http://dx.doi.org/10.7494/OpMath.2010.30.2.209

Jincai Wang, Chunyan Wu

ON A PROPERTY OF ϕ -VARIATIONAL MODULAR SPACES

Abstract. Maligranda pointed out whether condition (B.1) is satisfied in the variational modular space X_{ρ}^* is an open problem. We will answer this open problem in $X_{\rho}^{*'}$, a subspace of X_{ρ}^* . As a consequence this modular space $X_{\rho}^{*'}$ can be *F*-normed.

Keywords: condition (B.1), modular, ϕ -function, ϕ -variation.

Mathematics Subject Classification: 46A80, 46E30.

1. INTRODUCTION

Modular spaces were originally defined by Nakano. We can refer to [7] for the theory of modular spaces in the sense of Nakano. Mazur and Orlicz [3] and Musielak and Orlicz [5] modified the definition of the modular space proposed by Nakano. In the definition of the modular space they wanted to avoid the lattice structure in the space X on which the modular is defined as well as the monotonicity axiom for the modular. Finally in [5] the following definition of the modular was given.

Let X be a real vector space. A functional $\rho: X \longrightarrow [0, \infty)$ is called a *modular* if it satisfies the conditions:

- (M1) $\rho(x) = 0$ if and only if x = 0;
- (M2) $\rho(-x) = \rho(x)$ for any $x \in X$;
- (M3) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ for every $x, y \in X, \alpha, \beta \ge 0$ such that $\alpha + \beta = 1$.

Condition (M3) does not use any order structure of X but it guarantees that the function $f(\lambda) = \rho(\lambda x)$ is nondecreasing on $\mathbb{R}^+ = [0, \infty)$ for a fixed $x \in X$. For a new theory of modular spaces we refer to [6].

In this paper we will deal with the ϕ -variational modular ρ_{ϕ} , where ϕ is a ϕ -function.

A function $\phi : [0, \infty) \longrightarrow [0, \infty)$ is called a ϕ -function, if ϕ satisfies the following conditions:

(i) $\phi(0) = 0$ and $\phi(u) > 0$ for u > 0;

- (ii) ϕ is increasing and continuous;
- (iii) $\lim_{u \to \infty} \phi(u) = \infty.$

If $\|\cdot\|$ is an *F*-norm in real vector space *X*, then $(X, \|\cdot\|)$ is called an *F*-space.

Let X be the space of all real-valued functions x on the compact interval [a, b]such that x(a) = 0 and ϕ be a ϕ -function on \mathbb{R}^+ . We define on X the ϕ -variation ρ_{ϕ} by

$$\rho_{\phi}(x) = \sup \sum_{k=1}^{n} \phi(|x(t_k) - x(t_{k-1})|),$$

where the supremum is taken over all partitions $\pi : a = t_0 < t_1 < \cdots < t_n = b$. For $\alpha \ge 0, \beta \ge 0$ with $\alpha + \beta = 1$ and $x, y \in X, \alpha |x(t_k) - x(t_{k-1})| + \beta |y(t_k) - y(t_{k-1})| \le \max\{|x(t_k) - x(t_{k-1})|, |y(t_k) - y(t_{k-1})|\}$. So $\rho_{\phi}(\alpha x + \beta y) \le \rho_{\phi}(x) + \rho_{\phi}(y)$. Thus ρ_{ϕ} is a modular on X. This kind of variation was introduced by Young in 1938 and as a modular space $X_{\rho_{\phi}}$ (for the definition of this space see below) was considered first by Musielak and Orlicz in [4] and [5], (see also [1]).

Two vector subspaces of X can be defined:

$$X_{\rho_{\phi}} = \{ x \in X : \lim_{\lambda \to 0^+} \rho_{\phi}(\lambda x) = 0 \}$$

and

$$X_{\rho_{\phi}}^{*} = \{ x \in X : \rho_{\phi}(\lambda x) < \infty \text{ for some } \lambda = \lambda(x) > 0 \}.$$

It is obvious that $X_{\rho_{\phi}} \subset X^*_{\rho_{\phi}}$. We say that the modular ρ_{ϕ} (or the space $X^*_{\rho_{\phi}}$) satisfies condition (B.1) if $\lim_{\alpha \to +} \rho_{\phi}(\lambda x) = 0$ for any $x \in X^*_{\rho_{\phi}}$ (see [2,3,5] and [1]).

Condition (B.1) is necessary and sufficient in order that the following functional

$$||x|| = \inf\left\{c: \rho_{\phi}\left(\frac{x}{c}\right) \le c\right\} \quad (x \in X^*_{\rho_{\phi}})$$

is an *F*-norm on $X^*_{\rho_{\phi}}$. This functional was first defined by Mazur and Orlicz in [3]. It is easy to see that it satisfies the conditions:

- (a) ||x|| = 0 if and only if x = 0;
- (b) ||-x|| = ||x|| for all $x \in X^*_{\rho_{\phi}}$;
- (c) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X^*_{\rho_{\phi}}$.

From conditions (c) it follows that the addition of elements is a continuous operation in $X^*_{\rho_{\phi}}$. However, as it is easy to see, the operation of the multiplication by scalars of the elements from $X^*_{\rho_{\phi}}$ is continuous if and only if condition (B.1) is satisfied. This follows by the fact that for any sequence $(x_n)_{n=1}^{\infty}$ in $X^*_{\rho_{\phi}}$ we have that $||x_n|| \to 0$ as $n \to \infty$ if and only if $\rho_{\phi}(\lambda x_n) \to 0$ as $n \to \infty$ for any $\lambda > 0$. Therefore, the variational modular space $X^*_{\rho_{\phi}}$ is an F-space if and only if condition (B.1) is satisfied.

In contrast to the Orlicz space, it remains an open problem whether condition (B.1) is satisfied in the space $X^*_{\rho_{\phi}}$ (see [1]).

A criterion for local boundedness of a variational modular space $X^*_{\rho_{\phi}}$ is given in [8]. Local boundedness of $X^*_{\rho_{\phi}}$ guarantees that the modular ρ_{ϕ} satisfies condition (B.1). As a consequence such a modular space can be *F*-normed. Thus the result in [8] partly answers the above open problem.

In this paper, we will try to remove the criterion in [8] which guarantees that $X^*_{\rho\phi}$ can be *F*-normed. We will add a weak condition on X^*_{ρ} , and we can answer the open problem in [1] partly.

2. MAIN RESULT

The following Lemma 2, which was proved by J. Musielak and W. Orlicz (see [1,4] or [5]), will play an important role in the proof of our main result in this paper. Let us begin with Lemma 2.1.

Lemma 2.1. Let $f \in X^*_{\rho_{\phi}}$, Then the set of points of discontinuity of f is countable. Proof. Let $f \in X^*_{\rho_{\phi}}$. Then there exists k > 0 such that

$$\rho_{\phi}(kf) = \sup_{\pi} \sum_{i=1}^{n} \phi(k|f(t_i) - f(t_{i-1})|) < \infty,$$
(2.1)

where supremum is taken over all partitions $\pi : a = t_0 < t_1 < \cdots < t_n = b$. For each $x \in [a, b]$, we define the *jump*

$$J_f(x) = \lim_{r \to 0} \sup\{\phi(k|f(y) - f(x)|)\},\$$

where the sup is taken for $y \in [x - r, x + r]$.

By (2.1), we have

(i) For any given $\varepsilon > 0$, there is only a finite number of points $x \in [a, b]$, such that

$$J_f(x) > \varepsilon.$$

- By the continuity at 0 of ϕ , we have
- (ii) f is continuous at x if and only if $J_f(x) = 0$. Let

$$A_i = \{x \in [a,b] : J_r(x) > \frac{1}{i}\}, \quad A = \{x \in [a,b] : x \text{ is discontinuity point of } f\}.$$

Then by (i) and (ii), we have

$$A = \bigcup_{i=1}^{\infty} A_i.$$

This implies that the set A which is the set of points, where f is not continuous is a countable set.

Lemma 2.2 (Helly's extraction theorem). If $\sup_n \rho_{\phi}(kx_n) < \infty$ for some k > 0, then there exists a function $x \in X_{\rho_{\phi}}$ such that $x_n(t) \to x(t)$ for every $t \in [a, b]$ (see J. Musielak and W. Orlicz, 1959 or page 13 in [1]).

We give a sketch of the proof of Lemma 2.2 here: We write $v_n(t) = \rho_{\phi}(kx_n; a, t) = \sup \sum_{i=1}^{m} \phi(k|x_n(t_i) - x_n(t_{i-1})|)$, where the supremum is taken over all partitions π : $a = t_0 < t_1 < \cdots < t_m = t \leq b$. The functions $v_n(t)$ are non-decreasing and bounded by K in [a, b]. Thus, we conclude from the well-known Helly extracting theorem for sequences of monotonic functions that the sequence $v_n(t)$ includes subsequences of $v_{n_i}(t)$ convergent to a non-decreasing function v(t) at every point t of the interval [a, b]. Using the diagonal method we extract from the sequence of indices n_i a subsequence n_{i_j} such that $x_{n_{i_j}}$ is convergent at every rational point of the interval [a, b] and at the points a, b. Writing $x_{n_{i_j}}(t) = x_j^*(t)$ and $v_{n_{i_j}}(t) = v_j^*(t)$, we obtain $v_j^*(t) \to v(t)$ for every $t \in [a, b]$ and $x_j^* \to x(t)$ for every rational $t \in [a, b]$ and for t = a, t = b. Now, let us assume that t_0 is a non-rational point of continuity of the function v(t)in (a, b). We can prove that the numerical sequence $x_j^*(t_0)$ is convergent. The set of points of discontinuity of the function v(t) being at most enumerable, the diagonal method enables us to extract from the sequence $x_j^*(t)$ a subsequence convergent to a function x(t) at every point of the interval [a, b]. Evidently, $\rho_{\phi}(kx) \leq K$.

Our main result is

Theorem 2.3. Let X be the space of real-valued functions in the interval [a, b] such that x(a) = 0 and let

$$\rho_{\phi}(x) = \sup_{\pi} \sum_{i=1}^{n} \phi(|x(t_k) - x(t_{k-1})|),$$

where the supremum is taken over all partitions $\pi : a = t_0 < t_1 < \cdots < t_n = b$. Define

$$X_{\rho_{\phi}}^{*} = \left\{ x : x \in X_{\rho}^{*} \text{ and all the discontinuity points of } x \text{ are isolated} \right\}.$$

Then condition (B.1) is satisfied in the space $X_{\rho_{\phi}}^{*}$.

Proof. For $x \in X^*_{\rho_{\phi}}$, there exists k > 0 such that

$$\rho_{\phi}(kx) = \sup \sum_{i=1}^{n} \phi(k|x(h_i) - x(h_{i-1})|) < +\infty,$$

where sup is taken over all partitions $\pi : a = h_0 < h_1 < \cdots < h_n = b$. By Lemma 2.1 and the definition of $X^*_{\rho\phi}$, we know that x(t) have at most countable discontinuity points and all this discontinuity points are isolated. Without loss of generality, we can suppose the countable discontinuity points are $t_0 < t_1 < \cdots < t_n < \cdots$ and the endpoints of [a, b] are continuity points. Now we construct x_n as follows. For convenience, we denote a, t_0, t_1, b as $s_1^1, s_2^1, s_3^1, s_4^1$, which construct a partition of the closed interval [a, b]. Define

$$x_1(t) = \begin{cases} x(s_1^1), & a = s_1^1 \le t < s_2^1, \\ x(s_2^1), & s_2^1 \le t < s_3^1, \\ x(b), & s_3^1 \le t < s_4^1 = b. \end{cases}$$

Next, we divide every interval of $[a, t_0], [t_0, t_1], [t_1, t_2]$ and $[t_2, b]$ into two non-overlapping intervals of the same length. All the intermediate points and all endpoints of the closed intervals construct a partition of the interval [a, b]. we denote all the points as $a = s_1^2 < s_2^2 < \cdots < s_9^2 = b$. Define

$$x_2(t) = \begin{cases} x(s_i^2), & s_i^2 \le t < s_{i+1}^2, i = 1, 2, \cdots, 7, \\ x(b), & s_8^2 \le t \le s_9^2 = b. \end{cases}$$

Then we divide every interval of $[a, t_0], [t_0, t_1], [t_1, t_2], [t_2, t_3]$ and $[t_3, b]$ into three non-overlapping intervals of the same length. All the intermediate points and all the end points of the closed interval construct a partition of the interval [a, b]. we denote all the points as $a = s_1^3 < s_2^3 < \cdots < s_{16}^3 = b$. Define

$$x_3(t) = \begin{cases} x(s_i^2), & s_i^2 \le t < s_{i+1}^2, i = 1, 2, \cdots, 14, \\ x(b), & s_{15}^2 \le t \le s_{16}^2 = b. \end{cases}$$

Generally, we divided every interval of $[a, t_0], [t_0, t_1], \dots, [t_{n-1}, t_n]$ and $[t_n, b]$ into n non-overlapping intervals of the same length. All the intermediate points and all the endpoints of the closed interval construct a partition of the interval [a, b]. we denote all the points as $a = s_1^n < s_2^n < \dots < s_{(n+1)^2}^n = b$. Define

$$x_n(t) = \begin{cases} x(s_i^n), & s_i^n \le t < s_{i+1}^n, i = 1, 2, \cdots, (n+1)^2 - 2, \\ x(b), & s_{(n+1)^2 - 1}^n \le t \le s_{(n+1)^2}^n = b. \end{cases}$$

For every *n*, we denote $\{s_{i_1}^n, s_{i_2}^n, \cdots, s_{i_l}^n\}$ as a subset of $\{s_1^n, s_2^n, \cdots, s_{(n+1)^2}^n\}$, and $\{s_{i_1}^n, s_{i_2}^n, \cdots, s_{i_l}^n\}$ is a partition of [a, b]. If $s_{(n+1)^2-1}^n \in \{s_{i_1}^n, s_{i_2}^n, \cdots, s_{i_l}^n\}$, we replace $s_{(n+1)^2-1}^n$ with *b* in $\{s_{i_1}^n, s_{i_2}^n, \cdots, s_{i_l}^n\}$. If $\{s_{(n+1)^2-1}^n, b\} \subset \{s_{i_1}^n, s_{i_2}^n, \cdots, s_{i_l}^n\}$, we delete $s_{(n+1)^2-1}^n$ in $\{s_{i_1}^n, s_{i_2}^n, \cdots, s_{i_l}^n\}$. Thus we guarantee the following equality

$$\sum_{j=1}^{l} \phi(k|x_n(s_{i_j}^n) - x_n(s_{i_{j-1}}^n)|) = \sum_{j=1}^{l} \phi(k|x(s_{i_j}^n) - x(s_{i_{j-1}}^n)|),$$

and do not affect computation of $\sum_{j=1}^{l} \phi(k|x_n(s_{i_j}^n) - x_n(s_{i_{j-1}}^n)|)$ with original $\{s_{i_1}^n, s_{i_2}^n, \dots, s_{i_l}^n\}$. We use π representing all partitions of [a, b] and π_1 representing all

partitions of [a, b] which are generated by $\{s_{i_1}^n, s_{i_2}^n, \cdots, s_{i_l}^n\} \subset \{s_1^n, s_2^n, \cdots, s_{(n+1)^2}^n\}$. Then

$$\rho_{\phi}(kx_{n}) = \sup_{\pi} \sum_{j=1}^{m} \phi(k|x_{n}(h_{j}) - x_{n}(h_{j-1})|) =$$
$$= \sup_{\pi_{1}} \sum_{j=1}^{l} \phi(k|x_{n}(s_{i_{j}}^{n}) - x_{n}(s_{i_{j-1}}^{n})|) =$$
$$= \sup_{\pi_{1}} \sum_{j=1}^{l} \phi(k|x(s_{i_{j}}^{n}) - x(s_{i_{j-1}}^{n})|) \leq$$
$$\leq \rho_{\phi}(kx) < +\infty,$$

here we get the second equality by the definition of x_n . So

$$\sup \rho_{\phi}(kx_n) \le \rho_{\phi}(kx) < +\infty.$$

By Lemma 2.2, there exists $y \in X_{\rho_{\phi}}$, such that $x_n(t) \to y(t)$ for every $t \in [a, b]$. On the other hand, by the construction of $x_n(t)$, we know $x_n(t) \to x(t)$ for every $t \in [a, b]$. So x(t) = y(t) for every $t \in [a, b]$ and $x = y \in X_{\rho_{\phi}}$. This implies condition (B.1) is satisfied in $X_{\rho_{\phi}}^{*}$.

Corollary 2.4. $X_{\rho_{\phi}}^{*}$ ' can always be *F*-normed.

Acknowledgments

This work is supported by NSFC:10771154, NSFJ:BK2007049.

REFERENCES

- L. Maligranda, Orlicz Space and Interpolation, Seminars in Mathematics, Univ. Estadual de Campinas, Campinas SP, Brasil, 1989.
- [2] L. Maligranda, W. Orlicz, On some properties of functions of generalized variation, Monatsh. Math. 104 (1987), 53-65.
- [3] S. Mazur, W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958), 97-119.
- [4] J. Musielak, W. Orlicz, On generalized variation, Studia Math. 28 (1959), 11-41.
- [5] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
- [6] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer-Varlag, 1983.
- [7] H. Nakano, Modulared Semi-ordered Spaces, Tokyo, 1950.
- [8] Wang Jin Cai, H. Hudzik, A note on φ-variational modular spaces, Commentationes Mathematicae 41 (2001), 93–98.

Jincai Wang wwwanggj@163.com

Suzhou University Department of Mathematics Suzhou, 215006 P.R. China

Chunyan Wu

Suzhou University Department of Mathematics Suzhou, 215006 P.R. China

Received: November 2, 2009. Revised: January 15, 2010. Accepted: January 18, 2010.