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POSTOPTIMAL ANALYSIS
IN THE COEFFICIENTS MATRIX

OF PIECEWISE LINEAR FRACTIONAL
PROGRAMMING PROBLEMS

WITH NON-DEGENERATE OPTIMAL SOLUTION
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Abstract. In this paper, we discuss how changes in the coefficients matrix of piecewise linear
fractional programming problems affect the non-degenerate optimal solution. We consider
separate cases when changes occur in the coefficients of the basic and non-basic variables and
derive bounds for each perturbation, while the optimal solution is invariant. We explain that
this analysis is a generalization of the sensitivity analysis for LP , LFP and PLP . Finally,
the results are described by some numerical examples.
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1. INTRODUCTION

We refer the reader to the collective work [8] for a review of postoptimal analysis
in different areas of optimization problems. The work shows that the postoptimal
topics lead to interesting questions and problems in various areas of optimization.
The more papers designed on postoptimal analysis in linear fractional programming
(see [1, 2]). These results have been extended to variations for both the numerator
and the denominator of the objective function as well as with the right-hand-side
of the constraints. Also some aspects concerning duality and sensitivity analysis in
linear fractional program was discussed in [4]. The postoptimal analysis has been
extended to variations for both the numerator and the denominator of the objective
function of piecewise linear fractional program as well as with the right-hand-side of
the constraints [9]. An alternative procedure studied for multi-parametric sensitivity
analysis in linear programming by the concept of a maximum volume in the tolerance
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region, which is bounded by a symmetrically rectangular parallelepiped and can be
solved by a maximization problem [15]. Kheirfam [10, 11] used the concept of maxi-
mal volume region to study the multiparametric sensitivity analysis of the objective
function, right-hand-side vector and constraint matrix in a piecewise linear fractional
programming problem. In this note, we consider the effect of changing the coefficients
matrix in a piecewise linear fractional programming problem after we have obtained
a non-degenerate optimal solution, and the problem is presented in the following way:
Is the given optimal solution still optimal after some change in the coefficients matrix
of the initial problem? We will consider separate cases when changes occur in the
coefficients of the basic and non-basic variables. Since linear programming (LP) [5],
piecewise linear programming problems (PLP) [7] and linear fractional programming
problems (LFP) ([3, 13, 14]) are all special cases of the PLFP , therefore a unified
framework of postoptimal analysis is presented which covers almost all approaches
that have appeared in the literature.

2. PIECEWISE LINEAR FRACTIONAL PROGRAMMING PROBLEM

The piecewise linear fractional programming problem (PLFP ) is defined as follows:

minZ(x) =
P (x)
D(x)

=

α0 +
n∑
j=1

fj(xj)

β0 +
n∑
j=1

gj(xj)

s.t : Ax = b

0 ≤ x ≤ u,

(PLFP )

where fj(xj) and gj(xj), j = 1, 2, . . . , n, are respectively continuous piecewise linear

convex and concave functions such that β0 +
n∑
j=1

gj(xj) > 0 for any feasible solution

x, A is an m× n matrix of full row rank, b is an m-vector and u is an n-vector.
Let 0 = δj0 < δj1 < . . . < δjτj

< δjτj+1 = uj be an ascending order of the breakpoints
of both fj(xj) and gj(xj). Then within each subinterval [δji , δ

j
i+1], i = 0, 1, . . . , τj ,

both fj(xj) and gj(xj) are linear functions. Therefore fj(xj) and gj(xj) can be stated
as

fj(xj) = cjixj + αji , δji ≤ xj ≤ δ
j
i+1; i = 0, 1, 2, . . . , τj , (2.1)

and
gj(xj) = djixj + βji , δji ≤ xj ≤ δ

j
i+1; i = 0, 1, 2, . . . , τj , (2.2)

for some real numbers cji , α
j
i , d

j
i and β

j
i , i = 0, 1, . . . , τj , j = 1, 2, . . . , n.

The following lemmas determine the convexity and the concavity conditions for a
continuous piecewise linear function [6].
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Lemma 2.1. A continuous piecewise linear function is convex if and only if its slope
is non-decreasing with respect to xj; that is, c

j
0 ≤ c

j
1 ≤ . . . ≤ cjτj

, j = 1, 2, . . . , n.

Lemma 2.2. A continuous piecewise linear function is concave if and only if its slope
is non-increasing with respect to xj; that is, d

j
0 ≥ d

j
1 ≥ . . . ≥ djτj

, j = 1, 2, . . . , n.

Let x0 be an optimal solution to the PLFP . For each j = 1, 2, . . . , n, choose an
index ji such that δjji ≤ x

0
j ≤ δ

j
ji+1. Then any optimal solution to the LFP problem:

min

α∗ +
n∑
j=1

cjjixj

β∗ +
n∑
j=1

djjixj

s.t : Ax = b

δjji ≤ xj ≤ δ
j
ji+1, j = 1, 2, . . . , n,

(LFP )

is also an optimal solution to the PLFP where α∗ = α0+
∑n
j=1 α

j
ji
, β∗ = β0+

∑n
j=1 β

j
ji

[12]. The basic feasible solutions (BFS) for the PLFP can be defined as follows:
Let A = [A.1, . . . , A.n] be the coefficients matrix and B = {B1, . . . , Bm} ⊂

{1, . . . , n} be a subset of the indices of the columns of matrix A, such that
B = [A.B1 , . . . , A.Bm ] is a non-singular matrix with inverse B−1 = [βij ]. Let
N = {1, 2, . . . , n} \ B. The variables xBi , i = 1, . . . ,m, are called basic variables
and xj , j ∈ N , are referred to as non-basic variables. These vectors are denoted by
xB and xN , respectively. Consequently, the solution x = (xB ,xN ), which

xj = δjνj
, j ∈ N, νj ∈ {0, 1, . . . , τj + 1},

xB = B−1b−
∑
j∈N

B−1A.jxj , (2.3)

is called a basic solution. If, in addition 0 ≤ xB ≤ uB , then x is a basic feasible

solution (BFS). Moreover, if xBi ∈ {δ
Bi

0 , δBi
1 , . . . , δBi

τBi+1
} for some i, then x is a

degenerate BFS. If xBi
6∈ {δBi

0 , δBi
1 , . . . , δBi

τBi+1
} for any i, then it is a non-degenerate

BFS.
It is shown [12] that there exists an optimal solution of the PLFP which is a

BFS. The optimality criterion given by Punnen and Pandy [12] for the PLFP using
the simplex algorithm is stated as follows:

Let B denote the optimal basis matrix and let x∗ = (x∗B ,x
∗
N ) be the corresponding

non-degenerate basic feasible solution for the PLFP . This solution will be optimal if

η−j (x∗) = (cjνj−1 − cBB−1A.j)− Z(x∗)(djνj−1 − dBB−1A.j) ≤ 0,

and
η+
j (x∗) = (cjνj

− cBB−1A.j)− Z(x∗)(djνj
− dBB−1A.j) ≥ 0,
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for j = 1, 2, . . . , n, where Z(x∗) is the objective function value at the optimal solution
x∗, cB and dB are the sub-vectors of c and d such that their i-th coordinates corre-
sponding to B are cBi

µ(Bi)
and dBi

µ(Bi)
, respectively. If νj = τj + 1 then η+

j is defined as
0. Similarly when νj = 0 then η−j is defined as 0. Note that µ(Bi) denotes the index
for which δBi

µ(Bi)
≤ x∗Bi

≤ δBi

µ(Bi)+1.

3. CHANGES IN THE COEFFICIENTS OF A NON-BASIC VARIABLE

Let us replace entryAik byA
′

ik = Aik+δ in the vector A.k = (A1k, . . . , Aik, . . . , Amk)T

and investigate how this change affects the optimal solution x∗ and the optimal value
of the objective function Z(x). So from (2.3) we will have

x̄B = B−1b−
∑
j∈N
j 6=k

B−1A.jδ
j
νj
−B−1A

′

.kδ
k
νk

=

= B−1b−
∑
j∈N

B−1A.jδ
j
νj
− δβ.iδkνk

= x∗B − δβ.iδkνk
,

where β.i is the i-th column B−1. Now the h-th component of x̄B is given by

x̄Bh
= x∗Bh

− δβhiδkνk
, h = 1, . . . ,m.

This new basic solution x̄B will be feasible if

δBh

µ(Bh) ≤ x
∗
Bh
− δβhiδkνk

≤ δBh

µ(Bh)+1, h = 1, . . . ,m.

Therefore, we obtain the following range for δ:

max

{
max
βhi<0

1≤h≤m

x∗Bh
− δBh

µ(Bh)

βhiδkνk

, max
βhi>0

1≤h≤m

x∗Bh
− δBh

µ(Bh)+1

βhiδkνk

}
≤ δ ≤

≤ min

{
min
βhi<0

1≤h≤m

x∗Bh
− δBh

µ(Bh)+1

βhiδkνk

, min
βhi>0

1≤h≤m

x∗Bh
− δBh

µ(Bh)

βhiδkνk

}
.

(3.1)

The new solution x̄ is an optimal solution for the perturbed PLFP problem if

η+
j (x̄) = (cjνj

− cBB−1A.j)− Z(x̄)(djνj
− dBB−1A.j) ≥ 0, ∀j ∈ N, (3.2)

and

η−j (x̄) = (cjνj−1 − cBB−1A.j)− Z(x̄)(djνj−1 − dBB−1A.j) ≤ 0, ∀j ∈ N. (3.3)

It is obvious that reduced costs cjνj−1 − cBB−1A.j , djνj−1 − dBB−1A.j , cjνj
−

cBB−1A.j and djνj
− dBB−1A.j are dependent directly on the coefficients matrix
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A by (3.2) and (3.3). So, any change in A.k may affects the value of objective
function Z(x). Hence, we have

Z(x̄) =
cBB−1b +

∑
j∈N
j 6=k

(cjνj
− cBB−1A.j)δjνj

+ α+ (ckνk
− cBB−1A

′

.k)δkνk

dBB−1b +
∑
j∈N
j 6=k

(djνj − dBB−1A.j)δ
j
νj + β + (dkνk

− dBB−1A′
.k)δkνk

=

=
cBB−1b +

∑
j∈N (cjνj

− cBB−1A.j)δjνj
+ α− δcBβ.iδkνk

dBB−1b +
∑
j∈N (djνj − dBB−1A.j)δ

j
νj + β − δdBβ.iδkνk

=

=
P (x∗)− δcBβ.iδkνk

D(x∗)− δdBβ.iδkνk

.

(3.4)

To preserve the strict positivity of the denominator D(x), we need to have

D(x∗)− δdBβ.iδkνk
> 0, (3.5)

which implies

δ


<

D(x∗)
dBβ.iδkνk

, if dBβ.i > 0,

>
D(x∗)

dBβ.iδkνk

, if dBβ.i < 0.
(3.6)

Moreover, by using (3.4) and the change of the k-th column, we can re-write (3.2) in
the following form

η+
j (x̄) = (cjνj

− cBB−1A.j)−
P (x∗)− δcBβ.iδkνk

D(x∗)− δdBβ.iδkνk

(djνj
− dBB−1A.j) =

= ∆
′

j −
P (x∗)− δcBβ.iδkνk

D(x∗)− δdBβ.iδkνk

(∆
′′

j ) ≥ 0, ∀j ∈ N, j 6= k,

(3.7)

η+
k (x̄) = (ckνk

− cBB−1A
′

.k)−
P (x∗)− δcBβ.iδkνk

D(x∗)− δdBβ.iδkνk

(dkνk
− dBB−1A

′

.k) =

= (∆
′

k − cBβ.iδ)−
P (x∗)− δcBβ.iδkνk

D(x∗)− δdBβ.iδkνk

(∆
′′

k − dBβ.iδ) ≥ 0,

(3.8)

where ∆
′

j = cjνj
− cBB−1A.j , ∆

′′

j = djνj
− dBB−1A.j , ∀j ∈ N .

From (3.5), the relation (3.7) is satisfied if

∆
′

j(D(x∗)− δdBβ.iδkνk
)−∆

′′

j (P (x∗)− δcBβ.iδkνk
) ≥ 0

or
D(x∗) η+

j (x∗) ≥ δδkνk
(dB∆

′

j − cB∆
′′

j )β.i,

which implies
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max
j∈N
j 6=k

{
D(x∗) η+

j (x∗)
δkνk

(dB∆′
j − cB∆′′

j )β.i
: (dB∆

′

j − cB∆
′′

j )β.i < 0

}
≤ δ ≤

≤ min
j∈N
j 6=k

{
D(x∗) η+

j (x∗)
δkνk

(dB∆′
j − cB∆′′

j )β.i
: (dB∆

′

j − cB∆
′′

j )β.i > 0

}
.

(3.9)

From (3.5), the relation (3.8) is satisfied if

(∆
′

k − δcBβ.i)(D(x∗)− δdBβ.iδkνk
)− (∆

′′

k − δdBβ.i)(P (x∗)− δcBβ.iδkνk
) ≥ 0,

or

D(x∗) η+
k (x∗) + δ

[
(P (x∗)−∆

′

kδ
k
νk

)dB − (D(x∗)−∆
′′

kδ
k
νk

)cB

]
β.i ≥ 0,

which implies

δ


≥
−D(x∗)η+

k (x∗)
H

, if H > 0,

≤
−D(x∗)η+

k (x∗)
H

, if H < 0,
(3.10)

where H =

[
(P (x∗)−∆

′

kδ
k
νk

)dB − (D(x∗)−∆
′′

kδ
k
νk

)cB

]
β.i.

Similarly, if η−j (x̄) ≤ 0 and η−k (x̄) ≤ 0 we obtain

max
j∈N
j 6=k

{
D(x∗) η−j (x∗)

δkνk
(dB∆̄′

j − cB∆̄′′
j )β.i

: (dB∆̄
′

j − cB∆̄
′′

j )β.i > 0

}
≤ δ ≤

≤ min
j∈N
j 6=k

{
D(x∗) η−j (x∗)

δkνk
(dB∆̄′

j − cB∆̄′′
j )β.i

: (dB∆̄
′

j − cB∆̄
′′

j )β.i < 0

}
,

(3.11)

and

δ


≤
−D(x∗)η−k (x∗)

H ′ , if H
′
> 0,

≥
−D(x∗)η−k (x∗)

H ′ , if H
′
< 0,

(3.12)

where H
′

=

[
(P (x∗)− ∆̄

′

kδ
k
νk

)dB − (D(x∗)− ∆̄
′′

kδ
k
νk

)cB

]
β.i,

∆̄
′

j = cjνj−1 − cBB−1A.j and ∆̄
′′

j = djνj−1 − dBB−1A.j , ∀j ∈ N.

Therefore, we have proved the following theorem:

Theorem 3.1. If δ satisfies (3.1), (3.6), (3.9), (3.10), (3.11) and (3.12) then x̄ is an
optimal solution of the perturbed PLFP problem.
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Remark 3.2. Lower and upper bounds given in Theorem 3.1 are a generalization of
the corresponding bounds for LP , PLP and LFP . Indeed,

1. If β0 = 1 and gj(xj) = 0, j = 1, 2, . . . , n, then the PLFP reduces to PLP and
this means that D(x∗) = 1, ∆

′′

j = ∆̄
′′

j = 0, η+
j (x̄) = ∆

′

j , η
−
j (x̄) = ∆̄

′

j , j ∈
N , and Z(x̄) = P (x∗) − δcBβ.iδkνk

. Thus, bounds (3.1) in the current form are
valid for PLP too, on the other hand η+

j (x̄) ≥ 0 and η−j (x̄) ≤ 0, thus (3.9) and
(3.11) hold. Therefore, x̄ is an optimal solution for PLP if δ satisfies in (3.1) and

δ


≤ ∆

′

k

cBβ.i
, if cBβ.i > 0,

≥ ∆
′

k

cBβ.i
, if cBβ.i < 0,

(3.13)

and

δ


≥ ∆̄

′

k

cBβ.i
, if cBβ.i > 0,

≤ ∆̄
′

k

cBβ.i
, if cBβ.i < 0.

(3.14)

2. If β0 = 1, gj(xj) = 0 and fj(xj), j = 1, 2, . . . , n, are linear functions then
the PLFP reduces to LP with bounded variables. In this case, the feasibility
condition (3.1) and the optimality conditions (3.9), (3.11), (3.10) and (3.12) are
respectively as follows

max

{
max
βhi<0

1≤h≤m

x∗Bh

βhit
, max
βhi>0

1≤h≤m

x∗Bh
− uBh

βhit

}
≤ δ ≤

≤ min

{
min
βhi<0

1≤h≤m

x∗Bh
− uBh

βhit
, min
βhi>0

1≤h≤m

x∗Bh

βhit

}
,

(3.15)

η+
j (x∗) = cjνj

− cBB−1A.j = cj − cBB−1A.j ≥ 0, if xj = 0,

η−j (x∗) = cjνj−1 − cBB−1A.j = cj − cBB−1A.j ≤ 0, if xj = uj ,

δ


≤
η+
k (x∗)
cBβ.i

, if cBβ.i > 0,

≥
η+
k (x∗)
cBβ.i

, if cBβ.i < 0,
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and

δ


≤
η−k (x∗)
cBβ.i

, if cBβ.i < 0,

≥
η−k (x∗)
cBβ.i

, if cBβ.i > 0,

where t is the non-basic variable value xk (t = 0 or uk).
3. If both gj(xj) and fj(xj), j = 1, 2, . . . , n, are linear functions then the PLFP

reduces to LFP and this means that cjνj
= cj , d

j
νj

= dj , ∆
′

j = cj − cBB−1A.j

and ∆
′′

j = dj − dBB−1A.j . Therefore, x̄ is an optimal solution (by uj =∞, ∀j )
if

δ


≥ −D(x∗)ηk(x∗)

H
, if H > 0,

≤ −D(x∗)ηk(x∗)
H

, if H < 0,

(3.16)

where H =
(
P (x∗)dB −D(x∗)cB

)
β.i.

Example 3.3. Consider the PLFP problem:

minZ(x) =

∑4
j=1 fj(xj)∑4
j=1 gj(xj)

s.t : 3x1+ 4x2+ x3+ 2x4 = 21,
x1+ 3x2+ x3+ 3x4 = 13,

2x1+ x2+ 2x3+ 3x4 = 14,

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 5,

where

f1(x1) =
{

3x1, 0 ≤ x1 ≤ 1,
4x1 − 1, 1 ≤ x1 ≤ 5, g1(x1) =

{
4x1 + 1, 0 ≤ x1 ≤ 1,
3x1 + 2, 1 ≤ x1 ≤ 5,

f2(x2) =
{

2x2 + 1, 0 ≤ x2 ≤ 1,
3x2, 1 ≤ x2 ≤ 3, g2(x2) =

{
3x2 + 1, 0 ≤ x2 ≤ 1,
2x2 + 2, 1 ≤ x2 ≤ 3,

f3(x3) =

 x3 + 3, 0 ≤ x3 ≤ 2,
2x3 + 1, 2 ≤ x3 ≤ 3,
3x3 − 2, 3 ≤ x3 ≤ 5,

g3(x3) =

 3x3 + 1, 0 ≤ x3 ≤ 2,
2x3 + 3, 2 ≤ x3 ≤ 3,
x3 + 6, 3 ≤ x3 ≤ 5,

f4(x4) =

 x4 + 1, 0 ≤ x4 ≤ 1,
2x4, 1 ≤ x4 ≤ 3,
3x4 − 3, 3 ≤ x4 ≤ 5,

g4(x4) =

 4x4 + 1, 0 ≤ x4 ≤ 1,
2x4 + 3, 1 ≤ x4 ≤ 3,
x4 + 6, 3 ≤ x4 ≤ 5.

The optimal solution is x∗ =
(32

10
,

21
10
, 2,

1
2
, 0, 0, 0

)T
, and Z(x∗) =

123
139

. Here

B = {B1, B2, B3} =

4 2 3
3 3 1
1 3 2

 and x∗B = (x∗2, x
∗
4, x
∗
1)T =

(21
10
,

1
2
,

32
10

)T
.



Postoptimal analysis in the coefficients matrix. . . 289

Using formulas (3.1), (3.6), (3.9), (3.10), (3.11), (3.12) and inverse matrix

(βij) = B−1 =

 3/20 1/4 −7/20
−1/4 1/4 1/4
3/10 −1/2 3/10

,

we obtain the following range for δ, when A
′

23 = A23 + δ = 1 + δ,

−1 ≤ δ ≤ 1.

Interpretation is producing one unit of commodity 3 now requiredA
′

23 units of resource
2 instead A23.

4. CHANGES IN THE COEFFICIENTS OF A BASIC VARIABLE

In this section, our goal is to determine the lower and upper bounds for δ which
guarantee that the replacement A.k by A

′

.k = A.k + eiδ, k ∈ B, does not affect the
optimal basis, and the original optimal solution x∗ remains feasible and optimal. By
taking this replacement, the optimal basis B will be replaced with B = B + δeieTk
where ej is a unit vector. The inverse matrix B is

B−1 = B−1 − δ β.iβk.
1 + δβki

, 1 + δβki 6= 0, (4.1)

by the Sherman-Morrison formulas. This change of the basis matrix will affect the
feasibility of vector x∗. However, it may affect the optimal value of Z(x) and hence,
can change the reduced costs η+

j (x∗) and η−j (x∗). So, by replacing Aik with Aik + δ,
from (2.3) we will have

x̄B = B
−1

b−
∑
j∈N

B
−1

A.jδ
j
νj

=

= (B−1 − δ β.iβk.
1 + δβki

)b−
∑
j∈N

(B−1 − δ β.iβk.
1 + δβki

)A.jδ
j
νj

=

= x∗B − δ
β.iβk.

1 + δβki
(b−

∑
j∈N

A.jδ
j
νj

).

Now the h-th component of x̄B is given by

x̄Bh
= x∗Bh

− δ βhiβk.
1 + δβki

(b−
∑
j∈N A.jδ

j
νj

), h = 1, . . . ,m.

This new basic solution x̄B will be feasible if

δBh

µ(Bh) ≤ x
∗
Bh
− δ βhiβk.

1 + δβki
(b−

∑
j∈N

A.jδ
j
νj

) ≤ δBh

µ(Bh)+1, h = 1, . . . ,m. (4.2)
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From (4.2), we obtain a range for δ.
Since the change in the basis matrix will be affected in the feasibility of vector x∗,

thus, it may affect the optimal value of Z(x) and hence, can change the reduced costs
η+
j (x∗) and η−j (x∗). Hence, we will have

Z(x̄)=
cB(B−1 − δ β.iβk.

1 + δβki
)b +

∑
j∈N

(
cjνj
− cB(B−1 − δ β.iβk.

1 + δβki
)A.j

)
δjνj

+ α

dB(B−1 − δ β.iβk.
1 + δβki

)b +
∑
j∈N

(
djνj − dB(B−1 − δ β.iβk.

1 + δβki
)A.j

)
δjνj + β

=

=
P (x∗)− δcB

β.iβk.
1 + δβki

(b−
∑
j∈N A.jδ

j
νj

)

D(x∗)− δdB
β.iβk.

1 + δβki
(b−

∑
j∈N A.jδ

j
νj )

.

(4.3)

To preserve the strict positivity of the denominator D(x), we need to have

D(x∗)− δdB
β.iβk.

1 + δβki
(b−

∑
j∈N

A.jδ
j
νj

) > 0. (4.4)

But since 1 + δβki 6= 0, we assume that 1 + δβki > 0 and will have

δ


>
−1
βki

, if βki > 0,

<
−1
βki

, if βki < 0.
(4.5)

From (4.5), the relation (4.4) is satisfied if

D(x∗) + δβkiD(x∗)− δdBβ.iβk.(b−
∑
j∈N A.jδ

j
νj

) > 0,

which implies

δ


>
−D(x∗)

G
, if G > 0,

<
−D(x∗)

G
, if G < 0,

(4.6)

where G = βkiD(x∗)− dBβ.iβk.(b−
∑
j∈N A.jδ

j
νj

).
Now, the optimal solution x∗ of the original PLFP problem remains optimal for

the perturbed PLFP problem if

η+
j (x̄) = ∆

′

j + δcB
β.iβk.

1 + δβki
A.j−

−
P (x∗)− δcB

β.iβk.
1 + δβki

(b−
∑
j∈N A.jδ

j
νj

)

D(x∗)− δdB
β.iβk.

1 + δβki
(b−

∑
j∈N A.jδ

j
νj )

(
∆

′′

j + δdB
β.iβk.

1 + δβki
A.j

)
≥ 0.

(4.7)
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From (4.4), the last relation is satisfied if

max
j∈N

{
−D(x∗)η+

j (x∗)
W

: W > 0

}
≤ δ ≤ min

j∈N

{
−D(x∗)η+

j (x∗)
W

: W < 0

}
, (4.8)

and similarly, for η−j (x̄) ≤ 0 we will have

max
j∈N

{
−D(x∗)η−j (x∗)

W ′ : W
′
< 0

}
≤ δ ≤ min

j∈N

{
−D(x∗)η−j (x∗)

W ′ : W
′
> 0

}
, (4.9)

where

W =
(
D(x∗)cB − P (x∗)dB

)
β.iβk.A.j+

+
(

cB∆
′′

j − dB∆
′

j

)
β.iβk.(b−

∑
j∈N

A.jδ
j
νj

) + βkiD(x∗)η+
j (x∗),

and

W
′

=
(
D(x∗)cB − P (x∗)dB

)
β.iβk.A.j+

+
(

cB∆̄
′′

j − dB∆̄
′

j

)
β.iβk.(b−

∑
j∈N

A.jδ
j
νj

) + βkiD(x∗)η−j (x∗).

Therefore, we have proved the following theorem:

Theorem 4.1. If δ satisfies (4.2), (4.5), (4.6), (4.8) and (4.9) then x̄ is an optimal
solution of the perturbed PLFP problem.

Remark 4.2. Lower and upper bounds given in Theorem 4.1 are a generalization of
the corresponding bounds for LP , PLP and LFP . Indeed,

1. If β0 = 1 and gj(xj) = 0, j = 1, 2, . . . , n, then the PLFP reduces to PLP and this
means that D(x∗) = 1, ∆

′′

j = ∆̄
′′

j = 0, η+
j (x∗) = ∆

′

j and η−j (x∗) = ∆̄
′

j , j ∈ N .
In this case, the relation (4.5) and bounds (4.2) are hold too. The relations (4.8)
and (4.9) become respectively as follows

max
j∈N

{
−∆

′

j

W
: W > 0

}
≤ δ ≤ min

j∈N

{
−∆

′

j

W
: W < 0

}
,

max
j∈N

{
−∆̄

′

j

W ′ : W
′
< 0

}
≤ δ ≤ min

j∈N

{
−∆̄

′

j

W ′ : W
′
> 0

}
,

where
W =

(
cBβ.iβk.A.j + βki∆

′

j

)
,

and
W

′
=
(
cBβ.iβk.A.j + βki∆̄

′

j

)
.
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2. If β0 = 1, gj(xj) = 0 and fj(xj), j = 1, 2, . . . , n, are linear functions then the
PLFP reduces to LP with bounded variables. In this case, the relation (4.5) is
satisfied and the relations (4.2), (4.8), (4.9) are respectively as follows

0 ≤ x∗Bh
− δ βhiβk.

1 + δβki
(b−

∑
j∈N

A.jtj) ≤ uBh
, h = 1, . . . ,m,

max
j∈N

{
−∆

′

j

W
: W > 0

}
≤ δ ≤ min

j∈N

{
−∆

′

j

W
: W < 0

}
, if xj = 0,

max
j∈N

{
−∆̄

′

j

W ′ : W
′
< 0

}
≤ δ ≤ min

j∈N

{
−∆̄

′

j

W ′ : W
′
> 0

}
, if xj = uj ,

where

tj = 0 or uj , W =
(
cBβ.iβk.A.j+βki∆

′

j

)
, and W

′
=
(
cBβ.iβk.A.j+βki∆̄

′

j

)
.

3. If both gj(xj) and fj(xj), j = 1, 2, . . . , n, are linear functions then the PLFP re-
duces to LFP and this means that cjνj

= cj , d
j
νj

= dj , ∆
′

j = cj−cBB−1A.j , ∆
′′

j =
dj − dBB−1A.j and ηj(x∗) = ∆

′

j − Z(x∗)∆
′′

j . Therefore, x̄ is an optimal solution
(by uj =∞, ∀j ) if

max
1≤h≤m

{
−x∗Bh

H
: H > 0

}
≤ δ ≤ min

1≤h≤m

{
−x∗Bh

H
: H < 0

}
,

max
j∈N

{
−D(x∗)ηj(x∗)

W
: W > 0

}
≤ δ ≤ min

j∈N

{
−D(x∗)ηj(x∗)

W
: W < 0

}
,

where H = x∗Bh
βki − βhiβk.b,

W =
(
D(x∗)cB−P (x∗)dB

)
β.iβk.A.j+

(
cB∆

′′

j−dB∆
′

j

)
β.iβk.(b+βkiD(x∗)ηj(x∗).

Example 4.3. Consider Example 3.3. Let the basis matrix B be replaced by B, where

B =

4 2 3
3 3 1 + δ
1 3 2

.

Using Theorem 4.1 we obtain the following interval for δ

−10
11
≤ δ ≤ 10

21
.
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5. SUMMARY

The sensitivity analysis of optimal solutions has been presented in this paper. Two
cases were considered: (i) change in the coefficients of a non-basic variable, (ii) change
in the coefficients of a basic variable. In each case the underlying theory for sensitivity
analysis has been presented to in order to obtain bounds for each perturbation and
also to special cases as LP , LFP and PLP .
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