ε such that ε + λ < 1. Then from
(1.3), there exists a ρ1 > 0 such that

|fk (x)| ≤ ε |x| , |x| ≤ ρ1; k = 1, 2, . . . , ω. (2.10)

In view of (2.9) and (2.10), for each u ∈ K and ‖u‖ = ρ1, we have

|(Φu)k| ≤ |fk−1 (uk−1)|+ λ |uk−2| ≤ ε |uk−1|+ λ |uk−2| , k = 1, 2, . . . , ω. (2.11)

It follows that

‖Φu‖ =
ω∑
k=1

|(Φu)k| ≤ ε
ω∑
k=1

|uk−1|+ λ

ω∑
k=1

|uk−2| = (ε+ λ) ‖u‖ ≤ ‖u‖ . (2.12)

In other words, for each u ∈ K ∩ ∂Ω1, ‖Φu‖ ≤ ‖u‖, where Ω1 = {u ∈ Rω : ‖u‖ ≤ ρ1}.
Let M be a positive number such that M > λ + 1. It follows from (1.3) that there
exist ρ2 > 0 and ρ2 > ρ1 such that

|fk (x)| ≥M |x| , k = 1, 2, . . . , ω. (2.13)

Using (2.9) and (2.13) for each u ∈ K and ‖u‖ = ρ2, we have

|(Φu)k| ≥ |fk−1 (uk−1)| − λ |uk−2| ≥M |uk−1| − λ |uk−2| .

It follows that

‖Φu‖ =
ω∑
k=1

|(Φu)k| ≥M
ω∑
k=1

|uk−1| − λ
ω∑
k=1

|uk−2| = (M − λ) ‖u‖ ≥ ‖u‖ . (2.14)

That is, for each u ∈ K ∩ ∂Ω2, ‖Φu‖ ≥ ‖u‖, where Ω2 = {u ∈ Rω : ‖u‖ ≤ ρ2}. It
follows from relations (2.4) and (2.6) and Theorem 1.1 with Ω1 ⊂ Ω2 that the mapping
Φ has a fixed point u∗ = (u∗1, . . . , u

∗
ω) ∈ K ∩

(
Ω2\Ω1

)
. Furthermore, by Lemma 2.1,

ϕ is zero-free, and hence is a positive solution of (1.5).
Similarly, we can find a vector in

K ′ = {u = (u1, u2, . . . , uω) ∈ Rω : −uk ≥ 0, k = 1, 2, . . . , ω} (2.15)

which is a negative solution of (1.5). The proof is complete.
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3. EXAMPLES AND REMARKS

As an example, let us consider (1.1). Let fk (x) = x3 for k = 1, 2, . . . , ω. Then
condition (1.3) is satisfied. By Theorems 2.3–2.5 and 2.7–2.8, we have the results
mentioned in the Introduction. In addition, for the special case where ω = 2, our
system (1.1) reduces to

u1 = λu1 + u3
2,

u2 = λu2 + u3
1,

(3.1)

and we may show directly that:

(i) for λ ∈ (1,∞), all solutions of (3.1) can be found and are given by
(0, 0)† ,

(
±
√
λ− 1,∓

√
λ− 1

)†
;

(ii) for λ = 1, the only solution is (0, 0)†;
(iii) for λ ∈ [0, 1), all solutions of (3.1) can be found and are given by

(0, 0)† ,
(
±
√

1− λ,±
√

1− λ
)†
.

Indeed, if λ = 1, then from (3.1), we see that u3
2 = u3

1 = 0, so that u1 = u2 = 0.
If λ ∈ [0, 1) ∪ (1,∞), then from (3.1), we have

u2 =
u3

1

1− λ
,

(1− λ)u1 =
(

u3
1

1− λ

)3

=
u9

1

(1− λ)3
.

Hence
u1

(
u8

1 − (1− λ)4
)

= 0. (3.2)

If λ ∈ [0, 1), then (3.2) leads us to

u1 = 0, u2 = 0;

and
u1 = ±

√
1− λ, u2 = ±

√
1− λ.

If λ > 1, then (3.2) leads us to

u1 = 0, u2 = 0;

and
u1 = ±

√
λ− 1, u2 = ∓

√
1− λ.

We remark that our previous example shows that when ω is even, our main asser-
tion about (1.2) is “sharp” in the sense that the number of its nontrivial solutions of
(1.2) cannot be improved.

For the case where ω = 3, our system reduces to

u1 = λu2 + u3
3,

u2 = λu3 + u3
1,

u3 = λu1 + u3
2,

(3.3)

and we may show directly that:
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(i) for λ ≥ 1, the only solution of (3.3) is (0, 0, 0)†;
(ii) for λ ∈ [0, 1), all solutions of (3.3) can be found and are given by (0, 0, 0)† and(

±
√

1− λ,±
√

1− λ,±
√

1− λ
)†
.

Indeed, suppose λ = 1. Then from (3.3), we see that

u3
1 + u3

2 + u3
3 = 0. (3.4)

If one of u1, u2, u3, say u1, is 0, then from the second equation in (3.3), we see that
u2 = u3, so that substitution of u1 = 0 and u2 = u3 into (3.4) yields 2u3

2 = 2u3
3 = 0.

Hence u1 = u2 = u3 = 0. If none of u1, u2 or u3 is 0, then by (3.4) we may assume
without loss of generality that at least two components have distinct signs, say, u1 > 0
and u2 < 0. Then from the first equation of (3.3), we see that u3

3 > 0 and hence
u3 > 0. But then from the second equation of (3.3), we see that u3

1 < 0, which is a
contradiction.

Suppose λ > 1. If one of u1, u2, u3, say u1, is 0, then from the first and the second
equations of (3.3), we have

u2 = λu3,

u3

(
λ2 + u2

3

)
= 0,

so that u3 = 0 = u2 and u1 = λu2 + u3
3 = 0. If u1, u2, u3 > 0, then from (3.3),

u1 = λu2 + u3
3 > λu2 > u2,

u2 = λu3 + u3
1 > λu3 > u3,

u3 = λu1 + u3
2 > λu1 > u1,

so that
u1 > u2 > u3 > u1,

which is a contradiction. If u1, u2, u3 < 0, then as in the previous case, we may show
that u1 < u2 < u3 < u1, which is a contradiction. If at least two components have
distinct signs, say, u1 > 0 and u2 < 0, then from the first equation of (3.3), we see
that u3 > 0. Then from the second equation, we see further that u1 < 0, which is a
contradiction.

Suppose λ = 0. Then from (3.3),

u1 = u3
3, u2 = u3

1, u3 = u3
2,

so that
u1

(
u26

1 − 1
)

= 0.

Hence
u1 = 0, u3 = u2 = 0;

or
u1 = ±1, u3 = ±1, u2 = ±1.
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Finally, suppose λ ∈ (0, 1). If one of u1, u2, u3, say u1 is 0, then from the first and
the second equations of (3.3), we have

u2 = λu3,

u3

(
λ2 + u2

3

)
= 0,

so that u3 = 0 = u2 and u1 = λu2 + u3
3 = 0. If two components of (u1, u2, u3)† are

positive, say, u1, u2 > 0, then from the third equation of (3.3), u3 > 0. Furthermore,
we may assert that u1, u2, u3 ∈ (0, 1). Otherwise, assume without loss of generality
that u3 ≥ 1. Then from (3.3), we have

u1 = λu2 + u3
3 ≥ u3

3 ≥ u3 ≥ 1,

u2 = λu3 + u3
1 > u3

1 ≥ u1 ≥ 1,

u3 = λu1 + u3
2 > u3

2 ≥ u2,

so that u1 ≥ u3 > u2 > u1, which is a contradiction. Now that u1, u2, u3 ∈ (0, 1),
we assert further that u1 = u2 = u3. Indeed, assume without loss of generality
that u1 = max {u1, u2, u3} , u2 = min {u1, u2, u3} and u1 > u2. Then from the first
equation of (3.3), we have

u1 = λu2 + u3
3 < λu1 + u3

1,

so that
u1 >

√
1− λ. (3.5)

By the second equation of (3.3), we see that

u2 = λu3 + u3
1 > λu2 + u3

2, (3.6)

so that
u2 <

√
1− λ. (3.7)

On the other hand, by the second equation of (3.3) and (3.5) we see that

u2 = λu3 + u3
1 > λu2 + (1− λ)

√
1− λ,

thus
u2 >

√
1− λ, (3.8)

which is a contradiction. Now that u1 = u2 = u3 ∈ (0, 1), we may easily see from
(3.3) that

u1 = u2 = u3 =
√

1− λ.

Similarly, if two components of (u1, u2, u3)† are negative, we may show in a similar
way that

u1 = u2 = u3 = −
√

1− λ.

As a consequence of the above example, we see that our main assertions regarding
the number of nontrivial solutions of (1.2) are also sharp when ω is odd.
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As our final remark, if we change the conditions on fk in (1.3) to

lim
x→0

fk (x)
x

= +∞, lim
x→±∞

fk (x)
x

= 0, k = 1, 2, . . . , ω, (3.9)

then by duality considerations, we may easily obtain the following (sharp) assertions:

(i) ω is even: for λ ∈ [0, 1), a nontrivial solution of (1.2) must either be positive
or negative and our system (1.2) has at least one positive and one negative
solution; for λ = 1, (1.2) does not have any nontrivial solutions; for λ ∈ (1,+∞),
nontrivial solutions of (1.2) must be fully oscillatory, and (1.2) has at least two
such solutions;

(ii) ω is odd: for λ ∈ [0, 1), a nontrivial solution of (1.2) must either be positive or
negative and our system (1.2) has at least one positive and one negative solution;
for λ ∈ [1,+∞), (1.1) does not have any nontrivial solutions.
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