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POSTOPTIMAL ANALYSIS
IN THE COEFFICIENTS MATRIX
OF PIECEWISE LINEAR FRACTIONAL
PROGRAMMING PROBLEMS
WITH NON-DEGENERATE OPTIMAL SOLUTION

Behrouz Kheirfam

Abstract. In this paper, we discuss how changes in the coefficients matrix of piecewise linear
fractional programming problems affect the non-degenerate optimal solution. We consider
separate cases when changes occur in the coefficients of the basic and non-basic variables and
derive bounds for each perturbation, while the optimal solution is invariant. We explain that
this analysis is a generalization of the sensitivity analysis for LP, LF'P and PLP. Finally,
the results are described by some numerical examples.
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1. INTRODUCTION

We refer the reader to the collective work [8] for a review of postoptimal analysis
in different areas of optimization problems. The work shows that the postoptimal
topics lead to interesting questions and problems in various areas of optimization.
The more papers designed on postoptimal analysis in linear fractional programming
(see [1,2]). These results have been extended to variations for both the numerator
and the denominator of the objective function as well as with the right-hand-side
of the constraints. Also some aspects concerning duality and sensitivity analysis in
linear fractional program was discussed in [4]. The postoptimal analysis has been
extended to variations for both the numerator and the denominator of the objective
function of piecewise linear fractional program as well as with the right-hand-side of
the constraints [9]. An alternative procedure studied for multi-parametric sensitivity
analysis in linear programming by the concept of a maximum volume in the tolerance
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region, which is bounded by a symmetrically rectangular parallelepiped and can be
solved by a maximization problem [15]. Kheirfam [10,11] used the concept of maxi-
mal volume region to study the multiparametric sensitivity analysis of the objective
function, right-hand-side vector and constraint matrix in a piecewise linear fractional
programming problem. In this note, we consider the effect of changing the coefficients
matrix in a piecewise linear fractional programming problem after we have obtained
a non-degenerate optimal solution, and the problem is presented in the following way:
Is the given optimal solution still optimal after some change in the coefficients matriz
of the initial problem? We will consider separate cases when changes occur in the
coefficients of the basic and non-basic variables. Since linear programming (LP) [5],
piecewise linear programming problems (PLP) [7] and linear fractional programming
problems (LFP) ([3,13,14]) are all special cases of the PLF P, therefore a unified
framework of postoptimal analysis is presented which covers almost all approaches
that have appeared in the literature.

2. PIECEWISE LINEAR FRACTIONAL PROGRAMMING PROBLEM

The piecewise linear fractional programming problem (PLFP) is defined as follows:

a0+ ) filz;)
j=1

P
min Z(z) = (x) = -
x)
Bo+ > gi(x;) (PLFP)

j=1
st:Ax=Db
0<x<u,

where f;(z;) and g;(z;), j =1,2,...,n, are respectively continuous piecewise linear

n
convex and concave functions such that o + Z gj(xj) > 0 for any feasible solution
j=1
X, A is an m x n matrix of full row rank, b is an m-vector and u is an n-vector.
Let 0=0) < 6] <...< 0] <07, =wu; bean ascending order of the breakpoints

of both f;(z;) and g;(x;). Then within each subinterval [(55, (55“], i=0,1,...,7j,
both f;(x;) and g,(x;) are linear functions. Therefore f;(x;) and g;(x;) can be stated

as

filey) =claj+al, & <z;<8; i=01,2...,7, (2.1)
gi(x;) =dlz; + 5], 0] <x; <6 i=0,1,2,...,75, (2.2)
forsomerealnumbersczj,a{?dgandb’f, i=0,1,...,75, j=12,...,n.

The following lemmas determine the convexity and the concavity conditions for a
continuous piecewise linear function [6].
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Lemma 2.1. A continuous piecewise linear function is convex if and only if its slope
is non-decreasing with respect to x;; that is, ¢f < ¢ < ... < o, j=L2...,n

Lemma 2.2. A continuous piecewise linear function is concave if and only if its slope
is mon-increasing with respect to x;; that is, dy > dj > ... > d., j=1,2,...,n.

Let x° be an optimal solution to the PLF'P. For each j =1,2,...,n, choose an

index j; such that 6; < x? < 63 +1- Then any optimal solution to the LF'P problem:

n
. .
o+ Z C;'ixj
j=1

min -
B+ & (LFP)
j=1

st:Ax=Db

J J
5j1: = Zj = 5ji+1’

i=1,2,...,n,
is also an optimal solution to the PLF' P where o* = 040"‘2?:1 agi , 8% = Bo +Z?:1 /BJ.;
[12]. The basic feasible solutions (BF'S) for the PLF P can be defined as follows:
Let A = [A1,...,A,] be the coefficients matrix and B = {By,...,Bn} C
{1,...,n} be a subset of the indices of the columns of matrix A, such that
B = [ApB,...,Ap,] is a non-singular matrix with inverse B~! = [3;;]. Let
N ={1,2,...,n}\ B. The variables xp,, i = 1,...,m, are called basic variables
and z;, j € N, are referred to as non-basic variables. These vectors are denoted by
xp and xy, respectively. Consequently, the solution x = (xp,xy), which

:Ej:(sij? JEN, v; €{0,1,...,7; + 1},
xp =B 1b_ Z B_lA,jxj, (2.3)
JEN

is called a basic solution. If, in addition 0 < xp < upg, then x is a basic feasible

B; ; . .
solution (BFS). Moreover, if x5, € {4, ,5?’7...757].351#1} for some 4, then x is a
degenerate BFS. If xp, ¢ {057,6P7,.. ., 65};“} for any ¢, then it is a non-degenerate
BFS. '

It is shown [12] that there exists an optimal solution of the PLF P which is a
BF'S. The optimality criterion given by Punnen and Pandy [12| for the PLF P using
the simplex algorithm is stated as follows:

Let B denote the optimal basis matrix and let x* = (x};,x}) be the corresponding
non-degenerate basic feasible solution for the PLF P. This solution will be optimal if

n; (x*) = (c),_; —epBT A ) = Z(x*)(d, _, —dpBT'4;) <0,

vi—1

and
) (x*) = (¢}, —cpB™1A;) — Z(x")(d), —dpB™'A ;) >0,
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for j =1,2,...,n, where Z(x*) is the objective function value at the optimal solution
x*, cg and dp are the sub-vectors of ¢ and d such that their i-th coordinates corre-
sponding to B are cf("B,) and df("B,), respectively. If v; = 7; +1 then n;r is defined as
0. Similarly when v; = 0 then n; is defined as 0. Note that x(B;) denotes the index

. B; * B;
for which 5#«(31‘) <ap < 5M(Bi)+1'

3. CHANGES IN THE COEFFICIENTS OF A NON-BASIC VARIABLE

Let us replace entry A; by A;k = A +0 inthe vector A, = (A1g, ..., Ay - ooy Apie) T
and investigate how this change affects the optimal solution x* and the optimal value
of the objective function Z(x). So from (2.3) we will have

xp=B7'b— Y B'A ;5 —B Ak =
JEN
J#k
=B'b— > BT'A ;5] —6p:05, =xp —0B.0%,,
JEN

where f3; is the i-th column B~!. Now the h-th component of Xp is given by
Tp, =g, — 55hi55k7 h=1,...,m.
This new basic solution Xp will be feasible if
B * k B
0By < TB, — 00nidy, < 5u(’jgh)+1, h=1,...,m.

Therefore, we obtain the following range for §:

l’E - 5Bh x*B _ 6Bh
max{ max 2t #Bn) , max —oH=nT w(Bn)+1 <5<
Bri<0 ﬂhltsl]f Bri>0 ﬁhié’,j
1<h<m k 1<h<m k
B B (3.1)
s =0 xx —o°r
< m : B w(Br)+1 : Bn w(Bh)
<min{ mn ————-—"—, mn —_—————— /.
Bri<0 5hi5yk ni>0 ,Bhi(s,,k
1<h<m ' 1<h<m ’
The new solution X is an optimal solution for the perturbed PLF P problem if
nf (%) = (¢}, —egB™'A ;) — Z(X)(d], —dpB~'A ;) >0, VieN, (3.2)

ny (%) =(c), , —cgB'A;) -~ Z(X)(d, _, —dpB'A;) <0, VjeN. (3.3)

vi—1

It is obvious that reduced costs cjr1 — CBB’lA,j7 df;j71 — dBB’lA,j7 o

v vy

CBB_lA,j and df,j — dBB_lA,j are dependent directly on the coefficients matrix
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A by (3.2) and (3.3). So, any change in A may affects the value of objective
function Z(x). Hence, we have

csB7'b+ Y jen(c), —cpBTTA j)6 +a+ (ck, —cpBTTA )k,
Jj#k

k

Z(X) = ; j B
) dpB~'b + 3 jen(dl, —dpB~1A ;)b + B+ (dﬁk N dBBilAfk)éﬁk
i#k
— cgB7'b + ZjeN(C?/j - CBBilA-j)dij o —denfidy, = (34)

~ dpB b+ Y y(d, —dpB-lA )8, + 5 — ddpfidk,
o P(X*) — (SCBﬁ,i(S,,fk
" D(x*) — 6dpBiok

To preserve the strict positivity of the denominator D(x), we need to have

D(x") — 6dpf 0k >0, (3.5)
which implies
D *
< P a0,
dpf.iok
1) M (3.6)
S PO 48 <0
— i ; )
dBﬁz(slljk ’ BM.

Moreover, by using (3.4) and the change of the k-th column, we can re-write (3.2) in
the following form

P(X*) — (SCBﬁz(SISk
D(x*) — 0dpB.df,

1) (%) = (c], —csBTIA ) - (&, —dpB™'A ;) =

P(x*) — bep .l (3.7
_ A/4 . BR.iO%y, A” > . N, i
_ _ ’ P(X*) — (SCBﬁZ(Sllj _ ’
UZ_(X) = (Cl;k —cpB 1A_k) - D(x*) — odpf .51: (dﬁk —dgB 1A,k) =
e (3.8)

P(x*) = dcpBidy,
D(X*) - (SdBﬁz(Sl]fk

(A —dpfd) 2 0,
where A} =¢j —cgB'A;, A =dj —dpB~'A;, VjeN.

From (3.5), the relation (3.7) is satisfied if

1"

A(D(x*) = 6dpf.i0% ) — A (P(x*) — depfBiok ) > 0

J

or

D(x") nf (x*) > 005, (dpA; — cpA})B.,

which implies
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D(x*) n; (x*)
(Wlfk (dBA; - CBA;/)ﬂ_i

H(dpA; — cpA;)Bi < o} <s<
(3.9)

{ D(x*) nf (x7) ;(dBA;—cBA}/)ﬁ.ﬁO}-

From (3.5), the relation (3.8) is satisfied if

(A}, — dcpBi)(D(x*) — 8dpf.0k ) — (A, — 8dpB.4)(P(x*) — dcpfidt ) > 0,
or

D(x) it (x*) + 6

(P(x*) = A3}, )dp — (D(x") - AZ5’Jk)cB1 Bi >0,

which implies

_ *\ 01 *
> %, it H>0, 510)
d Mo, 3.10
< —_D(XI){"’f (x ), it H<O,

where H =

(P(x*) — Aok )dp — (D(x*) — A;(S’;k)cB] 8.

Similarly, if n; (%) < 0 and 7, (X) < 0 we obtain

D(x*) n; (x* — —n
max{alj( (") J( ) I(dBAjCBAj)ﬂ.i>O}§5§

Jifz dBA;- — CBA;/)ﬂ,i
! o (3.11)
< Lnin{ - D()E ,) 0 (X—z/ : (dBA; - CBA;)ﬁ.i < 0},
jjifz 5Vk(dBAj _CBAj)ﬁ.i
and
< %7 it H >0, ( :
g £ S 3.12
> %7 it H < 0,
where H = (P(x*) — A;C(ka)dB — (D(x*) — A;&’jk)cB] B,

A; = C’ij71 — CBBilA_j and A;/ = dijfl - dBBilA.jv VJ € N
Therefore, we have proved the following theorem:

Theorem 3.1. If § satisfies (3.1), (3.6), (3.9), (3.10),(3.11) and (3.12) then X is an
optimal solution of the perturbed PLF P problem.
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Remark 3.2. Lower and upper bounds given in Theorem 3.1 are a generalization of
the corresponding bounds for LP, PLP and LFP. Indeed,

1. If By =1 and gj(z;) = 0,5 = 1,2,...,n, then the PLFP reduces to PLP and
this means that D(x*) = 1, A; = A;-/ = 0, n;r(ic) = A;-, n; (X) = A;,j €
N, and Z(x) = P(x*) — dcp/3.:0), . Thus, bounds (3.1) in the current form are
valid for PLP too, on the other hand nj-r(i) > 0 and 7; (x) < 0, thus (3.9) and

(3.11) hold. Therefore, X is an optimal solution for PLP if § satisfies in (3.1) and

’

A
> /g, ) if CBﬁ‘i >0,
C i
5 B (3.13)
A
= k s if CBﬁ,i <0,
cgfBi
and
AI
= Cig" if cpBi>0,
5 B (3.14)
A
= k ) if CBﬂ.i < 0.
cafBi

2. If o = 1, gj(z;) = 0 and f;(x;), j = 1,2,...,n, are linear functions then
the PLFP reduces to LP with bounded variables. In this case, the feasibility
condition (3.1) and the optimality conditions (3.9), (3.11), (3.10) and (3.12) are
respectively as follows

* *
x X —Uu
B B By,
max<{ max Lomax —A—— 5 <6<
Bri<0 Bpit’ Bpi>0 Bhit
1<h<m

1shsm (3.15)
ThH —u T35 .
. . B By, . By,
< min min ————, min —* >,
Bri<0 Bhit Bri>0 Bt
1<h<m 1<h<m

n;(x*) = c{;j — CBB*IA_j =cj — cBBflA,j >0, ifz;=0,

n;(X*> = C]Vlj_l — CBB_lA,j =cj — CBB_IA‘]‘ <0, if Tj = Uy,
+(*
< Tk (X )7 if CBﬁAi > 07
5 cpfi
+ (¥
> L (X ) if ¢cgfB;< 0,

cpfi’
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and
S nk (X )7 if CBﬁ.i < 07
cgfBi
6 - *
>0 e pps0,
cafBi

where ¢ is the non-basic variable value zj (t = 0 or uy).

3. If both g;(z;) and f;(z;),j = 1,2,...,n, are linear functions then the PLFP

reduces to LFP and this means that ¢ = ¢;, d], = d;, A;- =c¢j—cgBT4;

and A;»/ =d; —dpB™'A ;. Therefore, X is an optimal solution (by u; = oo, Vj )

if
H
1)
< M it H <o,

where H = (P(x*)dB — D(x*)cB)ﬁ‘i.
Example 3.3. Consider the PLF P problem:

4
Ej:1fj($j)
1
sit: 3x1+ 4dxo+ x3+ 2x4 = 21,

r1+ 3xo+ a3+ 3rs= 13,
201+ x9+ 2xz3+ 3xy = 14,

0<z <5, 0<22<3, 0<23<5, 0<xy <5,

min Z(x) =

where
f(ﬂf)* 3(E1, nglgl, (.Z‘)* 41’1+1, nglgl,
W=V de —1, 1<a <5, MY T e +2, 1<a <5,
f( ) 2I2+1, 0§m2§15 ( )_ 31’2+1, OSIQS:L
212 3o, 1<a9<3, 9202) =\ 2py 42, 1< a9 <3,
f3(xs) 223 +1, 2< 23 <3, g3(x3) = ¢ 2w3+3, 2<ux3<3,
3‘%3727 3§$3§5, $3+6, 3§$3§5,

za+1, 0<2y <1,
fa(za) =S 2wy, 1 <2y <3, ga(xs) =
3ry —3, 3 < x4 <5,

32 21 1 T
The optimal solution is z* = (E,I—O,Z,i,O,O,O , and Z(x*) =
4 2 3
21 1 32\T
B={By,By,Bs}= |3 3 1] andx} = (a3, 2} *T:(f,f)_
{Bi, Ba, B3} and xp = (3,7}, 27) 10°2° 10

1 3 2

4374“!_1’ O§x4§17
204+ 3, 1< x4 <3,
T4 + 6, 3 < x4y <5.

{3334-37 0< 23 <2, {3$3+1, 0< 23 <2,

= 139"

(3.16)

Here
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Using formulas (3.1), (3.6), (3.9), (3.10), (3.11), (3.12) and inverse matrix

3/20  1/4 —7/20

(Bj)=B~'=| -1/4 1/4 1/4 |,
3/10 —-1/2  3/10

we obtain the following range for §, when A/23 = A3 +0=1+6,
—-1<6<1.

Interpretation is producing one unit of commodity 3 now required AIQ3 units of resource
2 instead Aas.

4. CHANGES IN THE COEFFICIENTS OF A BASIC VARIABLE

In this section, our goal is to determine the lower and upper bounds for § which
guarantee that the replacement A j by Afk = A +e;0,k € B, does not affect the
optimal basis, and the original optimal solution x* remains feasible and optimal. By
taking this replacement, the optimal basis B will be replaced with B = B + (5eie£
where e; is a unit vector. The inverse matrix B is

5 zﬂk
1+ 661@2

by the Sherman-Morrison formulas. This change of the basis matrix will affect the
feasibility of vector x*. However, it may affect the optimal value of Z(x) and hence,
can change the reduced costs ’r]j_ (x*) and n; (x*). So, by replacing A;; with A, +,
from (2.3) we will have

B l!l=B !~ 14008 #0, (4.1)

JEN
_ B.i k. _ B.iB%k. ;
=B 1-¢ b — B!l-5§ A5 =
( 1+5ﬁk1) EN( 1+55kz) i
. B.i k.
=xp—90 (b—> A;d)
1 + 6/3161 jEN

Now the h-th component of X is given by

BhiPBr.

TR, :l'*Bh—(S (b_Z]ENAJ&IZ])’ h=l,...7m.

1+ 551@
This new basic solution Xp will be feasible if
§Pn < g g PPk (b Ajol) <ol h=1 4.2
w(By) S TR, — 72 )41 =1,...,m. (4.2)

1 + 5ﬁ/ﬂ
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From (4.2), we obtain a range for .

Since the change in the basis matrix will be affected in the feasibility of vector x*,
thus, it may affect the optimal value of Z(x) and hence, can change the reduced costs
77j+ (x*) and n; (x*). Hence, we will have

-1 _ Bzﬂk i -1 _ ﬂzﬂk ) 3
B CB(B 51+6ﬁkz)b+Z]EN (Cl/j CB(B 51_"55]@1 )AJ 511_7' Ta
20= 3.5 5.9 -
dp(B-1 — -5 p ol —dpB-1— - A )6
. B.iBk. ; '
| PO) —den (b= Yy A,
B . B.iBk. N
Dixct) = ddp {22 (b = Ty A o)
To preserve the strict positivity of the denominator D(x), we need to have
B.iBk. :
D(x") — — A ¥ . 4.4
(X ) 6dB1+5/Bki(b ;V ~j5w)>0 ( )
But since 1 4 §0k; # 0, we assume that 1+ §3;; > 0 and will have
-1
> o if B >0,
5 h (4.5)
<2l i Bu<o
Bri’ Co

From (4.5), the relation (4.4) is satisfied if
D(x*) + 60k D(x*) — 6dpB.ifk. (b — 3 ey A o)) > 0,
which implies

—D(x*)

> ifG>0
G 9 b

5 ) (4.6)
<*%?X if G <0,

where G = (j; D(x*) — dpf.i8k.(b — ZjGN A,jél{j).
Now, the optimal solution x* of the original PLF P problem remains optimal for
the perturbed PLF P problem if

ﬁ’bﬁk‘
1+ 90k

nf (%) = A +dep A -

o B.iBr. B 57 (4.7)
) P(x*) = dcp 7 T (b =2 jen Ajdl,) (Al./ _HSdBMA ) >0
; > 0.

. B.iBk. j 1+ 0Bk
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From (4.4), the last relation is satisfied if

—D(x* -‘r * —D(x* + *
max{(x)nj(x):W>0}<5<min{ (X)nj( ) W<0}, (4.8)
JEN w JEN

and similarly, for 7, (X) < 0 we will have

—D(x")n; (x*) —D(x")n; (x*) /

_— <o < i J .

Igneé}\)/({ W W <0 _5_%11{[1 W W >0y, (4.9)

where

W= (D(X*)CB - P(X*)dB)ﬁ.iﬁk.A.j—f—

+ <cBA;.’ - dBA;)ﬂ,iﬁk,(b = > AS) + BrD(x")nf (x7),
JEN

and

W = (D(x*)cB — P(x*)d3>ﬂ.zﬂk.A.j+

+ <cBA;-’ - dBA;)Mk.(b =Y A + B D(x" )y (x7).
JEN
Therefore, we have proved the following theorem:

Theorem 4.1. If § satisfies (4.2), (4.5), (4.6), (4.8) and (4.9) then X is an optimal
solution of the perturbed PLF P problem.

Remark 4.2. Lower and upper bounds given in Theorem 4.1 are a generalization of

the corresponding bounds for LP, PLP and LFP. Indeed,

1. If By =1and g;(z;) =0,j =1,2,...,n, then the PLF P reduces to PLP and this
means that D(x*) = 1, A;-/ = A;-' =0, nj(x*) = A;- and n; (x*) = A;,j € N.

In this case, the relation (4.5) and bounds (4.2) are hold too. The relations (4.8)

and (4.9) become respectively as follows

p la[,\)[( . > jIIllNIl . < 3
; ] 1 7 ! () < 5 < 3 J ‘ 1 J ()
?flaX 7 . < gxlln 7 . > 5

W = (cpBiBrA + Brl)),

where

and

’

W' = (cB.iBrA; + Bul)).
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2. If By = 1, gj(z;) = 0 and f;(z;),j = 1,2,...,n, are linear functions then the
PLFP reduces to LP with bounded variables. In this case, the relation (4.5) is
satisfied and the relations (4.2), (4.8), (4.9) are respectively as follows

0<al, —o BhiBr.

= T Eh 1+5gki(bsz-jtj)§uBh, h=1,...,m,

JEN

) e |
rjne%( W W >0 §5§jné1]{,1 V:W<O’ if x; =0,

—A; , _[-A] , _
max W,':W <0 <9J < min W,‘:W>0, if z; = uy,

JEN
where
tj — 0 or uj, W = (CBﬁlﬂkA] +6klA;)7 and W/ = (CB/@z/gkAj +/6sz;)

3. If both g,(x;) and f;(z;),j =1,2,...,n, are linear functions then the PLFP re-

duces to LF'P and this means that c{;j =cj, d{;j =d;, A;- =cj—cgB714, A;-/ =
dj —dpB™'A; and n;(x*) = A; - Z(x*)A;. Therefore, X is an optimal solution
(by u; = o0, Vj ) if

max _x*Bh:H>O <6< min i}‘B’L:H<O

1<h<m H — 7 1<h<m H ’
maxd P oo s o § ZPOOmT L
JEN w JEN w

where H = 2, Bri — Bribk.b,
W= <D(x*)cB —P(x*)dB) B0k A j+ (cBA;/ —dBA;) B.iBp. (b+ i D(x*)n; (7).

Example 4.3. Consider Example 3.3. Let the basis matrix B be replaced by B, where
4 2 3

B=|[3 3 1+

1 3 2

Using Theorem 4.1 we obtain the following interval for ¢



Postoptimal analysis in the coefficients matrix. . . 293

5. SUMMARY

The sensitivity analysis of optimal solutions has been presented in this paper. Two
cases were considered: (i) change in the coefficients of a non-basic variable, (ii) change
in the coefficients of a basic variable. In each case the underlying theory for sensitivity
analysis has been presented to in order to obtain bounds for each perturbation and
also to special cases as LP, LF'P and PLP.
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