ASYMPTOTIC BEHAVIOUR AND APPROXIMATION OF EIGENVALUES FOR UNBOUNDED BLOCK JACOBI MATRICES

Maria Malejki

Abstract

The research included in the paper concerns a class of symmetric block Jacobi matrices. The problem of the approximation of eigenvalues for a class of a self-adjoint unbounded operators is considered. We estimate the joint error of approximation for the eigenvalues, numbered from 1 to N, for a Jacobi matrix J by the eigenvalues of the finite submatrix J_{n} of order $p n \times p n$, where $N=\max \{k \in \mathbb{N}: k \leq r p n\}$ and $r \in(0,1)$ is suitably chosen. We apply this result to obtain the asymptotics of the eigenvalues of J in the case $p=3$.

Keywords: symmetric unbounded Jacobi matrix, block Jacobi matrix, tridiagonal matrix, point spectrum, eigenvalue, asymptotics.

Mathematics Subject Classification: 47A75, 47B25, 47B36, 15 A 18.

1. INTRODUCTION

Tridiagonal matrices are very useful in many problems in mathematics and in applications, and the theory and methods related to tridiagonal matrices are still developed and generalized (see [20]). In the context of advances and applications, block tridiagonal matrices are very interesting (see, e.g., [6] and [8]). This work is devoted to spectral properties of a class of block Jacobi matrices with discrete spectrum. The problem, when the linear operator defined by a Jacobi matrix has discrete spectrum, i.e., its spectrum consists of isolated eigenvalues of finite multiplicity, was already investigated and partially solved (see, e.g., $[7,10]$ and [12]). It is well known that sometimes it is possible to calculate exact formulas for eigenvalues of Jacobi matrices (see, e.g., $[9,18]$ and [11]), but it is not possible in general. So, asymptotic and approximate approaches have to be applied (see, e.g., [3-5,12,13,17,21] and [22]). Projective methods, that use finite submatrices to investigate spectral properties of operators given by infinite Jacobi matrices are applied successfully (see $[1,2,10,15,16,21]$) In this paper we continue the research related to the approximation of the discrete
spectrum of selfadjoint operators in the Hilbert space $l^{2}(\mathbb{N})$ and generalize the results included in [16] and [15].

The paper is organized as follows. In Section 2 we introduce conditions that are needed to apply the projective method and obtain the result. The method, that is used in this paper, is based on the Volkmer's results ([21]). Section 3 includes a generalization of the lemmta, which come originally from [21], and other technical facts. In section 4 we formulate the main result of the article. There we estimate the joint error of approximation for the eigenvalues, numbered from 1 to N, of J by the eigenvalues of the finite submatrix J_{n} of order $p n \times p n$, where $N=\max \{k \in \mathbb{N}$: $k \leq r p n\}$ and $r \in(0,1)$ is suitably chosen. Section 5 is devoted to an application of the main result to obtain asymptotic formulas for the eigenvalues of an operator that is defined by an infinite real symmetric 5-diagonal matrix and acts in the Hilbert space $l^{2}(\mathbb{N})$.

2. NOTATIONS AND PRELIMINARIES

The notations (\cdot, \cdot) and $\|\cdot\|$ are used for an inner product and a norm, respectively, in the Euclidian space \mathbb{C}^{p} as well as in any Hilbert spaces. Moreover, the notation $\|\cdot\|$ is also used for the operator norm.

Let $M_{k \times l}(\mathbb{C})$ be the set of complex matrices with k rows and l columns for any integers $k, l \geq 1$.

Next we introduce some concepts from abstract operator theory which we will need later. Let H be a Hilbert space and $T: D(T) \subset H \rightarrow H$ be a self-adjoint operator in H. Assume that T has a compact resolvent and is bounded from below in the sense that there exists $c \in \mathbb{R}$ such that $(T f, f) \geq c\|f\|^{2}$ for $f \in D(T)$. Then the spectrum of T consists of the eigenvalues that can be ordered non-decreasingly: $\lambda_{1}(T) \leq \lambda_{2}(T) \leq \lambda_{3}(T) \leq \ldots$. By the minimum-maximum principle, for all $k \in \mathbb{N}$, there holds

$$
\begin{equation*}
\lambda_{k}(T)=\min _{E_{k}} \max \left\{(T x, x): x \in E_{k},\|x\|=1\right\} \tag{2.1}
\end{equation*}
$$

where the minimum is taken over all linear subspaces $E_{k} \subseteq D(T)$ of dimension k.
Denote by x_{k} the eigenvector of T associated with the eigenvalue $\lambda_{k}(T)$. We will assume that the system of eigenvectors $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is orthonormal in H, so it forms an orthonormal basis of H.

Let E_{N} be a N-dimensional subspace of H . Assume that $E_{N} \subset D(T)$. Denote by P_{N} the orthogonal projection onto E_{N} and $Q_{N}=I-P_{N}$. Let us consider the following operator on E_{N} :

$$
T_{N}: E_{N} \ni v \rightarrow P_{N} T v \in E_{N}
$$

Denote by $\mu_{i}, 1 \leq i \leq N$, the eigenvalues of T_{N} by assuming that $\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{N}$.
For any $k=1, \ldots, N$, define

$$
L^{(k)}=\left(L_{i, j}\right)_{i, j=1, \ldots, k} \in M_{k \times k}(\mathbb{C}) \quad \text { with } \quad L_{i, j}=\left(Q_{N} x_{i}, x_{j}\right)
$$

and

$$
M^{(k)}=\left(M_{i, j}\right)_{i, j=1, \ldots, k} \in M_{k \times k}(\mathbb{C}) \quad \text { with } \quad M_{i, j}=\left(\left(P_{N} T P_{N}-T\right) x_{i}, x_{j}\right)
$$

The following lemma is fundamental to obtain the results in this paper.
Lemma 2.1 (Volkmer [21]). If $\left\|L^{(k)}\right\|<1$ then

$$
0 \leq \mu_{k}-\lambda_{k}(T) \leq \frac{\left\|M^{(k)}+\lambda_{k}(T) L^{(k)}\right\|}{1-\left\|L^{(k)}\right\|}
$$

where $1 \leq k \leq n$.
Let $p \geq 1$ be an integer and also denote

$$
l^{2}\left(\mathbb{N}, \mathbb{C}^{p}\right)=\left\{\left\{f_{n}\right\}_{n=1}^{\infty}: f_{n} \in \mathbb{C}^{p}, n \geq 1, \text { and } \sum_{k=1}^{\infty}\left\|f_{k}\right\|^{2}<+\infty\right\}
$$

Consider a Jacobi operator J in the Hilbert space $l^{2}=l^{2}\left(\mathbb{N}, \mathbb{C}^{p}\right)$ given by the symmetric block Jacobi matrix

$$
J=\left(\begin{array}{ccccc}
D_{1} & C_{1}^{*} & 0 & \cdots & \cdots \tag{2.2}\\
C_{1} & D_{2} & C_{2}^{*} & 0 & \ddots \\
0 & C_{2} & D_{3} & C_{3}^{*} & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right), \quad D_{n}=D_{n}^{*}, C_{n} \in M_{p \times p}(\mathbb{C}), n \geq 1
$$

more exactly, J acts on the maximum domain

$$
\begin{equation*}
D(J)=\left\{\left\{f_{n}\right\}_{n=1}^{\infty} \in l^{2}:\left\{C_{n-1} f_{n-1}+D_{n} f_{n}+C_{n}^{*} f_{n+1}\right\}_{n=1}^{\infty} \in l^{2}\right\} \tag{2.3}
\end{equation*}
$$

and it is defined by

$$
J f=\left\{C_{n-1} f_{n-1}+D_{n} f_{n}+C_{n}^{*} f_{n+1}\right\}_{n=1}^{\infty} \text { for } f=\left\{f_{n}\right\}_{n=1}^{\infty} \in D(J)
$$

where $f_{n} \in \mathbb{C}^{p}, n \geq 1$ and $C_{0}:=0$.
Denote

$$
\begin{align*}
d_{n}^{\text {min }} & =\inf \left\{\left(D_{n} f, f\right): f \in \mathbb{C}^{p},\|f\|=1\right\} \tag{2.4}\\
d_{n}^{\max } & =\sup \left\{\left(D_{n} f, f\right): f \in \mathbb{C}^{p},\|f\|=1\right\} \tag{2.5}
\end{align*}
$$

We assume the following conditions:
(C1) $D_{n}=D_{n}^{*}$ for $n \geq 1$ and there exist $\alpha>0, \delta_{1} \geq \delta_{2}>0$ and $\left\{\epsilon_{n}\right\}_{n=1}^{\infty} \subset[0,+\infty)$, $\lim _{n \rightarrow \infty} \epsilon_{n}=0$, such that

$$
\delta_{2} n^{\alpha}\left(1-\epsilon_{n}\right) \leq d_{n}^{\min } \leq d_{n}^{\max } \leq \delta_{1} n^{\alpha}\left(1+\epsilon_{n}\right), n \geq 1 ;
$$

(C2) there exist $\beta \in \mathbb{R}$ and $S>0$ such that

$$
\left\|C_{n}\right\| \leq S n^{\beta}, n \geq 1
$$

(C3) $\alpha>\beta$.
Proposition 2.2. If $(\mathrm{C} 1)-(\mathrm{C} 3)$ are satisfied then:

1. $D(J)=\left\{\left\{f_{n}\right\}_{n=1}^{\infty} \in l^{2}:\left\{D_{n} f_{n}\right\} \in l^{2}\right\}$,
2. J is a selfadjoint operator in l^{2},
3. J is bounded from below,
4. $(J-\lambda)^{-1}$ is compact for any λ belonging to the resolvent set of J.

Proof. Let

$$
c=\inf \left\{d_{n}^{\min }-2 S n^{\beta}: n \geq 1\right\}
$$

then (C1)-(C3) yield $c \in \mathbb{R}$. Denote

$$
A=\left(\begin{array}{ccccc}
D_{1} & 0 & 0 & & \\
0 & D_{2} & 0 & 0 & \ddots \\
0 & 0 & D_{3} & 0 & \ddots \\
& \ddots & \ddots & \ddots & \ddots
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
0 & C_{1}^{*} & 0 & & \\
C_{1} & 0 & C_{2}^{*} & 0 & \ddots \\
0 & C_{2} & 0 & C_{3}^{*} & \ddots \\
& \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Let $\lambda \in(-\infty, c)$. For $n \geq 1, D_{n}-\lambda$ is invertible and

$$
\left\|\left(D_{n}-\lambda\right)^{-1}\right\| \leq\left(d_{n}^{\min }-\lambda\right)^{-1}
$$

because $\lambda<d_{n}^{\min }$. Moreover, the operator given by the matrix $A-\lambda$ is also invertible, $(A-\lambda)^{-1}$ is a compact operator on l^{2} and

$$
\left\|(A-\lambda)^{-1}\right\| \leq \sup _{n \geq 1}\left(d_{n}^{\min }-\lambda\right)^{-1}<+\infty
$$

because

$$
\lim _{n \rightarrow \infty}\left(d_{n}^{\min }-\lambda\right)^{-1}=0
$$

Next calculate

$$
B(A-\lambda)^{-1}=\left(\begin{array}{ccccc}
0 & C_{1}^{*}\left(D_{2}-\lambda\right)^{-1} & 0 & \ddots & \\
C_{1}\left(D_{1}-\lambda\right)^{-1} & 0 & C_{2}^{*}\left(D_{3}-\lambda\right)^{-1} & 0 & \\
0 & C_{2}\left(D_{2}-\lambda\right)^{-1} & 0 & C_{3}^{*}\left(D_{4}-\lambda\right)^{-1} & \ddots \\
& \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

The operator norm for the matrix $B(A-\lambda)^{-1}$ is estimated as follows

$$
\left\|B(A-\lambda)^{-1}\right\| \leq 2 \sup \left\{S n^{\beta}\left(d_{n}^{\min }-\lambda\right)^{-1}: n \geq 1\right\}
$$

because

$$
\left\|C_{n}\left(D_{n}-\lambda\right)^{-1}\right\| \leq S n^{\beta}\left(d_{n}^{\min }-\lambda\right)^{-1}, \quad n \geq 1
$$

and

$$
\left\|C_{n-1}^{*}\left(D_{n}-\lambda\right)^{-1}\right\| \leq S n^{\beta}\left(d_{n}^{\min }-\lambda\right)^{-1}, \quad n \geq 2
$$

Clearly, $\lim _{n \rightarrow \infty} n^{\beta}\left(d_{n}^{\min }-\lambda\right)^{-1}=0$, so

$$
2 \sup _{n \geq 1}\left\{S n^{\beta}\left(d_{n}^{\min }-\lambda\right)^{-1}\right\}=2 S n_{0}^{\beta}\left(d_{n_{0}}^{\min }-\lambda\right)^{-1}
$$

for a $n_{0} \in \mathbb{N}$. Notice that

$$
2 S n_{0}^{\beta}\left(d_{n_{0}}^{\min }-\lambda\right)^{-1}<1 \Longleftrightarrow \lambda<d_{n_{0}}^{\min }-2 S n_{0}^{\beta}
$$

The last inequality is satisfied because $\lambda<c$. Thus $\left\|B(A-\lambda)^{-1}\right\|<1$ and we observe the infinite matrix $I+B(A-\lambda)^{-1}$ acts as a bounded and boundedly invertible operator in l^{2}.

Notice that the matrices J, A and B satisfy the following formal identity:

$$
\begin{equation*}
J-\lambda=A-\lambda+B=\left(I+B(A-\lambda)^{-1}\right)(A-\lambda) \tag{2.6}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
D(J)=D(A)=\left\{\left\{f_{n}\right\} \in l^{2}:\left\{D_{n} f_{n}\right\} \in l^{2}\right\} \tag{2.7}
\end{equation*}
$$

moreover,

$$
(J-\lambda)^{-1}=(A-\lambda)^{-1}\left(I+B(A-\lambda)^{-1}\right)^{-1} .
$$

Thus $(J-\lambda)^{-1}$ is compact for $\lambda<c$ and, therefore, for all λ from the resolvent set. In particular, due to the fact that J is symmetric, it follows that J, in fact, is a self-adjoint operator in l^{2}. Consequently, we had proved that J is bounded from below by a lower bound c and $(J f, f) \geq c\|f\|^{2}$ for $f \in D(J)$ because $(-\infty, c)$ is included in the resolvent set of J.

Let J be an operator given by (2.2) and assume (C1)-(C3). The spectrum of J consists of the sequence of the eigenvalues of finite multiplicities only:

$$
\sigma(J)=\left\{\lambda_{k}(J): k=1,2,3, \ldots\right\}
$$

and we can assume

$$
\lambda_{1}(J) \leq \lambda_{2}(J) \leq \lambda_{3}(J) \leq \ldots
$$

Let $x_{i} \in l^{2}$ be an eigenvector of J, such that $J x_{i}=\lambda_{i}(J) x_{i}(i=1,2,3, \ldots)$. Moreover, we can assume $\left\{x_{i}: i=1,2,3, \ldots\right\}$ is an orthonormal basis in l^{2}. Let

$$
x_{i}=\left\{x_{i, n}\right\}_{n=1}^{\infty},
$$

where

$$
x_{i, n}=\left(w_{i,(n-1) p+1}, w_{i,(n-1) p+2}, \ldots, w_{i, n p}\right)^{\top} \in \mathbb{C}^{p}
$$

Then

$$
\left\|x_{i}\right\|^{2}=\sum_{n=1}^{\infty}\left\|x_{i, n}\right\|^{2}=\sum_{n=1}^{\infty} \sum_{k=1}^{p}\left|w_{i,(n-1) p+k}\right|^{2}=1 .
$$

Denote $e_{i}=\left\{\Delta_{i, n}\right\}_{n=1}^{\infty}$ for $i=1,2,3, \ldots$, where $\Delta_{i, n}$ is defined as follow. If $i=(n-1) p+k$, where $n \geq 1$ and $k \in\{1,2, \ldots, p\}$, then

$$
\Delta_{i, m}=(0,0, \ldots, 0)^{\top} \in \mathbb{C}^{p}, \text { for } m \neq n,
$$

and

$$
\Delta_{i, n}=\left(\delta_{1, k}, \delta_{2, k}, \ldots, \delta_{p, k}\right)^{\top} \in \mathbb{C}^{p}, \text { where } \delta_{t, s}= \begin{cases}0, & t \neq s \\ 1, & t=s\end{cases}
$$

The system $\left\{e_{i}: i=1,2,3, \ldots\right\}$ is the canonical orthonormal basis in $l^{2}=l^{2}\left(\mathbb{N}, \mathbb{C}^{p}\right)$. Put

$$
\begin{equation*}
E_{n}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{n p}\right\}, \tag{2.8}
\end{equation*}
$$

then $\operatorname{dim} E_{n}=n p$. Let P_{n} be an orthogonal projection on E_{n}, and let

$$
\begin{equation*}
J_{n}: E_{n} \ni x \rightarrow P_{n} J x \in E_{n} . \tag{2.9}
\end{equation*}
$$

Then J_{n} is represented, with respect the canonical basis of E_{n}, as the matrix

$$
\left(\begin{array}{cccccc}
D_{1} & C_{1}^{*} & 0 & & & \tag{2.10}\\
C_{1} & D_{2} & C_{2}^{*} & 0 & & \\
0 & C_{2} & D_{3} & C_{3}^{*} & \ddots & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & 0 & C_{n-2} & D_{n-1} & C_{n-1}^{*} \\
& & & 0 & C_{n-1} & D_{n}
\end{array}\right) .
$$

Denote by

$$
\mu_{1, n} \leq \mu_{2, n} \leq \ldots \mu_{n p-1, n} \leq \mu_{n p, n}
$$

the sequence of the eigenvalues of J_{n}.
From the min-max principle we derive

$$
\lambda_{k}(J) \leq \mu_{k, n} \quad \text { and } \quad \lambda_{k}(J) \leq\left\|J_{n}\right\| \leq C n^{\alpha} \quad \text { for } \quad k=1,2, \ldots, n p
$$

3. AUXILIARY ESTIMATIONS

In this section we use the notations introduced in Section 2.
Denote

$$
\begin{equation*}
Q_{n}=I-P_{n} . \tag{3.1}
\end{equation*}
$$

Let $k \in\{1, \ldots, n p\}$ and define the following $k \times k$-matrices:

$$
L^{(k, n)}=\left(L_{i, j}^{(n)}\right)_{i, j=1, \ldots, k}, \quad \text { where } L_{i, j}^{(n)}=\left(Q_{n} x_{i}, x_{j}\right),
$$

and

$$
M^{(k, n)}=\left(M_{i, j}^{(n)}\right)_{i, j=1, \ldots, k}, \text { where } M_{i, j}^{(n)}=\left(\left(P_{n} J P_{n}-J\right) x_{i}, x_{j}\right)
$$

Lemma 3.1. If $n \in \mathbb{N}$ and $k \in\{1,2, \ldots, n p\}$, then

$$
\begin{aligned}
&\left\|L^{(k, n)}\right\| \leq \sum_{i=1}^{k}\left\|Q_{n} x_{i}\right\|^{2} ; \\
&\left\|M^{(k, n)}+\lambda_{k}(J) L^{(k, n)}\right\| \leq\left\|C_{n}\right\|\left(\sum_{i=1}^{k}\left\|x_{i, n+1}\right\|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{k}\left\|x_{j, n}\right\|^{2}\right)^{1 / 2}+ \\
&+\left(\sum_{i=1}^{k}\left|\lambda_{k}(J)-\lambda_{i}(J)\right|^{2}\left\|Q_{n} x_{i}\right\|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{k}\left\|Q_{n} x_{j}\right\|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Proof. The proof follows the Volkmer's method (see [21]). At first notice that $\left|L_{i, j}^{(n)}\right|=\left|\left(Q_{n} x_{i}, x_{j}\right)\right|=\left|\left(Q_{n} x_{i}, Q_{n} x_{j}\right)\right| \leq\left\|Q_{n} x_{i}\right\|\left\|Q_{n} x_{j}\right\|$; therefore, the operator norm $\left\|L^{(k, n)}\right\|$ of the $k \times k$ matrix can be estimated as above.

Next notice that

$$
J P_{n} x_{j}=\left(\begin{array}{c}
D_{1} x_{i, 1}+C_{1}^{*} x_{i, 2} \\
C_{1} x_{i, 1}+D_{2} x_{i, 2}+C_{1}^{*} x_{i, 3} \\
\vdots \\
C_{n-2} x_{i, n-2}+D_{n-1} x_{i, n-1}+C_{n}^{*} x_{i, n} \\
C_{n-1} x_{i, n-1}+D_{n} x_{i, n} \\
C_{n} x_{i, n} \\
0 \\
\vdots
\end{array}\right)=
$$

$$
=\left(\begin{array}{c}
\lambda_{i}(J) x_{i, 1} \\
\lambda_{i}(J) x_{i, 2} \\
\vdots \\
\lambda_{i}(J) x_{i, n-1} \\
\lambda_{i}(J) x_{i, n}-C_{n}^{*} x_{i, n+1} \\
C_{n} x_{i, n} \\
0 \\
\vdots
\end{array}\right)=\lambda_{i}(J) P_{n} x_{i}+\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
-C_{n}^{*} x_{i, n+1} \\
C_{n} x_{i, n} \\
0 \\
\vdots
\end{array}\right)
$$

and
$P_{n} J P_{n} x_{i}-J x_{i}=\lambda_{i}(J) P_{n} x_{i}+\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ -C_{n}^{*} x_{i, n+1} \\ 0 \\ \vdots\end{array}\right)-\lambda_{i}(J) x_{i}=\left(\begin{array}{c}0 \\ \vdots \\ -C_{n}^{*} x_{i, n+1} \\ 0 \\ \vdots\end{array}\right)-\lambda_{i}(J) Q_{n} x_{i}$.

Then

$$
M_{i, j}^{(n)}=\left(P_{n} J P_{n} x_{i}-J x_{i}, x_{j}\right)=-\left(C_{n}^{*} x_{i, n+1}, x_{j, n}\right)-\lambda_{i}(J)\left(Q_{n} x_{i}, x_{j}\right) ;
$$

moreover,

$$
\begin{aligned}
\left|M_{i, j}^{(n)}+\lambda_{k} L_{i, j}^{(n)}\right| & =\left|\left(P_{n} J P_{n} x_{i}-J x_{i}, x_{j}\right)+\lambda_{k}\left(Q_{n} x_{i}, x_{j}\right)\right|= \\
& =\left|-\left(C_{n}^{*} x_{i, n+1}, x_{i, n}\right)-\left(\lambda_{i}(J)-\lambda_{k}(J)\right)\left(Q_{n} x_{i}, x_{j}\right)\right| \leq \\
& \leq\left|\left(C_{n}^{*} x_{i, n+1}, x_{i, n}\right)\right|+\left|\lambda_{i}(J)-\lambda_{k}(J)\right|\left|\left(Q_{n} x_{i}, x_{j}\right)\right| \leq \\
& \leq\left\|C_{n}\right\|\left\|x_{i, n+1}\right\|\left\|x_{i, n}\right\|+\left|\lambda_{i}(J)-\lambda_{k}(J)\right|\left\|Q_{n} x_{i}\right\|\left\|Q_{n} x_{j}\right\| .
\end{aligned}
$$

Finally, from the above estimation we derive the second inequality of the lemma.
Define

$$
\begin{equation*}
p_{n}=\max \left\{\epsilon_{k} k^{\alpha}: k \leq n\right\}, \quad q_{n}=\max \left\{S n^{\beta}, S\right\}, \quad n \geq 1 . \tag{3.2}
\end{equation*}
$$

Lemma 3.2. Under assumptions (C1) and (C2), the sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are non-decreasing and

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{n^{\alpha}}=0
$$

Proof. By definition $p_{n}=\epsilon_{k_{n}} k_{n}^{\alpha}$, for some $k_{n} \leq n$. Assume that $\left\{p_{n}\right\}$ is unbounded, then $\lim _{n \rightarrow \infty} k_{n}=+\infty$. So,

$$
\left|\frac{p_{n}}{n^{\alpha}}\right|=\frac{\epsilon_{k_{n}} k_{n}^{\alpha}}{n^{\alpha}} \leq \epsilon_{k_{n}} \rightarrow 0, \quad n \rightarrow \infty,
$$

because $\lim _{n \rightarrow \infty} \epsilon_{n}=0$.
The following estimates are satisfied for the eigenvalues of J.
Proposition 3.3. Assume that (C1)-(C3) are fulfilled. Let $j \geq 1, l \in\{1,2, \ldots, p\}$ and $i=(j-1) p+l$, then

$$
\lambda_{i}(J) \leq\left\|J_{j}\right\| \leq \delta_{1} j^{\alpha}+p_{j}+2 q_{j} .
$$

Proof. Notice that $i \leq p j$. By applying the minimum-maximum principle (2.1) and using (C1)-(C3), we derive the following estimate

$$
\lambda_{i} \leq \mu_{i, j} \leq\left\|J_{j}\right\| \leq \max _{1 \leq k \leq j} d_{k}^{\max }+2 \max _{1 \leq k \leq j-1}\left\|C_{k}\right\| \leq \delta_{1} j^{\alpha}+p_{j}+2 q_{j}
$$

Let $0<r<r^{\prime}<\left(\delta_{2} / \delta_{1}\right)^{1 / \alpha}, 1 \leq j \leq r^{\prime} k$ and $i=(j-1) p+l$, where $l \in\{1,2, \ldots, p\}$. Next, follows Volkmer ([21]), we define

$$
f_{i, k}=\frac{\left\|C_{k-1}\right\|}{d_{k}^{m i n}-\left\|J_{j}\right\|-\left\|C_{k}\right\|}, \quad k \geq n .
$$

If $k \geq n$ then $j \leq r^{\prime} k$, so from Lemma 3.2 and Proposition 3.3

$$
\begin{aligned}
f_{i, k} & \leq \frac{S k^{\beta}}{\delta_{2} k^{\alpha}\left(1-\epsilon_{k}\right)-\delta_{1} j^{\alpha}+\delta_{1} p_{j}-2 S j^{\beta}-S k^{\beta}} \leq \\
& \leq \frac{S k^{\beta}}{\delta_{2} k^{\alpha}-\delta_{1}\left(r^{\prime} k\right)^{\alpha}-\delta_{2} k^{\alpha} \epsilon_{k}-\delta_{1} p_{k}-3 S k^{\beta}}=\frac{S k^{\beta}}{\delta_{1} k^{\alpha}\left(\delta_{2} / \delta_{1}-r^{\prime \alpha}\right)+\tilde{\epsilon}_{k}},
\end{aligned}
$$

where $\tilde{\epsilon}_{k}=o\left(k^{\alpha}\right), k \rightarrow \infty$, i.e.,

$$
\lim _{k \rightarrow \infty} \frac{\tilde{\epsilon}_{k}}{k^{\alpha}}=0
$$

Therefore,

$$
\begin{equation*}
f_{i, k} \leq \frac{c}{k^{\alpha-\beta}} \leq \frac{1}{2} \text { for } k \geq K_{0} \tag{3.3}
\end{equation*}
$$

where K_{0} is large enough and $c>0$ is a constant independent of i and k.
Lemma 3.4. Assume (C1)-(C3). If $n \geq K_{0}, 1 \leq j \leq r^{\prime} n, i=(j-1) p+l, 1 \leq l \leq p$, then

$$
\left\|x_{i, n}\right\| \leq f_{i, n}\left\|x_{i, n-1}\right\|
$$

Proof. If $\lambda_{i}(J)$ is an eigenvalue of J and x_{i} is a normalized eigenvector associated to $\lambda_{i}(J)$, then

$$
C_{k-1} x_{i, k-1}+\left(D_{k}-\lambda_{i}(J)\right) x_{i, k}+C_{k}^{*} x_{i, k+1}=0, \quad k \geq 2
$$

There exists $k \geq n$ such that $\left\|x_{i, k+1}\right\| \leq\left\|x_{i, k}\right\|$. Then

$$
C_{k-1} x_{i, k-1}=-\left(D_{k}-\lambda_{i}(J)\right) x_{i, k}-C_{k}^{*} x_{i, k+1}
$$

so

$$
\begin{aligned}
\left(C_{k-1} x_{i, k-1}, x_{i, k}\right) & =-\left(\left(D_{k}-\lambda_{i}(J)\right) x_{i, k}, x_{i, k}\right)-\left(C_{k}^{*} x_{i, k+1}, x_{i, k}\right), \\
\left|\left(C_{k-1} x_{i, k-1}, x_{i, k}\right)\right| & \geq\left(\left(D_{k}-\lambda_{i}(J)\right) x_{i, k}, x_{i, k}\right)-\left|\left(C_{k}^{*} x_{i, k+1}, x_{i, k}\right)\right|
\end{aligned}
$$

and

$$
\left\|C_{k-1}\right\|\left\|x_{i, k-1}\right\|\left\|x_{i, k}\right\| \geq d_{k}^{\min }\left\|x_{i, k}\right\|^{2}-\lambda_{i}(J)\left\|x_{i, k}\right\|^{2}-\left\|C_{k}\right\|\left\|x_{i, k+1}\right\|\left\|x_{i, k}\right\| .
$$

Assume $\left\|x_{i, k}\right\| \neq 0$. Then

$$
\begin{aligned}
\left\|C_{k-1}\right\|\left\|x_{i, k-1}\right\| & \geq\left(d_{k}^{\text {min }}-\lambda_{i}(J)\right)\left\|x_{i, k}\right\|-\left\|C_{k}\right\|\left\|x_{i, k+1}\right\| \geq \\
& \geq\left(d_{k}^{\text {min }}-\lambda_{i}(J)\right)\left\|x_{i, k}\right\|-\left\|C_{k}\right\|\left\|x_{i, k}\right\|= \\
& =\left(d_{k}^{\text {min }}-\left\|J_{j}\right\|-\left\|C_{k}\right\|\right)\left\|x_{i, k}\right\| .
\end{aligned}
$$

Obviously, $k \geq K_{0}$, so $d_{k}^{\min }-\left\|J_{j}\right\|-\left\|C_{k}\right\|>0$,

$$
\left\|x_{i, k}\right\| \leq \frac{\left\|C_{k-1}\right\|}{d_{k}^{m i n}-\left\|J_{j}\right\|-\left\|C_{k}\right\|}\left\|x_{i, k-1}\right\| \leq \frac{1}{2}\left\|x_{i, k-1}\right\| \leq\left\|x_{i, k-1}\right\|
$$

and

$$
\left\|x_{i, k}\right\| \leq f_{i, k}\left\|x_{i, k-1}\right\|
$$

If $k>n$ then we can repeat this procedure to obtain $\left\|x_{i, n}\right\| \leq f_{i, n}\left\|x_{i, n-1}\right\|$.

4. APPROXIMATION FOR EIGENVALUES OF UNBOUNDED SELF-ADJOINT JACOBI MATRICES
 WITH MATRIX ENTRIES BY THE USE OF FINITE SUBMATRICES

The main result of this article is formulated as the following theorem.
Theorem 4.1. Let J be an operator in the Hilbert space l^{2} defined by the infinite matrix (2.2) satisfying (C1)-(C3). Then for every $\gamma>0$ and $r \in\left(0,\left(\delta_{2} / \delta_{1}\right)^{1 / \alpha}\right)$ there exists $C>0$ such that

$$
\sup _{1 \leq k \leq r n p}\left|\mu_{k, n}-\lambda_{k}(J)\right| \leq C n^{-\gamma} \text { for } n>r^{-1}
$$

where $\lambda_{k}(J)$ is the k-th eigenvalue of J and $\mu_{1, n} \leq \mu_{2, n} \leq \ldots \leq \mu_{p n, n}$ are the eigenvalues of the matrix J_{n} given by (2.10).
Proof. Let $s \in \mathbb{N}$ be such that

$$
\begin{equation*}
2 s(\alpha-\beta)-\alpha-1 \geq \gamma \tag{4.1}
\end{equation*}
$$

and choose $r<r^{\prime}<\left(\delta_{2} / \delta_{1}\right)^{1 / \alpha}$ and $K_{0} \in \mathbb{N}$ for which (3.3) is satisfied, and put

$$
N_{0}=\max \left\{K_{0}+s, \frac{r^{\prime} s}{r^{\prime}-r}\right\}
$$

For $n \geq N_{0}, 1 \leq j \leq r n, i=(j-1) p+l$, where $l \in\{1,2, \ldots, p\}$, and $m>n$, by using Lemma 3.4, we deduce

$$
\left\|x_{i, m}\right\| \leq f_{i, m}\left\|x_{i, m-1}\right\| \leq f_{i, m} f_{i, m-1} \cdot \ldots \cdot f_{i, n+1}\left\|x_{i, n}\right\| \leq\left(\frac{1}{2}\right)^{m-n}\left\|x_{i, n}\right\|
$$

If $j \leq r n$ and $n \geq N_{0}$ then $j \leq r^{\prime}(n-s)$, and then

$$
\left\|x_{i, n}\right\| \leq f_{i, n} f_{i, n-1} \cdot \ldots \cdot f_{i, n-s}\left\|x_{i, n-s}\right\| \leq \frac{c^{s}}{[n(n-1) \ldots(n-s+1)]^{(\alpha-\beta)}} \leq \frac{M}{n^{s(\alpha-\beta)}}
$$

where $M=M(s, \alpha, \beta)$ is a positive constant independent of i and n. Now, we use Lemma 3.1 to continue the proof. At first notice that

$$
\left\|Q_{n} x_{i}\right\|^{2}=\sum_{m=n+1}^{\infty}\left\|x_{i, m}\right\|^{2} \leq\left\|x_{i, n}\right\|^{2} \sum_{m=n+1}^{\infty}\left(\frac{1}{4}\right)^{m-n} \leq\left\|x_{i, n}\right\|^{2} \leq \frac{M^{2}}{n^{2 s(\alpha-\beta)}}
$$

Let $k \leq r n p$. Then

$$
\left\|L^{(k, n)}\right\| \leq \sum_{i=1}^{k}\left\|Q_{n} x_{i}\right\|^{2} \leq \operatorname{prn} \frac{M^{2}}{n^{2 s(\alpha-\beta)}}=\frac{C}{n^{2 s(\alpha-\beta)-1}}
$$

Since the sequence $\left\{\lambda_{m}(J)\right\}$ is non-decreasing and since

$$
\lim _{m \rightarrow \infty} \lambda_{m}(J)=+\infty
$$

it follows

$$
\max \left\{\left|\lambda_{m}(J)\right|: \lambda_{m}(J)<0\right\}=\mu<+\infty,
$$

and then by using Proposition 3.3, we obtain

$$
\lambda_{k}(J)-\lambda_{i}(J) \leq \lambda_{k}(J)+\mu \leq C_{0} n^{\alpha} \quad \text { for } \quad i \leq k
$$

Thus

$$
\sum_{i=1}^{k}\left|\lambda_{k}(J)-\lambda_{i}(J)\right|^{2}\left\|Q_{n} x_{i}\right\|^{2} \leq \operatorname{prn} C_{0}^{2} n^{2 \alpha} \frac{M^{2}}{n^{2 s(\alpha-\beta)}}=\frac{M^{\prime}}{n^{2 s(\alpha-\beta)-2 \alpha-1}}
$$

Next,

$$
\begin{aligned}
\sum_{i=1}^{k}\left\|x_{i, n}\right\|^{2} & \leq \frac{M^{2} p r}{n^{2 s(\alpha-\beta)-1}}, \\
\sum_{i=1}^{k}\left\|x_{i, n+1}\right\|^{2} & \leq \sum_{i=1}^{k} f_{i, n}^{2}\left\|x_{i, n}\right\|^{2} \leq \frac{c^{2}}{n^{2(\alpha-\beta)}} \sum_{i=1}^{k}\left\|x_{i, n}\right\|^{2} \leq \frac{c^{2} M^{2} p r}{n^{2(s+1)(\alpha-\beta)-1}}
\end{aligned}
$$

and, finally, from Lemma 3.1 we derive

$$
\left\|M^{(k, n)}+\lambda_{k}(J) L^{(k, n)}\right\| \leq \frac{c M^{2} p r}{n^{2 s(\alpha-\beta)+\alpha-\beta-1}}+\frac{C M^{\prime}}{n^{2 s(\alpha-\beta)-\alpha-1}} \leq \frac{M^{\prime \prime}}{n^{\gamma}}
$$

Assume

$$
\frac{p r M^{2}}{n^{2 s(\alpha-\beta)-1}} \leq \frac{1}{2} \quad \text { for } \quad n \geq N_{1}
$$

where N_{1} is large enough and $N_{1}>N_{0}$. Then

$$
\left\|L^{(k, n)}\right\| \leq \frac{1}{2}<1
$$

and, by Lemma 2.1,

$$
\mu_{k, n}-\lambda_{k}(J) \leq \frac{2 M^{\prime \prime}}{n^{\gamma}} \quad \text { for } \quad k \leq r n p
$$

Finally,

$$
\sup _{1 \leq k \leq r p n}\left|\mu_{k, n}-\lambda_{k}(J)\right| \leq \frac{2 M^{\prime \prime}}{n^{\gamma}}
$$

for $n \geq N_{1}$, and the proof is complete.
Theorem 4.1 generalizes the results included in [16] and [15].

5. ASYMPTOTICS

Theorem 4.1 can be applied to obtain an asymptotic behaviour of the discrete spectrum for a concrete class of operators acting in $l^{2}(\mathbb{N})$. Let us consider a 5 -diagonal symmetric infinite matrix

$$
J=\left(\begin{array}{ccc|ccc|c}
\alpha_{1} & \beta_{1} & \gamma_{1} & 0 & & & \ddots \tag{5.1}\\
\beta_{1} & \alpha_{2} & \beta_{2} & \gamma_{2} & 0 & & \ddots \\
\gamma_{1} & \beta_{2} & \alpha_{3} & \beta_{3} & \gamma_{3} & 0 & \ddots \\
\hline 0 & \gamma_{2} & \beta_{3} & \alpha_{4} & \beta_{4} & \gamma_{4} & \ddots \\
& 0 & \gamma_{3} & \beta_{4} & \alpha_{5} & \beta_{5} & \ddots \\
& & 0 & \gamma_{4} & \beta_{5} & \alpha_{6} & \ddots \\
\hline & & & \ddots & \ddots & \ddots & \ddots
\end{array}\right) .
$$

We identify this matrix with a block Jacobi matrix with 3×3-matrix entries

$$
\left(\begin{array}{ccccc}
D_{1} & C_{1}^{*} & 0 & \ddots & \ddots \\
C_{1} & D_{2} & C_{2}^{*} & 0 & \ddots \\
0 & C_{2} & D_{3} & \ddots & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
D_{n}=\left(\begin{array}{ccc}
\alpha_{3 n-2} & \beta_{3 n-2} & \gamma_{3 n-2} \tag{5.2}\\
\beta_{3 n-2} & \alpha_{3 n-1} & \beta_{3 n-1} \\
\gamma_{3 n-2} & \beta_{3 n-1} & \alpha_{3 n}
\end{array}\right), \quad C_{n}=\left(\begin{array}{ccc}
0 & \gamma_{3 n-1} & \beta_{3 n-2} \\
0 & 0 & \gamma_{3 n} \\
0 & 0 & 0
\end{array}\right)
$$

We introduce the following conditions:
(A1) $\alpha_{n} \in \mathbb{R}$ and $\alpha_{n}=\delta n^{\alpha}\left(1+\Delta_{n}\right), n \geq 1$, where $\alpha>0$ and $\lim _{n \rightarrow \infty} \Delta_{n}=0$;
(A2) $\beta_{n}, \gamma_{n} \in \mathbb{R}$ and there exist $\beta \in \mathbb{R}$ and $B>0$ such that

$$
\left|\beta_{n}\right|,\left|\gamma_{n}\right| \leq B n^{\beta}, n \geq 1
$$

(A3) $\alpha>\beta$;
(A4) $\alpha>\beta+1, \alpha \geq 1$ and $\Delta_{n}-\Delta_{n-1}=o\left(\frac{1}{n}\right), n \rightarrow \infty$.
In this section we use the standard notations $o\left(a_{n}\right)$ and $O\left(a_{n}\right)$, as $n \rightarrow \infty$. Apply formulas (2.4) and (2.5) to (5.2) and notice that

$$
\begin{gathered}
d_{n}^{\min } \geq \min \left\{\alpha_{3 n-2}, \alpha_{3 n-1}, \alpha_{3 n}\right\}-6 B(3 n)^{\beta} \geq \\
\delta(3 n-2)^{\alpha}-\delta(3 n-2)^{\alpha} \max \left\{\left|\Delta_{3 n}\right|,\left|\Delta_{3 n-1}\right|,\left|\Delta_{3 n-2}\right|\right\}-6 B 3^{\beta} n^{\beta}=
\end{gathered}
$$

$$
=3^{\alpha} \delta n^{\alpha}\left(1+\epsilon_{n}^{\prime}\right), \quad \text { where } \quad \epsilon_{n}^{\prime}=o(1)
$$

and

$$
\begin{aligned}
d_{n}^{\max } & \leq \max \left\{\alpha_{3 n-2}, \alpha_{3 n-1}, \alpha_{3 n}\right\}+6 B(3 n)^{\beta}= \\
& =3^{\alpha} \delta n^{\alpha}\left(1+\epsilon_{n}^{\prime \prime}\right), \quad \text { where } \quad \epsilon_{n}^{\prime \prime}=o(1) .
\end{aligned}
$$

Thus, $\epsilon_{n}=\max \left\{\left|\epsilon_{n}^{\prime}\right|,\left|\epsilon_{n}^{\prime \prime}\right|\right\}=o(1), n \rightarrow \infty$, and

$$
3^{\alpha} \delta n^{\alpha}\left(1-\epsilon_{n}\right) \leq d_{n}^{\min } \leq d_{n}^{\max } \leq 3^{\alpha} \delta n^{\alpha}\left(1+\epsilon_{n}\right), n \geq 1 .
$$

It is easy to verify that

$$
\left\|C_{n}\right\| \leq 3^{1+\beta} B^{\beta} n^{\beta}, \quad n \geq 1
$$

Therefore, (A1)-(A3) yield (C1)-(C3), where $\delta_{1}=\delta_{2}=3^{\alpha} \delta$. Then J defines an operator in $l^{2}(\mathbb{N}, \mathbb{C})$ which is identified with a Jacobi operator in $l^{2}\left(\mathbb{N}, \mathbb{C}^{3}\right)$. Moreover, we can apply Theorem 4.1 with any $r \in(0,1)$ and $\gamma>0$ to the operator given by the matrix J.

Define the Gerschgorin radius (see [19])

$$
\begin{equation*}
R_{n}=\left|\beta_{n}\right|+\left|\gamma_{n}\right|+\left|\beta_{n-1}\right|+\left|\gamma_{n-2}\right| \tag{5.3}
\end{equation*}
$$

and let

$$
\begin{equation*}
K_{n}=\left\{x \in \mathbb{R}:\left|\alpha_{n}-x\right| \leq R_{n}\right\} \tag{5.4}
\end{equation*}
$$

Lemma 5.1. If (A 1$)-(\mathrm{A} 4)$ are satisfied then
1.

$$
\alpha_{n+1}-\alpha_{n}-R_{n+1}-R_{n}=\delta n^{\alpha-1}+o\left(n^{\alpha-1}\right), n \rightarrow \infty ;
$$

2. there exists $n_{0}>1$ such that $K_{n} \cap\left(\bigcup_{m \neq n} K_{m}\right)=\emptyset$ for $n \geq n_{0}$.

Denote

$$
J_{l}^{k}=\left(\begin{array}{ccccc}
\alpha_{k} & \beta_{k} & \gamma_{k} & 0 & \\
\beta_{k} & \alpha_{k+1} & \beta_{k+1} & \gamma_{k+1} & \ddots \\
\gamma_{k} & \beta_{k+1} & \alpha_{k+2} & \beta_{k+2} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
& & \gamma_{l-2} & \beta_{l-1} & \alpha_{l}
\end{array}\right), \quad k \leq l
$$

and

$$
\begin{equation*}
J_{n}=J_{3 n}^{1} \tag{5.5}
\end{equation*}
$$

Let $\mu_{1, n}, \mu_{2, n} \ldots, \mu_{3 n, n}$ be the non-decreasingly arranged sequence of the eigenvalues of the matrix J_{n}.

Lemma 5.2. Let $\gamma>0$. If (A1)-(A3) are satisfied then

$$
\lambda_{n}(J)=\mu_{n, n}+O\left(n^{-\gamma}\right), n \rightarrow \infty
$$

Proof. Notice that $p=3$. Let $r=\frac{1}{3}$, then $r n p=n$. From Theorem 4.1 we have

$$
\sup _{1 \leq i \leq n}\left|\mu_{i, n}-\lambda_{i}(J)\right| \leq C n^{-\gamma},
$$

where C is independent of n and i. Thus

$$
\left|\mu_{n, n}-\lambda_{n}(J)\right| \leq C n^{-\gamma}
$$

Remark 5.3. We apply the Gerschgorin theorem (see [19]) and the generalized Gerschorin theorem, which is given in the book of Saad (see Theorem 3.12, [19]), to the symmetric matrix J_{n}, and we observe that if $n_{0}<i \leq 3 n$ then $\mu_{i, n} \in K_{i}$, where n_{0} is given in Lemma 5.1 and K_{i} is defined by (5.4). Moreover, from Theorem 4.1 we derive

$$
\lambda_{i}(J)=\lim _{n \rightarrow \infty} \mu_{i, n} \in K_{i}, i>n_{0}
$$

Lemma 5.4 (Lütkepohl [14]). Let $A \in M_{k \times k}, D \in M_{l \times l}, B, C^{\top} \in M_{l \times k}$. Then

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)= \begin{cases}\operatorname{det} A \operatorname{det}\left(D-C A^{-1} B\right), & \text { if } A \text { is invertible } \\
\operatorname{det} D \operatorname{det}\left(A-B D^{-1} C\right), & \text { if } D \text { is invertible }\end{cases}
$$

Theorem 5.5. Let J be an operator defined in the Hilbert space $l^{2}(\mathbb{N})$ by the matrix (5.1). Under (A1)-(A4) the following asymptotic formula for the discrete spectrum of J is satisfied:
$\lambda_{n}(J)=\alpha_{n}-\frac{\beta_{n-1}^{2}}{\alpha_{n-1}-\alpha_{n}}-\frac{\beta_{n}^{2}}{\alpha_{n+1}-\alpha_{n}}+\frac{\gamma_{n-2}^{2}}{\alpha_{n-2}-\alpha_{n}}+\frac{\gamma_{n}^{2}}{\alpha_{n+2}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right)$,
as $n \rightarrow \infty$.
Proof. Let $n>n_{0}+2$, where n_{0} is given in Lemma 5.1, $N=3 n$ and $\lambda=\mu_{n, n}$ be the n-th eigenvalue of $J_{n}=J_{N}^{1} \in M_{N \times N}$. Then

$$
J_{N}^{1}-\lambda=\left(\begin{array}{cc}
J_{n-2}^{1}-\lambda & E_{n}^{*} \\
E_{n} & J_{N}^{n-1}-\lambda
\end{array}\right),
$$

where

$$
E_{n}=\left(\begin{array}{cccc}
0 & \cdots & \gamma_{n-3} & \beta_{n-2} \\
0 & \cdots & 0 & \gamma_{n-2} \\
\cdots & & & \\
0 & \cdots & 0 & 0
\end{array}\right) \in M_{(N-n+2) \times(n-2)}
$$

J_{n-2}^{1} is a real symmetric matrix, so

$$
\begin{gathered}
\left\|J_{n-2}^{1}\right\|=\max \left\{\mu \in \mathbb{R}: \mu \text { is an eigenvalue of } J_{n-2}^{1}\right\} \in K_{n-2}, \\
\left\|J_{n-2}^{1}\right\| \leq \alpha_{n-2}+R_{n-2}<\alpha_{n}-R_{n} \leq \mu_{n, n}=\lambda
\end{gathered}
$$

therefore, $J_{n-2}^{1}-\lambda$ is invertible and, from Lemma 5.4, we derive

$$
\begin{equation*}
\operatorname{det}\left(J_{N}^{1}-\lambda\right)=\operatorname{det}\left(J_{n-2}^{1}-\lambda\right) \operatorname{det}\left(J_{N}^{n-1}-\lambda-E_{n}\left(J_{n-2}^{1}-\lambda\right)^{-1} E_{n}^{*}\right) . \tag{5.6}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\left(J_{n-2}^{1}-\lambda\right)^{-1}=\left(m_{i, j}(\lambda)\right)_{i, j=1}^{n-2} \tag{5.7}
\end{equation*}
$$

Then

$$
E_{n}\left(J_{n-2}^{1}-\lambda\right)^{-1} E_{n}^{*}=\left(\begin{array}{cccc}
a(\lambda) & b(\lambda) & 0 & \cdots \\
b(\lambda) & d(\lambda) & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\cdots & & & 0
\end{array}\right) \in M_{(N-n+2) \times(N-n+2)}
$$

where

$$
\begin{align*}
a(\lambda) & =\gamma_{n-3}^{2} m_{n-3, n-3}(\lambda)+\beta_{n-2}^{2} m_{n-2, n-2}(\lambda)+2 \gamma_{n-3} \beta_{n-3} m_{n-2, n-3}(\lambda) \tag{5.8}\\
b(\lambda) & =\gamma_{n-2} \gamma_{n-3} m_{n-3, n-2}(\lambda)+\gamma_{n-2} \beta_{n-2} m_{n-2, n-2}(\lambda) \tag{5.9}\\
d(\lambda) & =\gamma_{n-2}^{2} m_{n-2, n-2}(\lambda) \tag{5.10}
\end{align*}
$$

Applying Lemma 5.4, we deduce

$$
\begin{align*}
& \operatorname{det}\left(J_{N}^{n-1}-\lambda-E_{n}\left(J_{n-2}^{1}-\lambda\right)^{-1} E_{n}^{*}\right)= \\
& =\operatorname{det}\left(\begin{array}{cc}
J_{n+1}^{n-1}-\lambda-E(\lambda) & E_{n+1}^{\prime *} \\
E_{n+1}^{\prime} & J_{N}^{n+2}-\lambda
\end{array}\right)= \tag{5.11}\\
& =\operatorname{det}\left(J_{N}^{n+2}-\lambda\right) \operatorname{det}\left(J_{n+1}^{n-1}-\lambda-E(\lambda)-E_{n+1}^{\prime *}\left(J_{N}^{n+2}-\lambda\right)^{-1} E_{n+1}^{\prime}\right)
\end{align*}
$$

where

$$
E(\lambda)=\left(\begin{array}{ccc}
a(\lambda) & b(\lambda) & 0 \\
b(\lambda) & d(\lambda) & 0 \\
0 & 0 & 0
\end{array}\right) \in M_{3 \times 3}
$$

and

$$
E_{n+1}^{\prime}=\left(\begin{array}{ccc}
0 & \gamma_{n} & \beta_{n+1} \\
0 & 0 & \gamma_{n+1} \\
\cdots & & \\
0 & 0 & 0
\end{array}\right) \in M_{(N-n-1) \times 3}
$$

Notice that $J_{N}^{n+2}-\lambda$ is invertible because from (5.4) and Remark 5.3

$$
\lambda=\mu_{n, n} \leq \alpha_{n}+R_{n}<\alpha_{n+2}-R_{n+2} \leq \min \left\{\mu: \mu \text { is an eigenvalue of } J_{N}^{n+2}\right\}
$$

Let

$$
\begin{equation*}
\left(J_{N}^{n+2}-\lambda\right)^{-1}=\left(s_{i, j}(\lambda)\right)_{i, j=1}^{N-n-1} \tag{5.12}
\end{equation*}
$$

Thus

$$
E_{n+1}^{\prime *}\left(J_{N}^{n+2}-\lambda\right)^{-1} E_{n+1}^{\prime}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & d^{\prime}(\lambda) & b^{\prime}(\lambda) \\
0 & b^{\prime}(\lambda) & c^{\prime}(\lambda)
\end{array}\right) \in M_{3 \times 3}
$$

where

$$
\begin{align*}
d^{\prime}(\lambda) & =\gamma_{n}^{2} s_{1,1}(\lambda), \tag{5.13}\\
c^{\prime}(\lambda) & =\beta_{n+1}^{2} s_{1,1}(\lambda)+\gamma_{n+1}^{2} s_{2,2}(\lambda)+2 \beta_{n+1} \gamma_{n+1} s_{1,2}(\lambda), \tag{5.14}\\
b^{\prime}(\lambda) & =\gamma_{n}\left(\beta_{n+1} s_{1,1}(\lambda)+\gamma_{n+1} s_{2,1}(\lambda)\right) . \tag{5.15}
\end{align*}
$$

From (5.6) and (5.11) we deduce

$$
\operatorname{det}\left(J_{N}^{1}-\lambda\right)=\operatorname{det}\left(J_{n-2}^{1}-\lambda\right) \operatorname{det}\left(J_{N}^{n+2}-\lambda\right) \operatorname{det} A_{n}(\lambda),
$$

where

$$
A_{n}(\lambda)=\left(\begin{array}{ccc}
\alpha_{n-1}-\lambda-a(\lambda) & \beta_{n-1}-b(\lambda) & \gamma_{n-1} \\
\beta_{n-1}-b(\lambda) & \alpha_{n}-\lambda-d(\lambda)-d^{\prime}(\lambda) & \beta_{n}-b^{\prime}(\lambda) \\
\gamma_{n-1} & \beta_{n}-b^{\prime}(\lambda) & \alpha_{n+1}-\lambda-c^{\prime}(\lambda)
\end{array}\right) .
$$

The matrices $J_{n-2}^{1}-\lambda$ and $J_{N}^{n+2}-\lambda$ are invertible and $\lambda=\mu_{n, n} \in K_{n}$ is an eigenvalue of J_{N}^{1}, so $\operatorname{det}\left(J_{N}^{1}-\lambda\right)=0$, or, equvalently, $\operatorname{det} A_{n}(\lambda)=0$, or also

$$
\begin{equation*}
\lambda=\alpha_{n}-d(\lambda)-d^{\prime}(\lambda)+F_{n}(\lambda)+G_{n}(\lambda), \tag{5.16}
\end{equation*}
$$

where

$$
\begin{gather*}
F_{n}(\lambda)= \tag{5.17}\\
=\frac{-\left(\beta_{n-1}-b(\lambda)\right)^{2}}{\alpha_{n-1}-\lambda-a(\lambda)}+\frac{-\left(\beta_{n}-b^{\prime}(\lambda)\right)^{2}}{\alpha_{n+1}-\lambda-c^{\prime}(\lambda)}+\frac{2 \gamma_{n-1}\left(\beta_{n-1}-b(\lambda)\right)\left(\beta_{n}-b^{\prime}(\lambda)\right)}{\left(\alpha_{n-1}-\lambda-a(\lambda)\right)\left(\alpha_{n+1}-\lambda-c^{\prime}(\lambda)\right)}
\end{gather*}
$$

and

$$
\begin{equation*}
G_{n}(\lambda)=\frac{\gamma_{n-1}^{2} F_{n}(\lambda)}{\left(\alpha_{n-1}-\lambda-a(\lambda)\right)\left(\alpha_{n+1}-\lambda-c^{\prime}(\lambda)\right)-\gamma_{n-1}^{2}} . \tag{5.18}
\end{equation*}
$$

Observe that, under conditions (A1)-(A4), if $1 \leq k \leq n-2,\left|\lambda-\alpha_{n}\right| \leq R_{n}$ and $x \in \mathbb{R}^{k}$, then
$\left\|\left(J_{k}^{1}-\lambda\right) x\right\| \geq \lambda\|x\|-\left\|J_{k}^{1} x\right\| \geq \lambda\|x\|-\left\|J_{k}^{1}\right\|\|x\| \geq\left(\alpha_{n}-R_{n}-\alpha_{k}-R_{k}\right)\|x\| \geq c n^{\alpha-1}\|x\|$, for a constant $c>0$; therefore,

$$
\left\|\left(J_{k}^{1}-\lambda\right)^{-1}\right\| \leq\left(c n^{\alpha-1}\right)^{-1} .
$$

Then, by Lemma 5.4, from (5.7) we derive

$$
\begin{aligned}
& m_{n-3, n-3}(\lambda)=\frac{1}{\alpha_{n-3}-\alpha_{n}}+O\left(\frac{n^{\beta}}{n^{2(\alpha-1)}}\right) \\
& m_{n-2, n-2}(\lambda)=\frac{1}{\alpha_{n-2}-\alpha_{n}}+O\left(\frac{n^{\beta}}{n^{2(\alpha-1)}}\right) \\
& m_{n-2, n-3}(\lambda)=m_{n-3, n-2}(\lambda)=O\left(\frac{n^{\beta}}{n^{2(\alpha-1)}}\right),
\end{aligned}
$$

if $\left|\lambda-\alpha_{n}\right|=O\left(n^{\beta}\right)$. Then we calculate the following asymptotic equalities

$$
\begin{align*}
& a(\lambda)=\frac{\gamma_{n-3}^{2}}{\alpha_{n-3}-\alpha_{n}}+\frac{\beta_{n-2}^{2}}{\alpha_{n-2}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right), \tag{5.19}\\
& b(\lambda)=\frac{\beta_{n-2} \gamma_{n-2}}{\alpha_{n-2}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right), \tag{5.20}\\
& d(\lambda)=\frac{\gamma_{n-2}^{2}}{\alpha_{n-2}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right), \tag{5.21}
\end{align*}
$$

for $\lambda=\mu_{n, n} \in K_{n}$, where K_{n} is given by (5.4).
From (A1)-(A4) we derive also $\left\|\left(J_{N}^{k}-\lambda\right)^{-1}\right\| \leq\left(c n^{\alpha-1}\right)^{-1}$ for $k \geq n+2$ and $\lambda=\mu_{n, n}$. Then from Lemma 5.4 and equation (5.12) we deduce

$$
\begin{aligned}
& s_{1,1}(\lambda)=\frac{1}{\alpha_{n+2}-\alpha_{n}}+O\left(\frac{n^{\beta}}{n^{2(\alpha-1)}}\right), \\
& s_{2,2}(\lambda)=\frac{1}{\alpha_{n+3}-\alpha_{n}}+O\left(\frac{n^{\beta}}{n^{2(\alpha-1)}}\right)
\end{aligned}
$$

and

$$
s_{1,2}(\lambda)=s_{2,1}(\lambda)=O\left(\frac{n^{\beta}}{n^{2(\alpha-1)}}\right)
$$

Then

$$
\begin{align*}
d^{\prime}(\lambda) & =\frac{\gamma_{n}^{2}}{\alpha_{n+2}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right), \tag{5.22}\\
c^{\prime}(\lambda) & =\frac{\beta_{n+1}^{2}}{\alpha_{n+2}-\alpha_{n}}+\frac{\gamma_{n+2}^{2}}{\alpha_{n+3}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right) \tag{5.23}
\end{align*}
$$

and

$$
\begin{equation*}
b^{\prime}(\lambda)=\frac{\gamma_{n} \beta_{n+1}}{\alpha_{n+2}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right) . \tag{5.24}
\end{equation*}
$$

Notice that if $\lambda=\mu_{n, n}$ then $\lambda=\alpha_{n}+O\left(n^{\beta}\right)$ and using (5.19)-(5.21), (5.22)-(5.24), (5.17) and (5.18) we have

$$
\begin{aligned}
F_{n}(\lambda)= & \frac{-\left(\beta_{n-1}-\gamma_{n-2} \beta_{n-2} /\left(\alpha_{n-1}-\alpha_{n}\right)\right)^{2}}{\alpha_{n-1}-\alpha_{n}}+ \\
& +\frac{-\left(\beta_{n}-\gamma_{n} \beta_{n+1} /\left(\alpha_{n+1}-\alpha_{n}\right)\right)^{2}}{\alpha_{n+1}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right)= \\
= & \frac{-\beta_{n-1}^{2}}{\alpha_{n-1}-\alpha_{n}}+\frac{-\beta_{n}^{2}}{\alpha_{n+1}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right)
\end{aligned}
$$

and

$$
G_{n}(\lambda)=O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right)
$$

Thus
$\lambda=\mu_{n, n}=\alpha_{n}-\frac{\beta_{n-1}^{2}}{\alpha_{n-1}-\alpha_{n}}-\frac{\beta_{n}^{2}}{\alpha_{n+1}-\alpha_{n}}+\frac{\gamma_{n-2}^{2}}{\alpha_{n-2}-\alpha_{n}}+\frac{\gamma_{n}^{2}}{\alpha_{n+2}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right)$.
Notice that the above estimate is satisfied under conditions (A1)-(A4).
Finally we apply Lemma 5.5 with a constant $\gamma>\max \{0,2(\alpha-1)-3 \beta\}$ to obtain the asymptotic equality for the eigenvalues of the operator J :
$\lambda_{n}(J)=\alpha_{n}-\frac{\beta_{n-1}^{2}}{\alpha_{n-1}-\alpha_{n}}-\frac{\beta_{n}^{2}}{\alpha_{n+1}-\alpha_{n}}+\frac{\gamma_{n-2}^{2}}{\alpha_{n-2}-\alpha_{n}}+\frac{\gamma_{n}^{2}}{\alpha_{n+2}-\alpha_{n}}+O\left(\frac{n^{3 \beta}}{n^{2(\alpha-1)}}\right)$,
as $n \rightarrow \infty$.
Remark 5.6. The asymptotic formula for $\lambda_{n}(J)$ from Theorem 5.5 and formula (5.25) for $\mu_{n, n}$ are more precise then the estimates mentioned in Remark 5.3 even if we do not assume additional conditions on the sign of the expression $2(\alpha-1)-3 \beta$.
Example 5.7. Let consider a non-symmetric tridiagonal operator T on $l^{2}(\mathbb{N})$

$$
\left(\begin{array}{ccccc}
1 & a_{1} & 0 & \ddots & \ddots \tag{5.26}\\
b_{1} & 4 & a_{2} & 0 & \ddots \\
0 & b_{2} & 9 & a_{3} & \ddots \\
0 & 0 & b_{3} & 16 & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded real sequences. If $J=T^{*} T$ then J is symmetric 5 -diagonal operator and the infinite matrix, associated with J, has the entries determined by the sequences

$$
\begin{aligned}
& \alpha_{n}=n^{4}+a_{n-1}^{2}+b_{n}^{2}, \quad \text { for } \quad n \geq 2, \quad \alpha_{1}=1+b_{1}^{2} \\
& \beta_{n}=n^{2} a_{n}+(n+1)^{2} b_{n}, \quad \gamma_{n}=a_{n} b_{n}, \quad \text { for } \quad n \geq 1
\end{aligned}
$$

The above sequences satisfy (A1)-(A4) with $\alpha=4$ and $\beta=2$, so we apply Theorem 5.5 to obtain

$$
\begin{aligned}
\lambda_{n}\left(T^{*} T\right) & =\lambda_{n}(J)=n^{4}+\frac{\beta_{n-1}^{2}}{n^{4}-(n-1)^{4}-\rho_{n}}-\frac{\beta_{n}^{2}}{(n+1)^{4}-n^{4}+\rho_{n+1}}+O(1)= \\
& =n^{4}+\frac{n\left(\left(a_{n-1}+b_{n-1}\right)^{2}-\left(a_{n}+b_{n}\right)^{2}\right)}{4}+O(1), \quad n \rightarrow \infty \\
\left(\rho_{n}=a_{n-1}^{2}\right. & \left.+b_{n}^{2}-a_{n-2}^{2}-b_{n-1}^{2}\right) .
\end{aligned}
$$

From the above result we deduce easily the asymptotic formula for the singular numbers of T as follow

$$
s_{n}(T)=\left(\lambda_{n}\left(T^{*} T\right)\right)^{\frac{1}{2}}=n^{2}+\frac{\left(a_{n-1}+b_{n-1}\right)^{2}-\left(a_{n}+b_{n}\right)^{2}}{8 n}+O\left(\frac{1}{n^{2}}\right), \quad n \rightarrow \infty
$$

REFERENCES

[1] W. Arveson, C^{*}-algebras and numerical linear algebra, J. Funct. Anal. 122 (1994) 2, 333-360.
[2] W. Arveson, Improper filtrations for C^{*}-algebras: Spectra of unilateral tridiagonal operators, Acta Sci. Math. 57 (1993) 1-4, 11-24.
[3] A. Boutet de Monvel, S. Naboko, L. O. Silva, Eigenvalue asympthotics of a modified Jaynes-Cummings model with periodic modulations, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 103-107.
[4] A. Boutet de Monvel, S. Naboko, L. Silva, The asympthotic behaviour of eigenvalues of modified Jaynes-Cummings model, Asymptot. Anal. 47 (2006) 3-4, 291-315.
[5] A. Boutet de Monvel, L. Zielinski, Eigenvalue asymptotics for Jaynes-Cummings type models without modulations, preprint 2008.
[6] P. Cojuhari, On the spectrun of a class of block Jacobi matrices, Operator Theory, Structured Matrices and Dilations, Theta (2007), 137-152.
[7] P. Cojuhari, J. Janas, Discreteness of the spectrum for some unbounded Jacobi matrices, Acta Sci. Math. (Szeged) 73 (2007), 649-667.
[8] H. Dette, B. Reuther, W.J. Studden, M. Zygmunt, Matrix measures and random walks with a block tridiagonal transition matrix, SIAM J. Matrix Anal. Appl. 29 (2006) 1, 117-142.
[9] J. Edward, Spectra of Jacobi matrices, differential equations on the circle, and the su $(1,1)$ Lie algebra, SIAM J. Math. Anal. 24 (1993) 3, 824-831.
[10] E.K. Ifantis, C.G. Kokologiannaki, E. Petropoulou, Limit points of eigenvalues of truncated unbounded tridiagonal operators, Cent. Eur. J. Math. 5 (2007) 2, 335-344.
[11] J. Janas, M. Malejki, Alternative approaches to asymptotic behaviour of eigenvalues of some unbounded Jacobi matrices, J. Comput. Appl. Math. 200 (2007), 342-356.
[12] J. Janas, S. Naboko, Infinite Jacobi matrices with unbounded entries: Asymptotics of eigenvalues and the transformation operator approach, SIAM J. Math. Anal. 36 (2004) 2, 643-658.
[13] J. Janas, S. Naboko, Multithreshold spectral phase transitions for a class of Jacobi matrices, Operator Theory: Adv. Appl. 124 (2001), 267-285.
[14] H. Lütkepohl, Handbook of Matrices, John Wiley \& Sons (1996).
[15] M. Malejki, Approximation and asymptotics of eigenvalues of unbounded self-adjoint Jacobi matrices acting in l^{2} by the use of finite submatrices, Cent. Eur. J. Math. 8 (2010) 1, 114-128, DOI:10.2478/s11533-009-0064-x.
[16] M. Malejki, Approximation of eigenvalues of some unbounded self-adjoint discrete Jacobi matrices by eigenvalues of finite submatrices, Opuscula Math. 27 (2007) 1, 37-49.
[17] M. Malejki, Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices, Linear Algebra and its Applications 431 (2009), 1952-1970.
[18] D. Masson, J. Repka, Spectral theory of Jacobi matrices in $l^{2}(\mathbb{Z})$ and the $s u(1,1)$ Lie algebra, SIAM J. Math. Anal. 22 (1991), 1131-1146.
[19] Y. Saad, Numerical methods for large eigenvalue problems [in:] Algorithms and Architectures for Advanced Scientific Computing, Manchester University Press, Manchester, UK, 1992.
[20] G. Teschl, Jacobi operators and completely integrable nonlinear lattices, AMS Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2000.
[21] H. Volkmer, Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation, Constr. Approx. 20 (2004), 39-54.
[22] L. Zielinski, Eigenvalue asymptotics for a class of Jacobi matrices, Hot topics in operator theory, Theta Ser. Adv. Math., 9, Theta, Bucharest, 2008, 217-229.

Maria Malejki
 malejki@uci.agh.edu.pl

AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Cracow, Poland
Received: February 19, 2010.
Revised: April 26, 2010.
Accepted: April 30, 2010.

