PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometric properties of quantum graphs and vertex scattering matrices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Differential operators on metric graphs are investigated. It is proven that vertex matching (boundary) conditions can be successfully parameterized by the vertex scattering matrix. Two new families of matching conditions are investigated: hyperplanar Neumann and hyperplanar Dirichlet conditions. Using trace formula it is shown that the spectrum of the Laplace operator determines certain geometric properties of the underlying graph.
Rocznik
Strony
295--309
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
Bibliografia
  • [1] R. Band, T. Shapira, U. Smilansky, Nodal domains on isospectral quantum graphs: The resolution of isospectrality?, J. Phys. A: Math. Theor. 39 (2006), 13999–14014.
  • [2] R. Band, O. Parzanchevski, G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. Theor. 42 (2009), 175202, 42 pp.
  • [3] J. Bolte, S. Endres, The trace formula for quantum graphs with general self adjoint boundary conditions, Ann. Henri Poincaré 10 (2009), 189–223.
  • [4] P. Exner, Contact interactions on graph superlattices, J. Phys. A: Math. Gen. 29 (1996), 87–102.
  • [5] P. Exner, P. Šeba, Free quantum motion on a branching graph, Rep. Math. Phys. 28 (1989), 7–26.
  • [6] S.A. Fulling, P. Kuchment, J.H. Wilson, Index theorems for quantum graphs, J. Phys. A: Math. Theor. 40 (2007), 14165–14180.
  • [7] N. Gerasimenko, B. Pavlov, Scattering problems on noncompact graphs, Teoret. Mat. Fiz. 74 (1988), 345–359 (Eng. transl.: Theoret. and Math. Phys. 74 (1988), 230–240).
  • [8] B. Gutkin, U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. Gen. 34 (2001), 6061–6068.
  • [9] M. Harmer, Hermitian symplectic geometry and extension theory, J. Phys. A: Math. Gen. 33 (2000), 9193–9203.
  • [10] V. Kostrykin, R. Schrader, Kirchhoff’s rule for quantum wires, J. Phys A: Math. Gen. 32 (1999), 595–630.
  • [11] V. Kostrykin, R. Schrader, Kirchhoff’s rule for quantum wires. II: The inverse problem with possible applications to quantum computers, Fortschr. Phys. 48 (2000), 703–716.
  • [12] T. Kottos, U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs, Ann. Physics 274 (1999), 76–124.
  • [13] P. Kuchment, Quantum graphs. I. Some basic structures. Special section on quantum graphs, Waves Random Media 14 (2004), S107–S128.
  • [14] P. Kurasov, Graph Laplacians and topology, Ark. Mat. 46 (2008), 95–111.
  • [15] P. Kurasov, Schrödinger operators on graphs and geometry I: Essentially bounded potentials, J. Funct. Anal. 254 (2008), 934–953.
  • [16] P. Kurasov, M. Nowaczyk, Inverse spectral problem for quantum graphs, J. Phys. A: Math. Gen. 38 (2005), 4901–4915, corrigendum: 39 (2006), 993.
  • [17] P. Kurasov, F. Stenberg, On the inverse scattering problem on branching graphs, J. Phys. A: Math. Gen. 35 (2002), 101–121.
  • [18] J.-P. Roth, Le spectre du laplacien sur un graphe, Lecture Notes in Math. 1096 (1984), 521–539.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0003-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.