PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fractional nonlocal integrodifferential equations of mixed type with time-varying generating operators and optimal control

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
In this paper, a class of fractional integrodifferential equations of mixed type with time-varying generating operators and nonlocal conditions is considered. Using a contraction mapping principle and Krasnoselskii's fixed point theorem via Gronwall's inequailty, the existence and uniqueness of mild solution are given. The existence of optimal pairs of systems governed by fractional integrodifferential equations of mixed type with time-varying generating operators and nonlocal conditions is also presented.
Rocznik
Strony
217--234
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494–505.
  • [2] L. Byszewski, Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems, Dynam. Systems Appl. 5 (1996), 595–605.
  • [3] L. Byszewski, H. Akca, Existence of solutions of a semilinear functional differential evolution nonlocal problem, Nonlinear Anal. 34 (1998), 65–72.
  • [4] L. Byszewski, H. Akca, On a mild solution of a semilinear functional-differential evolution nonlocal problem, J. Appl. Math. Stochastic Anal. 10 (1997), 265–271.
  • [5] K. Balachandran, M. Chandrasekaran, The nonlocal Cauchy problem for semilinear integrodifferential equation with devating argument, Proceedings of the Edinburgh Mathematical Society 44 (2001), 63–70.
  • [6] K. Balachandran, R.R. Kumar, Existence of solutions of integrodifferential evoluition equations with time varying delays, Applied Mathematics E-Notes 7 (2007), 1–8.
  • [7] K. Balachandran, J.Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal. 71 (2009), 4471–4475.
  • [8] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340–1350.
  • [9] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for fractional functional differential inclusions with infinite delay and application to control theory, Fract. Calc. Appl. Anal., 11 (2008), 35–56.
  • [10] Yong-Kui Chang, V. Kavitha, M. Mallika Arjunan, Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order, Nonlinear Anal. 71 (2009), 5551–5559.
  • [11] Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity [in:] F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 1999, 217–224.
  • [12] M.M. El-Borai, Semigroup and some nonlinear fractional differential equations, Applied Mathematics and Computation 149 (2004), 823–831.
  • [13] L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Process. 5 (1991), 81–88.
  • [14] W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46–53.
  • [15] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.
  • [16] S. Hu, N.S. Papageorgiou, Handbook of multivalued Analysis (Theory), Kluwer Academic Publishers, Dordrecht Boston, London, 1997.
  • [17] Lanying Hu, Yong Ren, R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum (in press).
  • [18] A.A. Kilbas, Hari M. Srivastava, J. Juan Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 2006.
  • [19] S.G. Krein, Linear equations in Banach spaces, Birkhäuser Verlag, Basel, Boston, Berlin, 1982.
  • [20] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
  • [21] V. Lakshmikantham, Theory of fractional differential equations, Nonlinear Anal. 60 (2008), 3337–3343.
  • [22] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677–2682.
  • [23] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  • [24] F. Mainardi, Fractional calculus; Some basic problems in continuum and statistical mechanics [in:] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997, 291–348.
  • [25] F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmache, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180–7186.
  • [26] G.M. Mophou, G.M. N’Guérékata, Mild solutions for semilinear fractional differential equations, Electron. J. Differ. Equ. 21 (2009), 1–9.
  • [27] G.M. Mophou, G.M. N’Guérékata, Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum 79 (2009), 315–322.
  • [28] J.R. Wang, X. Xiang, W. Wei, Periodic solutions of a class of integrodifferential impulsive periodic systems with time-varying generating operators on Banach space, Electronic Journal of Qualitative Theory of Differential Equations 4 (2009), 1–17.
  • [29] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0002-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.