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GEOMETRIC PROPERTIES OF QUANTUM GRAPHS
AND VERTEX SCATTERING MATRICES

Pavel Kurasov, Marlena Nowaczyk

Abstract. Differential operators on metric graphs are investigated. It is proven that vertex
matching (boundary) conditions can be successfully parameterized by the vertex scattering
matrix. Two new families of matching conditions are investigated: hyperplanar Neumann
and hyperplanar Dirichlet conditions. Using trace formula it is shown that the spectrum of
the Laplace operator determines certain geometric properties of the underlying graph.
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1. INTRODUCTION

Quantum graphs is a rapidly developing area of research in mathematical physics with
important prospective applications in nanotechnology and modern engineering. By
the term quantum graph we understand an ordinary differential operator on a met-
ric graph coupled via matching, or also called boundary, conditions at the vertices.
These operators are studied in the current article using methods of spectral analysis of
self-adjoint operators concentrating on the relations between their spectral properties
and the geometric structure of the underlying graph. To calculate an eigenfunction
of such an operator one needs to solve first a certain ordinary differential equation
on every edge separately, but solutions on different edges are connected through the
matching conditions and thus the spectral problem on the whole graph reminds us
about partial differential equations. From the mathematical point of view quantum
graphs are precisely the area of research, where ordinary and partial differential equa-
tions meet each other, in other words where methods developed originally for ordinary
and for partial differential equations are used simultaneously.

In a series of papers [14–16] it was proven that in the case of a compact graph
the spectrum determines the Euler characteristic of the underlying graph as well
as the number of connected components in the special case of so-called standard
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matching conditions at the vertices. The main analytic tool developed there is the
celebrated trace formula proposed independently by J.-P.Roth [18] and T.Kottos and
U. Smilansky [12]. The aim of the current article is to develop this approach further
in order to include more general matching conditions at the vertices. Therefore the
first part of the article is devoted to the discussion of the most general matching
conditions that can be imposed at the vertices. In order to simplify our presentation
only a star graph is considered in Section 2. During these studies we found it useful
to use a new parameterization of matching conditions by the matrix S, which is the
vertex scattering matrix for the energy parameter equal to 1. The advantage of this
parameterization is that it is unique and that the parameter has a clear physical
interpretation. This parameterization is a slight modification of M.Harmer’s param-
eterization [9], which is unique as well, but the parameter used there has not been
given a clear interpretation so far. The set of matching conditions leading to energy
independent vertex scattering matrices is characterized and relations with known
parameterizations due to M.Harmer and P.Kuchment are established [9, 13]. We
propose to call such matching conditions non-resonant.

In Section 3 we discuss which families of matching conditions reflect the connectiv-
ity of the graph in a proper way. All such matching conditions are classified. We select
two particular families of matching conditions: Hyperplanar Neumann and Hyperpla-
nar Dirichlet conditions (see formulas (3.1) and (3.2)). The first family is a direct
generalization of standard boundary conditions. The second family generalizes the
so-called δ′s boundary conditions considered e.g. by P.Exner, P.Kuchment, S. Fulling
and J.Wilson in [4, 6, 13].

In Sections 4 and 5 arbitrary finite compact graphs are considered. The corre-
sponding Laplace operator is defined on the domain of functions satisfying matching
conditions at the vertices that are properly connecting and lead to energy indepen-
dent vertex scattering matrices, i. e. are non-resonant. These operators have a pure
discrete spectrum consisting of eigenvalues tending to +∞. Following methods devel-
oped in [12,15,16,18] we prove the trace formula for arbitrary non-resonant matching
conditions. This formula connects the set of eigenvalues (the energy spectrum) with
the set of periodic orbits on the metric graph (the length spectrum). In addition it
includes so-called spectral and algebraic multiplicities of the eigenvalue zero. The
first number is just the multiplicity of the eigenvalue zero whereas the second number
is the multiplicity of the eigenvalue given by the characteristic equation used in the
derivation of the trace formula. These numbers may be different and Section 5 is
devoted to explicit calculation of these numbers for the special case of hyperplanar
Neumann and Dirichlet conditions at the vertices. Both the spectral and algebraic
multiplicities of the eigenvalue zero can be calculated from the spectrum. The first
number is trivially given as the multiplicity of λ = 0, the second number is deter-
mined by the asymptotics of the spectrum (see [14]). After accomplishing our studies
we have learned about paper [6], where the relation between algebraic and spectral
multiplicities and the index of the Laplacian were obtained. We believe that our
approach provides a new insight to the problem, since in our calculations one can see
straightforwardly a connection between the multiplicities of the eigenvalue zero and
the cycles in a geometric graph.
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2. MATCHING CONDITIONS VIA THE VERTEX SCATTERING MATRIX

2.1. PARAMETERIZATION OF THE MATCHING CONDITIONS

In this sections we are going to discuss how to write matching conditions at a vertex
so that they properly connect different edges meeting at this vertex. In order to
make our presentation clear we study the star graph having in mind to generalize our
consideration later for more complicated graphs.

Consider a star graph Γ with v semi–infinite nodes ∆j = [0,∞), j = 1, 2, . . . , v,
connected at one vertex V . Let H ≡ L2(Γ) = ⊕vn=1L

2([0,∞)) be the Hilbert space of
square integrable functions on Γ and let L be the Laplace operator

L =
v⊕
j=1

(
− d2

dx2

)
. (2.1)

This differential expression does not determine the self-adjoint operator uniquely.
Consider the maximal operator Lmax associated with (2.1) which is defined on the
domain Dom (Lmax) = ⊕vj=1W

2
2 ((0,∞)), where W 2

2 denotes the Sobolev space. All
self-adjoint operators associated with (2.1) can now be obtained as restrictions of
the maximal operator by imposing certain matching conditions connecting boundary
values of the functions at the vertex V . This procedure is equivalent to describing all
self-adjoint extensions of the minimal (symmetric) operator Lmin = L∗max, which can
be carried out using von Neumann theory. Let ∂nψ denote the normal derivative in
the direction outside the vertex, then ψψψ(V ), ∂nψψψ(V ) denote the vectors of boundary
values for ψ and its normal derivative at the vertex V. Thus the following Theorem
can be proven.

Theorem 2.1. The family of all self-adjoint extensions of the minimal operator Lmin

can uniquely be parameterized by an arbitrary v × v unitary matrix S, so that the
operator L(S) is the restriction of Lmax = L∗min to the set of functions satisfying the
matching conditions

i(S − I)ψψψ(V ) = (S + I)∂nψψψ(V ). (2.2)

We propose to use this parameterization of the matching conditions instead of
Harmer’s one (see [9]). The advantage of the current parameterization is that it is
unique and the parameter S has a clear physical meaning: it is equal to the value of
the vertex scattering matrix at k = 1.

The research on matching (or boundary) conditions and self-adjoint operators
on graphs goes back to 80-ies with works by B.Pavlov and N.Gerasimenko [7] and
P.Exner and P. Šeba [5] and is described in detail by P.Kuchment [13]. An efficient
description of such boundary conditions using two quadratic matrices was obtained in
1999 by V.Kostrykin and R. Schrader [10] with the disadvantage of not being unique.
In 2004 P.Kuchment has noticed that this parameterization can be made unique
by using certain orthogonal projections [13]. Harmer’s parameterization proposed
already in 2000 [9] is also unique, but no clear physical interpretation for the unitary
parameter is given.
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2.2. MATRIX S AND THE VERTEX SCATTERING MATRIX

Any solution to the differential equation

− d2

dx2
ψ(x) = k2ψ(x)

can be written in the basis of incoming and outgoing waves as follows

ψj(x) = bje
−ikx + aje

ikx, x ∈ ∆j , k > 0. (2.3)

The relation between the vectors of waves’ amplitudes aaa and bbb is given by the vertex
scattering matrix Sv(k): aaa = Sv(k)bbb. The scattering matrix has to be chosen so that
the function in (2.3) satisfies the matching conditions (2.2) at the vertex. The values
of the functions and of normal derivatives at the vertex are:

ψψψ(V ) = bbb+ aaa = (I + Sv(k))bbb and ∂nψψψ(V ) = −ikbbb+ ikaaa = ik(−I + Sv(k))bbb.

After substitution into equation (2.2) we obtain

Sv(k) =
k(S + I) + (S − I)
k(S + I)− (S − I)

. (2.4)

One can show that the matrix appearing in the denominator is invertible, so Sv(k)
is well defined. From equation (2.4) we can easily observe that Sv(1) = S. Using the
spectral representation for the unitary matrix S =

∑v
j=1 e

iθj 〈·, φj〉φj the scattering
matrix can be written as

Sv(k)ψ =
v∑
j=1

k(eiθj + 1) + (eiθj − 1)
k(eiθj + 1)− (eiθj − 1)

〈ψ, φj〉φj =

=
∑
j:θj=π

(−1)〈ψ, φj〉φj +
∑
j:θj=0

1〈ψ, φj〉φj+

+
∑

j:θj 6=π,0

k(eiθj + 1) + (eiθj − 1)
k(eiθj + 1)− (eiθj − 1)

〈ψ, φj〉φj .

(2.5)

We see once more time that the scattering matrix Sv(k) is unitary for every real value
of k. The scattering matrix Sv(k) does not depend on the energy if and only if S has
just eigenvalues ±1, i. e. the subspaces

N±1 = ker (S − (±I))

span Cv: N+1 ⊕ N−1 = Cv. The corresponding matching conditions will be called
non-resonant underlying the fact that the vertex scattering matrices have no sin-
gularities in this case. Following [13] all non-resonant matching conditions can be
written in the form

PN1∂nψψψ(V ) = 0, PN−1ψψψ(V ) = 0, (2.6)

where PN denotes the orthogonal projector on the subspace N .
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3. VERTEX SCATTERING MATRIX AND CONNECTIVITY

3.1. PROPERLY CONNECTING MATCHING CONDITIONS

In this section we will discuss which additional properties (beyond unitarity) of the
matrix S should be required so that the matching conditions correspond to the
situation where the vertex V does connect together all edges. We required so far
that the matching conditions involve the boundary values at the vertex V , but it
might happen that the end points can be divided into two nonintersecting classes
V = V1 ∪ V2, V1 ∩ V2 = ∅ so that matching conditions (2.2) connect together the
boundary values at V1 and V2 separately. Such matching conditions do not correspond
to the vertex V but rather to two (independent) vertices V1 and V2. In other words,
if the vertex V can be chopped into two vertices so that the matching conditions are
preserved, then such conditions are not properly connecting and should be excluded
from our consideration if no further special reason exists. This problem has been
discussed in details in [17] and in [11], but uniqueness of our new parameterization
makes this discussion much more transparent.

Summing up the following definition appears natural

Definition 3.1. Matching conditions are called properly connecting if and only
if the vertex cannot be divided into two (or more) vertices so that the matching con-
ditions connect together only boundary values belonging to each of the new vertices.

Characterization of all properly connecting matching conditions via the matrix S
is rather straightforward, which is due to the uniqueness of our parameterization of
matching conditions.

Proposition 3.2. Matching conditions (2.2) are properly connecting if and only if
the unitary matrix S is irreducible, i.e. S cannot be turned into block-diagonal form
by permutation of the basis vectors.

Proof. If the matching conditions connect together just the boundary values associ-
ated with two nonintersecting sets V1, V2, V1∪V2 = V, then the corresponding matrix
S is reducible. It is also clear that if S is reducible, then the set V can be divided
into V1 and V2, so that the matching conditions connect separately boundary values
from these two subsets.

3.2. CONNECTIVITY OF NON-RESONANT CONDITIONS

Whether or not non-resonant matching conditions are properly connecting can be
characterized using the notions of coordinate subspaces and perpendicularity. The
first one is a straightforward generalization of coordinate planes in R3, the second one
is closely connected to but is different from orthogonality.

Definition 3.3. A subspace K ⊂ Cn is called a coordinate subspace if and only
if it is spanned by a certain number of basic vectors from the standard basis in Cn,
but does not coincide with Cn. We say that a subspace N is perpendicular to
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a subspace K if and only if PKN ⊂ N ∩K and PNK ⊂ N ∩K, where P denotes the
orthogonal projection.

Theorem 3.4. The non-resonant matching conditions described by the matrix S
are properly connecting if and only if N−1(S) is not perpendicular to any coordinate
subspace.

Proof. Let K denote some coordinate subspace of Cv and K⊥ - its orthogonal com-
plement. Assume that N−1 is perpendicular to K. Consider PKN−1 ≡ N1

−1 ⊂ K
and similarly PK⊥N−1 ≡ N2

−1 ⊂ K⊥ (where K⊥ is also a coordinate subspace). Take
S1 = IK − 2PN1

−1
a unitary matrix in K and S2 = IK⊥ − 2PN2

−1
a unitary matrix in

K⊥. Then we have that Cv = K ⊕K⊥ and S = S1 ⊕ S2, i. e. S is reducible. Thus
S is not properly connecting.

Assume that S is not properly connecting then it is reducible, i. e. S = S1 ⊕ S2

where S1 is a unitary matrix in a certain coordinate subspace K and S2 is a unitary
matrix in K⊥. Then N−1 possesses the representation: N−1 = N−1(S1)⊕N−1(S2).
And hence PKN−1 = PN−1K = N−1(S1) = K∩N−1, i.e. N−1 is perpendicular to K.

The non-resonant matching conditions are not properly connecting for example in
the following two cases:

1. Dirichlet conditions at the vertex: N1 = {0}, N−1 = Cv.
2. Neumann conditions at the vertex: N1 = Cv, N−1 = {0}.

These matching conditions correspond to the case where the vertex V is maximally
decomposed.

On the other hand it is possible to define the following two important families of
properly connecting non-resonant matching conditions:

1. Hyperplanar Neumann conditions:{
ψψψ(V ) ‖ www,
∂nψψψ(V ) ⊥ www,

(3.1)

where www ∈ Cv is any vector with all components different from zero;
2. Hyperplanar Dirichlet conditions:{

ψψψ(V ) ⊥ uuu,
∂nψψψ(V ) ‖ uuu,

(3.2)

where uuu ∈ Cv is any vector with all components different from zero.

These matching conditions correspond to the case where one of the subspaces
N1 or N−1 is one dimensional and is spanned by either www or uuu. Since all compo-
nents of these vectors are different from zero, the corresponding subspaces are not
perpendicular to any coordinate subspace. It is then clear that both hyperplanar
Neumann and Dirichlet conditions are non-resonant properly connecting matching
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conditions. In the case of a vertex formed by one end point hyperplanar Neumann
and Dirichlet conditions reduce to classical Neumann and Dirichlet conditions respec-
tively, which motivates their name. The word “hyperplanar” reflects the fact that one
of the corresponding subspaces N1 or N−1 has codimension 1. Note that if the vector
www is chosen equal to (1, 1, . . . , 1), then hyperplanar Neumann conditions coincide with
the standard matching (boundary) conditions (which are sometimes called Neumann
conditions in the literature). At the same time if the vector uuu is equal to (1, 1, . . . , 1),
then hyperplanar Dirichlet conditions become the so-called δ′s matching conditions.
Introducing these new families of matching conditions allows us to enlarge the number
of parameters and to fit new physical systems.

4. TRACE FORMULA FOR NON-RESONANT MATCHING CONDITIONS

The trace formula connects together the spectrum of a quantum graph and the set of
periodic orbits for the underlying metric graph. It was first suggested independently
by J.-P.Roth and B.Gutkin, T.Kottos and U. Smilansky [8, 12, 18]. In 2005 the au-
thors provided a rigorous proof of this formula [16] discovering important relations
with the Euler characteristic of the graph [14]. For considered there standard match-
ing conditions it was used that the vertex scattering matrix Sv is independent of the
energy. Thus one can easily generalize the proof of the trace formula for any Laplace
operator on a metric graph with any properly connecting non-resonant matching
conditions. The only difficulty appears when one tries to calculate the spectral and
algebraic multiplicities of the zero eigenvalue.

Let L be the Laplace operator defined by (2.1) on a connected metric graph Γ
formed by N edges joined at M vertices Vm of valence vm. The set of all edges will
be denoted by E = {∆1, . . . ,∆N}, ∆j = [x2j−1, x2j ] and the set of vertices V =
{V1, . . . VM} is a partition of the set of endpoints {xj}2Nj=1. The Euler characteristic
of a graph will be denoted by χ = M − N . The maximal Laplace operator Lmax is
defined by (2.1) on the Sobolev space W 2

2 (Γ \ V ). Consider the vectors of boundary
values and normal derivatives associated with each vertex Vm, i. e. vm-dimensional
vectors ψψψ(Vm) and ∂nψψψ(Vm) with components ψ(xj) and ∂nψ(xj) respectively for
xj ∈ Vm. The Theorem 2.1 for star graphs can now be easily generalized for arbitrary
graphs.

Theorem 4.1. The family of self-adjoint restrictions of Lmax can be described by
matching conditions connecting the boundary values ψψψ = (ψψψ(V1), . . . ,ψψψ(VM )) and
∂nψψψ = (∂nψψψ(V1), . . . , ∂nψψψ(VM ))

i(S − I)ψψψ = (S + I)∂nψψψ, (4.1)

where S is an arbitrary 2N × 2N unitary matrix. These matching conditions are
properly connecting if and only if they have the form

i(Sm − I)ψψψ(Vm) = (Sm + I)∂nψψψ(Vm), m = 1, . . . ,M, (4.2)
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where Sm are unitary vm × vm irreducible matrices. The properly connecting
non-resonant matching conditions are given by:

PNm
1
∂nψψψ(Vm) = 0, PNm

−1
ψψψ(Vm) = 0, m = 1, 2, . . . ,M, (4.3)

where Nm
1 and Nm

−1 are not perpendicular to any coordinate subspace in Cvm .

In what follows only the case of non-resonant matching conditions will be con-
sidered. The corresponding operator will be denoted by L(Γ). Every eigenfunction
ψ(x, k), corresponding to the energy λ = k2 is a solution to the differential equation

− d2

dx2
ψ(x, k) = k2ψ(x, k), x ∈ [x2j−1, x2j ], (4.4)

on the edges, satisfying the matching conditions (4.2) at the vertices. For k 6= 0 every
solution to (4.4) can be written using either a basis of incoming or one of outgoing
waves (see [8, 12] and later [16])

ψ(x, k) = a2j−1e
ik|x−x2j−1| + a2je

ik|x−x2j |, x ∈ ∆j = [x2j−1, x2j ].

= b2j−1e
−ik|x−x2j−1| + b2je

−ik|x−x2j |
(4.5)

The amplitudes aaa = {aj}2Nj=1 and bbb = {bj}2Nj=1 are related by the edge scattering
matrix

bbb = Seaaa, where Se(k) =

 S1
e 0 . . .

0 S2
e . . .

...
...

. . .

 , Sje(k) =
(

0 eikdj

eikdj 0

)
, (4.6)

where dj denotes the length of the edge ∆j . The amplitudes are also related by the
vertex scattering matrices, which are obtained from the requirement that ψ(x, k)
satisfies (4.2). For that purpose it is convenient to use the following representation
for the solution to (4.4), using only amplitudes related to every end point xi from Vm

ψ(x, k) = aje
ik|x−xj | + bje

−ik|x−xj |

and the corresponding vectors of amplitudes aaam, bbbm ∈ Cvm . Then for all k 6= 0 the
matching conditions (4.3) are equivalent to{

PNm
−1

(aaam + bbbm) = 0,
PNm

1
(aaam − bbbm) = 0.

(4.7)

It follows that aaam and bbbm are related by the corresponding vertex scattering matrix
Smv as follows

aaam = Smv bbb
m, m = 1, 2, ...,M. (4.8)

The last equation implies that
aaa1

aaa2

...
aaaM

 = Sv


bbb1

bbb2

...
bbbM

 , with Sv =

 S1
v 0 . . .

0 S2
v . . .

...
...

. . .

 . (4.9)
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Note that the matrices Se(k) and Sv possess the block representations (4.6) and (4.9)
in different bases. Clearly a vector aaa determines an eigenfunction of the Laplace
operator if and only if the following equation holds

det (S(k)− I) = 0, where S(k) = SvSe(k). (4.10)

Equation (4.10) determines the spectrum of L(Γ) with correct multiplicities for
all nonzero values of the energy, but the multiplicity ma(0) of the zero eigenvalue
given by this equation, i. e. the dimension of ker (S(k) − I), to be called algebraic
multiplicity, may be different from the dimension ms(0) of the zero eigensubspace of
L(Γ), to be called spectral multiplicity.

Theorem 4.2 (Trace formula). Let Γ be a compact finite metric graph with the
total length L and let L be the Laplace operator in L2(Γ) determined by properly
connecting non-resonant matching conditions at the vertices. Then the following two
trace formulae establish the relation between the spectrum {k2

n} of L(Γ) and the set P
of closed paths on the metric graph Γ

u(k) ≡ 2ms(0)δ(k) +
X

kn 6=0

(δ(k − kn) + δ(k + kn)) =

= (2ms(0)−ma(0))δ(k) +
L
π

+

+
1

2π

X
p∈P

l(prim (p))
`
S(p)eikl(p) + S∗(p)e−ikl(p)´,

(4.11)

and

√
2πû(l) = 2ms(0) +

X
kn 6=0

2 cos knl =

= 2ms(0)−ma(0) + 2Lδ(l)+

+
X
p∈P

l(prim (p))
“
S(p)δ(l − l(p)) + S∗(p)δ(l + l(p))

”
,

(4.12)

where ms(0) and ma(0) are spectral and algebraic multiplicities of the eigenvalue zero; p is a
closed path on Γ; l(p) is the metric length of the closed path p; prim (p) is one of the primitive
paths for p; and S(p) is the product of all vertex scattering coefficients along the path p.

The proof follows step by step the proof of Theorem 2 from [14], see also [3].
This theorem shows, that both spectral and algebraic multiplicities of the eigen-

value zero may be calculated from the spectrum of the Laplace operator: the spectral
multiplicity is trivially equal to the multiplicity of λ = 0, the algebraic multiplicity
is determined by the spectral asymptotics (see [14, 15]). Therefore in the following
section we are going to study spectral and algebraic multiplicites for different types
of matching conditions.
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5. SPECTRAL AND ALGEBRAIC MULTIPLICITIES

5.1. ON THE GROUND STATE EIGENFUNCTION

We show first, that every eigenfunction corresponding to the zero eigenvalue is piece-
wise constant.

Lemma 5.1. Let L be the Laplace operator on a metric graph defined on the functions
satisfying non-resonant matching conditions. Then every eigenfunction corresponding
to λ = 0 is a piecewise constant function.

Proof. Every eigenfunction is a solution to the equation −ψ′′(x) = 0 and therefore is
piecewise linear on every edge

ψ(x) = αjx+ βj , x ∈ ∆j .

Consider the corresponding Dirichlet integral∫
Γ

|ψ′(x)|2dx =
N∑
j=1

|αj |2dj ≥ 0,

where dj denotes the length of the edge ∆j . On the other hand integrating by parts
we get∫

Γ

|ψ′(x)|2dx = −
∫
Γ

ψ′′(x)ψ(x)dx−
∑
xj

∂nψ(xj)ψ(xj) =

= −
M∑
m=1

∑
xj∈Vm

∂nψ(xj)ψ(xj) = −
M∑
m=1

〈∂nψψψ(Vm),ψψψ(Vm)〉Cvm = 0,

since for every Vm the vectors ψψψ(Vm) and ∂nψψψ(Vm) belong to two mutually orthogonal
subspaces. Hence αj = 0, j = 1, 2, . . . , N and every eigenfunction corresponding to
λ = 0 is piecewise constant.

5.2. HYPERPLANAR NEUMANN MATCHING CONDITIONS

Let us calculate the spectral and algebraic multiplicities of the eigenvalue zero for
connected graphs. We assume that at every vertex Vm the matching conditions
are given by formula (3.1) with www substituted with wwwm. Consider a closed path
p(xl1 ,xl2 ,...,xl2n(p)

) of the discrete length n(p). Every such path can be characterized
by the sequence of endpoints (xl1 , xl2 , . . . , xl2n(p)) that the path comes across and
that every pair (xl2k

, xl2k+1) (as well as (xl2n(p) , xl1)) belongs to a certain vertex on
the path, while elements of every pair (xl2k−1 , xl2k

) are endpoints of a certain edge on
the path. Every endpoint xj is associated with the unique component of some vector
wwwm, so that w(xj) is uniquely defined.
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Definition 5.2. Hyperplanar Neumann matching conditions are called coherent if
and only if for every nonintersecting closed path p(xl1 ,xl2 ,...,xl2n(p)

) it holds

n(p)∏
k=1

w(xl2k
) =

n(p)−1∏
k=0

w(xl2k+1). (5.1)

For coherent conditions there is a nontrivial eigenfunction corresponding to λ = 0.

Lemma 5.3. The spectral multiplicity mN
s (0) of the eigenvalue λ = 0 of the Laplace

operator with hyperplanar Neumann matching conditions on a connected graph Γ is
equal to one if the conditions are coherent and to zero otherwise.

Proof. Let ψ be any zero energy eigenfunction. Lemma 5.1 implies that ψ is piecewise
constant and therefore the second condition in (3.1) is trivially satisfied.

Choose any edge ∆j and let ψ(x)|x∈∆j
= c, where c is a certain complex number.

Let Vl be one of the two vertices that ∆j connects. Then the values of ψ on all
the other edges connected at Vl can be calculated since one of the coordinates of the
vector ψψψ(Vl) is known and the vector is proportional to wwwl. In this way the values
of the function ψ on all neighboring edges may be calculated. In the coherent case
this procedure can be continued until we get a unique function on Γ. The set of such
functions can be parameterized by c and therefore the spectral multiplicity mN

s (0) is
equal to one.

In the case of non coherent conditions we are going to get a contradiction consid-
ering the edges from the path p for which (5.1) does not hold. It follows that ψ is
identically equal to zero and hence mN

s (0) = 0 in this case.

Now to calculate the algebraic multiplicity it is enough to determine the difference
mN
a (0)−mN

s (0).

Lemma 5.4. Consider the Laplace operator on a connected graph Γ defined by the
hyperplanar Neumann matching conditions at the vertices. Then it holds

mN
a (0)−mN

s (0) =

{
g, if the matching conditions are coherent,
g − 1, if the matching conditions are not coherent,

(5.2)

where g = N −M + 1 is the number of cycles in Γ.

Proof. The algebraic multiplicity of λ = 0 is equal to the dimension of the space of
solutions to the system of equations (4.7) and (4.6) with

Sje(0) =
(

0 1
1 0

)
, j = 1, 2, . . . , N.

The vector bbb can be excluded leading to the following system on aaa:{
aj + aj−(−1)j = αmw

m(xj), xj ∈ Vm∑
xj∈Vm

(aj − aj−(−1)j )wm(xj) = 0
m = 1, . . . ,M. (5.3)
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The equations can be separated by introducing new N -dimensional vectors fff and sss
where fj = a2j −a2j−1 and sj = a2j +a2j−1. The values fj and sj can be interpreted
as flows and values of the eigenfunction on the edge ∆j , respectively.

The equations on sj are just the same as the equations determining the eigenfunc-
tion ψ, the corresponding dimensionmN

s (0) has already been calculated in Lemma 5.3.
The equations on fj can be written as a “balance of flows” (see equations (3.11)

and (3.12) in [14]): ∑
j,x2j∈Vm

fj wm(x2j) =
∑

j,x2j−1∈Vm

fj wm(x2j−1). (5.4)

1) Assume that the matching conditions are coherent, i.e. (5.1) holds for any cycle
in the graph.

Consider first the case when Γ is a tree. Then on all loose edges fj = 0, since
hyperplanar Neumann matching conditions at loose endpoints are nothing else than
usual Neumann conditions. Considering the balance equation at any vertex Vm con-
necting together vm−1 loose edges, we conclude that fj is equal to zero on every edge
connected only to the loose edges (remember that all elements wm(xj) are different
from zero). Continuing in this way we conclude that all fj are zero.

An arbitrary graph Γ can be turned into a tree T by deleting exactly g = N−M+1
edges. Let us denote those edges by ∆1,∆2, . . . ,∆g. For every such edge denote by
Cj the shortest closed path on T ∪ ∆j . Then there exists a flow ϕϕϕj supported just
by Cj . It will be convenient to normalize it so that ϕj |∆j

= 1. Assume that fff is any
solution of (5.4) on a graph Γ and let us consider

fff −
g∑
j=1

fj ϕϕϕ
j , (5.5)

which is supported by T . Since the function satisfies (4.7), it is zero and it follows
that every fff can be written as a combination of ϕϕϕj which of course are linearly
independent. Thus mN

a (0)−mN
s (0) = g for coherent matching conditions.

2) Consider now the case of incoherent matching conditions. Without loss of
generality we may assume that already matching conditions on the cycle C1 are in-
coherent. Consider any other cycle Cj , j = 2, 3, . . . , g. If the matching conditions on
this cycle are coherent then as before there exists a nonzero flow ϕϕϕj supported by Cj .
If the matching conditions on Cj are incoherent then there exists a flow ϕϕϕj supported
by T ∪C1∪Cj . This can easily be seen in the case where C1 and Cj have no common
points. Let us denote by s1j the shortest path connecting these two cycles. Then the
flow ϕϕϕj can be constructed as a combination of the flows on the open cycles C1 and
Cj and on the path s1j . The case where the two cycles have common points is similar.
Thus we have g − 1 linearly independent flows ϕϕϕ2, . . . ,ϕϕϕg, which can be normalized
by the condition ϕϕϕj |∆j = 1.

As before for arbitrary flow fff satisfying the matching conditions on Γ consider

fff −
g∑
j=2

fj ϕϕϕ
j . (5.6)
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By construction the support of every such flow belongs to T ∪ C1. It is clear that
the flow vanishes everywhere outside C1 (this can be proven as in the coherent case)
but the matching conditions for C1 are incoherent. Hence this flow is identically
equal to zero. It follows that any flow fff can be written as a linear combination of ϕϕϕj ,
j = 2, . . . , g, which are obviously linearly independent. Hence mN

a (0)−mN
s (0) = g−1

for incoherent matching conditions.

Two previous lemmas imply the following theorem (see Theorem 20 and Corollary
15 in [6]).

Theorem 5.5. Consider the Laplace operator on a connected metric graph Γ defined
by hyperplanar Neumann matching conditions. LetmN

s (0), respectivelymN
a (0), denote

the spectral, respectively algebraic, multiplicities of the eigenvalue zero. Then it holds

2mN
s (0)−mN

a (0) = χ, (5.7)

where χ = 1− g is the Euler characteristic of the graph Γ.

5.3. HYPERPLANAR DIRICHLET MATCHING CONDITIONS

Similar analysis can be done for hyperplanar Dirichlet matching conditions and we
are going to present the results on spectral and algebraic multiplicities in this case.
Instead of calculating directly the number of linearly independent solutions to corre-
sponding systems of equations, we are going to use already obtained multiplicities for
hyperplanar Neumann matching conditions and make a one-to-one mapping between
the solutions.

Theorem 5.6. Consider the Laplace operator on a connected metric graph Γ defined
by hyperplanar Dirichlet matching conditions. Let mD

s (0), respectively mD
a (0), denote

the spectral, respectively algebraic, multiplicities of the eigenvalue zero. Then it holds

2mD
s (0)−mD

a (0) = −χ, (5.8)

where χ = 1− g is the Euler characteristic of the graph Γ.

Proof. For hyperplanar Dirichlet matching conditions each subspace Nm
−1 is spanned

by one vector uuum = (u1, . . . , uvm
) with all components different from zero. To calcu-

late the spectral and algebraic multiplicities one has to perform the same steps as for
hyperplanar Neumann matching conditions arriving at the following system (instead
of (5.3)): {

ãj − ãj−(−1)j = βmu
m(xj), xj ∈ Vm∑

xj∈Vm
(ãj + ãj−(−1)j )um(xj) = 0

m = 1, . . . ,M, (5.9)

where ãj denote the corresponding amplitudes in representation (4.5).
Consider the following mapping:{

ak = (−1)kãk,
w(xk) = (−1)k+1u(xk),

(5.10)
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which establishes a one-to-one correspondence between solutions to (5.3) and (5.9). As
a result of mapping (5.10) we get the following relations between the spectral mD

s (0)
and algebraic mD

a (0) multiplicities of the zero eigenvalue for hyperplanar Dirichlet
matching conditions:

mD
s (0) = mN

a (0)−mN
s (0),

mD
a (0)−mD

s (0) = mN
s (0).

(5.11)

Therefore 2mD
s (0)−mD

a (0) = −χ.

Formulas (4.11) and (4.12) show that the knowledge of the spectrum allows one
to calculate ms(0) and 2ms(0) −ma(0) following ideas of [14] and [15]. This means
that the algebraic multiplicity ma(0) is determined by the spectrum of the Laplacian.
In particular the Euler characteristics is determined by the spectrum for both hyper-
planar Neumann and Dirichlet matching conditions without knowing a priori which
class of conditions occurs, provided χ ≤ −2. It might be important to study also the
case where hyperplanar Dirichelt and Nuemann matching conditions are introduced
simultaneously at different vertices. In this way new classes of isospectral quantum
graphs may be obtained (see [1,2], where the first such examples are constructed using
representation theory).
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