http://dx.doi.org/10.7494/OpMath.2010.30.3.331

CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN CONVEX METRIC SPACES

Gurucharan Singh Saluja, Hemant Kumar Nashine

Abstract. In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.

Keywords: implicit iteration process, finite family of asymptotically quasi-nonexpansive mappings, common fixed point, convex metric space.

Mathematics Subject Classification: 47H05, 47H09, 47H10.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we assume that X is a metric space and let $F(T_i) = \{x \in X : T_i x = x\}$ be the set of all fixed points of the mappings T_i (i = 1, 2, ..., N) respectively. The set of common fixed points of T_i (i = 1, 2, ..., N) denoted by \mathcal{F} , that is, $\mathcal{F} = \bigcap_{i=1}^N F(T_i)$.

Definition 1.1 ([4,5]). Let $T: X \to X$ be a mapping.

(1) The mapping T is said to be nonexpansive if

$$d(Tx, Ty) \le d(x, y), \quad \forall x, y \in D(T).$$

(2) The mapping T is said to be quasi-nonexpansive if $F(T) \neq \emptyset$ and

$$d(Tx, p) \le d(x, p), \quad \forall x \in D(T), \ \forall p \in F(T).$$

331

(3) The mapping T is said to be asymptotically nonexpansive if there exists a sequence $k_n \in [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$d(T^n x, T^n y) \le k_n d(x, y), \quad \forall x, y \in D(T), \quad \forall n \in \mathbb{N}.$$

(4) The mapping T is said to be asymptotically quasi-nonexpansive if $F(T) \neq \emptyset$ and there exists a sequence $k_n \in [1, \infty)$ with $\lim_{n \to \infty} k_n = 1$ such that

$$d(T^n x, p) \le k_n d(x, p), \quad \forall x \in D(T), \ \forall p \in F(T), \ \forall n \in \mathbb{N}.$$

- **Remark 1.2.** (i) From the definition 1.1, it follows that if F(T) is nonempty, then a nonexpansive mapping is quasi-nonexpansive, and an asymptotically nonexpansive mapping is asymptotically quasi-nonexpansive. But the converse does not hold.
- (ii) It is obvious that if T is nonexpansive, then it is asymptotically nonexpansive with the constant sequence $\{1\}$.

In 2001, Xu and Ori [16] have introduced an implicit iteration process for a finite family of nonexpansive mappings in a Hilbert space H. Let C be a nonempty subset of H. Let T_1, T_2, \ldots, T_N be self mappings of C and suppose that $\mathcal{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$, the set of common fixed points of $T_i, i = 1, 2, \ldots, N$. An implicit iteration process for a finite family of nonexpansive mappings is defined as follows: Let $\{t_n\}$ a real sequence in $(0, 1), x_0 \in C$:

$$x_{1} = t_{1}x_{0} + (1 - t_{1})T_{1}x_{1},$$

$$x_{2} = t_{2}x_{1} + (1 - t_{2})T_{2}x_{2},$$

$$\dots = \dots$$

$$x_{N} = t_{N}x_{N-1} + (1 - t_{N})T_{N}x_{N},$$

$$x_{N+1} = t_{N+1}x_{N} + (1 - t_{N+1})T_{1}x_{N+1},$$

$$\dots = \dots$$

which can be written in the following compact form:

$$x_n = t_n x_{n-1} + (1 - t_n) T_n x_n, \quad n \ge 1, \tag{1.1}$$

where $T_k = T_{k(modN)}$. (Here the mod N function takes values in the set $\{1, 2, ..., N\}$.)

In 2003, Sun [12] extend the process (1.1) to a process for a finite family of asymptotically quasi-nonexpansive mappings, with $\{\alpha_n\}$ a real sequence in (0, 1) and an initial point $x_0 \in C$, which is defined as follows:

$$x_1 = \alpha_1 x_0 + (1 - \alpha_1) T_1 x_1,$$

$$\begin{aligned} x_2 &= \alpha_2 x_1 + (1 - \alpha_2) T_2 x_2, \\ \dots &= \dots \\ x_N &= \alpha_N x_{N-1} + (1 - \alpha_N) T_N x_N, \\ x_{N+1} &= \alpha_{N+1} x_N + (1 - \alpha_{N+1}) T_1^2 x_{N+1}, \\ \dots &= \dots \\ x_{2N} &= \alpha_{2N} x_{2N-1} + (1 - \alpha_{2N}) T_N^2 x_{2N}, \\ x_{2N+1} &= \alpha_{2N+1} x_{2N} + (1 - \alpha_{2N+1}) T_1^3 x_{2N+1}, \\ \dots &= \dots \end{aligned}$$

which can be written in the following compact form:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_i^{\kappa} x_n, \ n \ge 1,$$
(1.2)

where n = (k - 1)N + i, $i \in \{1, 2, \dots, N\}$.

Sun [12] proved the strong convergence of the process (1.2) to a common fixed point in real uniformly convex Banach spaces, requiring only one member T in the family $\{T_i : i = 1, 2, ..., N\}$ to be semi compact. The result of Sun [12] generalized and extended the corresponding main results of Wittmann [15] and Xu and Ori [16].

The purpose of this paper is to study the convergence of an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces. The results presented in this paper extend and improve the corresponding results of Sun [12], Wittmann [15], Xu and Ori [16] and Zhou and Chang [17] and many others.

For the sake of convenience, we also recall some definitions and notations.

In 1970, Takahashi [13] introduced the concept of convexity in a metric space and the properties of the space.

Definition 1.3 ([13]). Let (X, D) be a metric space and I = [0, 1]. A mapping $W: X \times X \times I \to X$ is said to be a convex structure on X if for each $(x, y, \lambda) \in X \times X \times I$ and $u \in X$,

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y).$$

X together with a convex structure W is called a *convex metric space*, denoted by (X, d, W). A nonempty subset K of X is said to be *convex* if $W(x, y, \lambda) \in K$ for all $(x, y, \lambda) \in K \times K \times I$.

Remark 1.4. Every normed space is a convex metric space, where a convex structure $W(x, y, z; \alpha, \beta, \gamma) = \alpha x + \beta y + \gamma z$, for all $x, y, z \in E$ and $\alpha, \beta, \gamma \in I$ with $\alpha + \beta + \gamma = 1$. In fact,

$$d(u, W(x, y, z; \alpha, \beta, \gamma)) = \|u - (\alpha x + \beta y + \gamma z)\| \le \le \alpha \|u - x\| + \beta \|u - y\| + \gamma \|u - z\| = = \alpha d(u, x) + \beta d(u, y) + \gamma d(u, z), \quad \forall u \in X.$$

But there exists some convex metric spaces which can not be embedded into a normed space. **Example 1.5.** Let $X = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 > 0, x_2 > 0, x_3 > 0\}$. For $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in X$ and $\alpha, \beta, \gamma \in I$ with $\alpha + \beta + \gamma = 1$, we define a mapping $W \colon X^3 \times I^3 \to X$ by

$$W(x, y, z; \alpha, \beta, \gamma) = (\alpha x_1 + \beta y_1 + \gamma z_1, \alpha x_2 + \beta y_2 + \gamma z_2, \alpha x_3 + \beta y_3 + \gamma z_3)$$

and define a metric $d: X \times X \to [0, \infty)$ by

$$d(x,y) = |x_1y_1 + x_2y_2 + x_3y_3|.$$

Then we can show that (X, d, W) is a convex metric space, but it is not a normed space.

Example 1.6. Let $Y = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0, x_2 > 0\}$. For each $x = (x_1, x_2), y = (y_1, y_2) \in Y$ and $\lambda \in I$. We define a mapping $W : Y^2 \times I \to Y$ by

$$W(x,y;\lambda) = \left(\lambda x_1 + (1-\lambda)y_1, \frac{\lambda x_1 x_2 + (1-\lambda)y_1 y_2}{\lambda x_1 + (1-\lambda)y_1}\right)$$

and define a metric $d: Y \times Y \to [0, \infty)$ by

$$d(x,y) = |x_1 - y_1| + |x_1x_2 - y_1y_2|.$$

Then we can show that (Y, d, W) is a convex metric space, but it is not a normed space.

Definition 1.7. Let (X, d, W) be a convex metric space with a convex structure W and let $T_1, T_2, \ldots, T_N \colon X \to X$ be N asymptotically quasi-nonexpansive mappings. For any given $x_0 \in X$, the iteration process $\{x_n\}$ defined by

$$x_{1} = W(x_{0}, T_{1}x_{1}, u_{1}; \alpha_{1}, \beta_{1}, \gamma_{1}),$$

... = ...

$$x_{N} = W(x_{N-1}, T_{N}x_{N}, u_{N}; \alpha_{N}, \beta_{N}, \gamma_{N}),$$

$$x_{N+1} = W(x_{N}, T_{1}^{2}x_{N+1}, u_{N+1}; \alpha_{N+1}, \beta_{N+1}, \gamma_{N+1}),$$

... = ...

$$x_{2N} = W(x_{2N-1}, T_{1}^{2}x_{2N}, u_{2N}; \alpha_{2N}, \beta_{2N}, \gamma_{2N}),$$

$$x_{2N+1} = W(x_{2N}, T_{1}^{3}x_{2N+1}, u_{2N+1}; \alpha_{2N+1}, \beta_{2N+1}, \gamma_{2N+1}),$$

... = ...

which can be written in the following compact form:

$$x_n = W(x_{n-1}, T_{n(modN)}^n x_n, u_n; \alpha_n, \beta_n, \gamma_n), \quad n \ge 1,$$

$$(1.3)$$

where $\{u_n\}$ is a bounded sequence in X, $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ are three sequences in [0, 1] such that $\alpha_n + \beta_n + \gamma_n = 1$ for $n = 1, 2, \ldots$. Iteration process (1.3) is called the implicit iteration process with errors for a finite family of mappings T_i $(i = 1, 2, \ldots, N)$.

If $u_n = 0$ in (1.3) then,

$$x_n = W(x_{n-1}, T^n_{n(modN)} x_n; \alpha_n, \beta_n), \quad n \ge 1,$$
(1.4)

where $\{\alpha_n\}$, $\{\beta_n\}$ are two sequences in [0, 1] such that $\alpha_n + \beta_n = 1$ for n = 1, 2, ...Iteration process (1.4) is called the implicit iteration process for a finite family of mappings T_i (i = 1, 2, ..., N).

Proposition 1.8. Let $T_1, T_2, \ldots, T_N \colon X \to X$ be N asymptotically nonexpansive mappings. Then there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \to 1$ as $n \to \infty$ such that

$$d(T_i^n x, T_i^n y) \le k_n d(x, y), \quad \forall n \ge 1,$$
(1.5)

for all $x, y \in X$ and for each $i = 1, 2, \ldots, N$.

Proof. Since for each i = 1, 2, ..., N, $T_i: X \to X$ is an asymptotically nonexpansive mapping, there exists a sequence $\{k_n^{(i)}\} \subset [1, \infty)$ with $k_n^{(i)} \to 1$ as $n \to \infty$ such that

$$d(T_i^n x, T_i^n y) \le k_n^{(i)} d(x, y), \quad \forall n \ge 1.$$

Letting

$$k_n = \max\{k_n^{(1)}, k_n^{(2)}, \dots, k_n^{(N)}\},\$$

therefore we have $\{k_n\} \subset [1,\infty)$ with $k_n \to 1$ as $n \to \infty$ and

$$d(T_i^n x, T_i^n y) \le k_n^{(i)} d(x, y) \le k_n d(x, y), \quad \forall n \ge 1,$$

for all $x, y \in X$ and for each $i = 1, 2, \ldots, N$.

The above theorem is also holds for asymptotically quasi-nonexpansive mappings since an asymptotically nonexpansive mapping with a nonempty fixed point set is called an asymptotically quasi-nonexpansive mapping.

Remark 1.9. We see, from the proof of the preceding proposition, that

$$\sum_{n=1}^{\infty} (k_n - 1) < \infty \Longleftrightarrow \sum_{n=1}^{\infty} (k_n^{(i)} - 1) < \infty,$$

for all $i \in \{1, 2, \dots, N\}$.

2. MAIN RESULTS

In order to prove our main result of this paper, we need the following lemma.

Lemma 2.1 ([7]). Let $\{a_n\}$, $\{b_n\}$ and $\{r_n\}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \le (1+r_n)a_n + b_n, \quad n \ge 1.$$

If $\sum_{n=1}^{\infty} b_n < \infty$ and $\sum_{n=1}^{\infty} r_n < \infty$. Then:

- (a) $\lim_{n\to\infty} a_n$ exists.
- (b) If $\liminf_{n \to \infty} a_n = 0$, then $\lim_{n \to \infty} a_n = 0$.

Now we state and prove our main theorems of this paper.

Theorem 2.2. Let (X, d, W) be a complete convex metric space. Let T_1 , $T_2, \ldots, T_N \colon X \to X$ be N asymptotically quasi-nonexpansive mappings. Suppose $\mathcal{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{u_n\}$ be a bounded sequence in X, $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ be three sequences in $[0, 1], \{\alpha_n\} \subset (s, 1 - s)$ for some $s \in (0, 1)$ and $\{k_n\}$ be the sequence defined by (1.5) satisfying the following conditions:

(i) $\alpha_n + \beta_n + \gamma_n = 1$, $\forall n \ge 1$; (ii) $\sum_{n=1}^{\infty} (k_n - 1) < \infty$; (iii) $\sum_{n=1}^{\infty} \gamma_n < \infty$.

Then the implicit iteration process with errors $\{x_n\}$ generated by (1.3) converges to a common fixed point of $\{T_1, T_2, \ldots, T_N\}$ if and only if

$$\liminf_{n \to \infty} D_d(x_n, \mathcal{F}) = 0,$$

where $D_d(y, \mathcal{F})$ denotes the distance from y to the set \mathcal{F} , that is, $D_d(y, \mathcal{F}) = \inf_{z \in \mathcal{F}} d(y, z)$.

Proof. The necessity is obvious. Now, we will only prove the sufficient condition. Setting $k_n = 1 + \lambda_n$ with $\lim_{n \to \infty} \lambda_n = 0$. Since $\sum_{n=1}^{\infty} (k_n - 1) < \infty$, so $\sum_{n=1}^{\infty} \lambda_n < \infty$. For any $p \in \mathcal{F}$, from (1.3), it follows that

$$d(x_n, p) = d(W(x_{n-1}, T^n_{n(modN)}x_n, u_n; \alpha_n, \beta_n, \gamma_n), p) \leq \\ \leq \alpha_n d(x_{n-1}, p) + \beta_n d(T^n_{n(modN)}x_n, p) + \gamma_n d(u_n, p) \leq \\ \leq \alpha_n d(x_{n-1}, p) + \beta_n (1 + \lambda_n) d(x_n, p) + \gamma_n d(u_n, p) \leq \\ \leq \alpha_n d(x_{n-1}, p) + (1 - \alpha_n)(1 + \lambda_n) d(x_n, p) + \gamma_n d(u_n, p) \leq \\ \leq \alpha_n d(x_{n-1}, p) + (1 - \alpha_n + \lambda_n) d(x_n, p) + \gamma_n d(u_n, p) \leq$$

$$(2.1)$$

for all $p \in \mathcal{F}$.

Therefore we have

$$d(x_n, p) \le d(x_{n-1}, p) + \frac{\lambda_n}{\alpha_n} d(x_n, p) + \frac{\gamma_n}{\alpha_n} d(u_n, p).$$
(2.2)

Since $0 < s < \alpha_n < 1 - s$, it follows from (2.2) that

$$d(x_n, p) \le d(x_{n-1}, p) + \frac{\lambda_n}{s} d(x_n, p) + \frac{\gamma_n}{s} d(u_n, p).$$
 (2.3)

Since $\sum_{n=1}^{\infty} \lambda_n < \infty$, there exists a positive integer n_0 such that $s - \lambda_n > 0$ and $\lambda_n < \frac{s}{2}$ and for all $n \ge n_0$.

Thus, we have

$$d(x_n, p) \le \left(1 + \frac{\lambda_n}{s - \lambda_n}\right) d(x_{n-1}, p) + \frac{\gamma_n}{s - \lambda_n} d(u_n, p).$$
(2.4)

It follows from (2.4) that, for each $n = (n-1)N + i \ge n_0$, we have

$$d(x_n, p) \le \left(1 + \frac{2\lambda_n}{s}\right) d(x_{n-1}, p) + \frac{2\gamma_n}{s} d(u_n, p).$$
(2.5)

Setting $b_n = \frac{2\lambda_n}{s}$, where $n = (n-1)N + i, i \in \{1, 2, ..., N\}$, then we obtain

$$d(x_n, p) \le (1+b_n)d(x_{n-1}, p) + \frac{2M}{s}\gamma_n, \quad \forall p \in \mathcal{F},$$
(2.6)

where, $M = \sup_{n \ge 1} d(u_n, p)$. This implies that

$$D_d(x_n, \mathcal{F}) \le (1+b_n)d(x_{n-1}, \mathcal{F}) + \frac{2M}{s}\gamma_n.$$
(2.7)

Since $\sum_{n=1}^{\infty} \lambda_n < \infty$, it follows that $\sum_{n=1}^{\infty} b_n < \infty$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, thus from Lemma 2.1, we have

$$\lim_{n \to \infty} D_d(x_n, \mathcal{F}) = 0$$

Next, we will prove that $\{x_n\}$ is a Cauchy sequence. Note that when $x > 0, 1+x \le e^x$, from (2.6) we have

$$\begin{aligned} d(x_{n+m},p) &\leq (1+b_{n+m})d(x_{n+m-1},p) + \frac{2M}{s}\gamma_{n+m} \leq \\ &\leq e^{b_{n+m}}d(x_{n+m-1},p) + \frac{2M}{s}\gamma_{n+m} \leq \\ &\leq e^{b_{n+m}}\left[e^{b_{n+m-1}}d(x_{n+m-2},p) + \frac{2M}{s}\gamma_{n+m-1}\right] + \frac{2M}{s}\gamma_{n+m} \leq \\ &\leq e^{(b_{n+m}+b_{n+m-1})}d(x_{n+m-2},p) + \frac{2M}{s}e^{b_{n+m}}[\gamma_{n+m} + \gamma_{n+m-1}] \leq \\ &\leq \dots \\ &\leq e^{(b_{n+m}+b_{n+m-1}+\dots+b_{n+1})}d(x_n,p) + \\ &+ \frac{2M}{s}e^{(b_{n+m}+b_{n+m-1}+\dots+b_{n+2})}[\gamma_{n+m} + \gamma_{n+m-1} + \dots + \gamma_{n+1}] \leq \\ &\leq e^{\sum_{k=n+1}^{n+m}b_k}d(x_n,p) + \frac{2M}{s}e^{\sum_{k=n+2}^{n+m}b_k}\sum_{j=n+1}^{n+m}\gamma_j \leq \\ &\leq e^{\sum_{k=n+1}^{n+m}b_k}\left\{d(x_n,p) + \frac{2M}{s}\sum_{j=n+1}^{n+m}\gamma_j\right\} \leq \\ &\leq M'\left\{d(x_n,p) + \frac{2M}{s}\sum_{j=n+1}^{n+m}\gamma_j\right\} < \infty, \end{aligned}$$

for all $p \in \mathcal{F}$ and $n, m \in \mathbb{N}$, where $M' = e^{\sum_{k=n+1}^{n+m} b_k} < \infty$. Since $\lim_{n \to \infty} D_d(x_n, \mathcal{F}) = 0$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, there exists a natural number n_1 such that for all $n \ge n_1$,

$$D_d(x_n, \mathcal{F}) < \frac{\varepsilon}{4M'}$$
 and $\sum_{j=n_1+1}^{\infty} \gamma_j < \frac{s \cdot \varepsilon}{8MM'}.$

Thus there exists a point $p_1 \in \mathcal{F}$ such that $d(x_{n_1}, p_1) < \frac{\varepsilon}{4M'}$, by the definition of $D_d(x_n, \mathcal{F})$. It follows from (2.8) that for all $n \ge n_1$ and $m \ge 0$,

$$\begin{aligned} d(x_{n+m}, x_n) &\leq d(x_{n+m}, p_1) + d(x_n, p_1) \leq \\ &\leq M' d(x_{n_1}, p_1) + \frac{2MM'}{s} \sum_{j=n_1+1}^{n+m} \gamma_j + M' d(x_{n_1}, p_1) + \frac{2MM'}{s} \sum_{j=n_1+1}^{n+m} \gamma_j < \\ &< M' \cdot \frac{\varepsilon}{4M'} + \frac{2MM'}{s} \cdot \frac{s \cdot \varepsilon}{8MM'} + M' \cdot \frac{\varepsilon}{4M'} + \frac{2MM'}{s} \cdot \frac{s \cdot \varepsilon}{8MM'} < \\ &< \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon. \end{aligned}$$

This implies that $\{x_n\}$ is a Cauchy sequence. Since the space is complete, the sequence $\{x_n\}$ is convergent. Let $\lim_{n\to\infty} x_n = p$. Moreover, since the set of fixed points of an asymptotically quasi-nonexpansive mapping is closed, so is \mathcal{F} , thus $p \in \mathcal{F}$ from $\lim_{n\to\infty} D_d(x_n,\mathcal{F}) = 0$, that is, p is a common fixed point of the mappings $\{T_1, T_2, \ldots, T_N\}$. This completes the proof.

If $u_n = 0$, in Theorem 2.2, we can easily obtain the following theorem.

Theorem 2.3. Let (X, d, W) be a complete convex metric space. Let T_1 , $T_2, \ldots, T_N \colon X \to X$ be N asymptotically quasi-nonexpansive mappings. Suppose $\mathcal{F} = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Let $x_0 \in X$ and $\{\alpha_n\}$, $\{\beta_n\}$ be two sequences in [0,1], $\{k_n\}$ be the sequence defined by (1.5) and $\{\alpha_n\} \subset (s, 1-s)$ for some $s \in (0,1)$ satisfying the following conditions:

- $\begin{array}{ll} \text{(i)} & \alpha_n+\beta_n=1, & \forall n\geq 1;\\ \text{(ii)} & \sum_{n=1}^\infty (k_n-1)<\infty. \end{array}$

Then the implicit iteration process $\{x_n\}$ generated by (1.3) converges to a common fixed point of $\{T_1, T_2, \ldots, T_N\}$ if and only if

$$\liminf_{n \to \infty} D_d(x_n, \mathcal{F}) = 0.$$

From Theorem 2.2, we can easily obtain the following theorem.

Theorem 2.4. Let (X, d, W) be a complete convex metric space. Let T_1 , $T_2, \ldots, T_N \colon X \to X$ be N quasi-nonexpansive mappings. Suppose $\mathcal{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $x_0 \in X$. Let $\{u_n\}$ be an arbitrary bounded sequence in X, $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ be three sequences in [0,1] satisfying the following conditions:

(i)
$$\alpha_n + \beta_n + \gamma_n = 1$$
, $\forall n \ge 1$

- (ii) $\{\alpha_n\} \subset (s, 1-s) \text{ for some } s \in (0,1);$ (iii) $\sum_{n=1}^{\infty} \gamma_n < \infty.$

Then the implicit iteration process with errors $\{x_n\}$ generated by (1.3) converges to a common fixed point of $\{T_1, T_2, \ldots, T_N\}$ if and only if

$$\liminf_{n \to \infty} D_d(x_n, \mathcal{F}) = 0.$$

Remark 2.5. Our results extend and improve the corresponding results of Wittmann [15] and Xu and Ori [16] to the case of a more general class of nonexpansive mappings and implicit iteration process with errors.

Remark 2.6. Our results also extend and improve the corresponding results of Sun [12] to the case of an implicit iteration process with errors.

Remark 2.7. The main result of this paper is also an extension and improvement of the well-known corresponding results in [1-11].

Remark 2.8. Our results also extend and improve the corresponding results of Zhou and Chang [17] to the case of a more general class of asymptotically nonexpansive mappings.

REFERENCES

- S.S. Chang, J.K. Kim, Convergence theorems of the Ishikawa type iterative sequences with errors for generalized quasi-contractive mappings in convex metric spaces, Appl. Math. Lett. 16 (2003) 4, 535–542.
- [2] S.S. Chang, J.K. Kim, D.S. Jin, Iterative sequences with errors for asymptotically quasi-nonexpansive type mappings in convex metric spaces, Arch. Inequal. Appl. 2 (2004), 365–374.
- [3] S.S. Chang, On the approximating problem of fixed points for asymptotically nonexpansive mappings, Indian J. Pure Appl. Math. 32 (2001) 9, 1–11.
- [4] J.K. Kim, K.H. Kim, K.S. Kim, Convergence theorems of modified three-step iterative sequences with mixed errors for asymptotically quasi-nonexpansive mappings in Banach spaces, Panamer. Math. J. 14 (2004) 1, 45–54.
- [5] J.K. Kim, K.H. Kim, K.S. Kim, Three-step iterative sequences with errors for asymptotically quasi-nonexpansive mappings in convex metric spaces, Nonlinear Anal. Convex Anal. RIMS 1365 (2004), 156–165.
- [6] Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1–7.
- [7] Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18–24.
- Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member of uniformly convex Banach spaces, J. Math. Anal. Appl. 266 (2002), 468–471.
- [9] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.

- [10] W.V. Petryshyn, T.E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459–497.
- J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407–413.
- [12] Z.H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), 351–358.
- [13] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142–149.
- [14] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301–308.
- [15] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
- [16] H.K. Xu, R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001), 767-773.
- Y. Zhou, S.S. Chang, Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 23 (2002) 7–8, 911–921.

Gurucharan Singh Saluja saluja_1963@rediffmail.com

Govt. Nagarjun P.G. College of Science Department of Mathematics & Information Technology, Raipur (Chhattisgarh), India

Hemant Kumar Nashine hemantnashine@gmail.com, hnashine@rediffmail.com

Disha Institute of Management and Technology Department of Mathematics Satya Vihar, Vidhansabha — Chandrakhuri Marg (Baloda Bazar Road), Mandir Hasaud, Raipur — 492101(Chhattisgarh), India

Received: January 4, 2010. Accepted: February 21, 2010.