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ON A PROPERTY
OF ¢-VARIATIONAL MODULAR SPACES

Abstract. Maligranda pointed out whether condition (B.1) is satisfied in the variational
modular space X is an open problem. We will answer this open problem in X ;', a subspace
of X,. As a consequence this modular space X;/ can be F-normed.
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1. INTRODUCTION

Modular spaces were originally defined by Nakano. We can refer to [7] for the theory
of modular spaces in the sense of Nakano. Mazur and Orlicz [3] and Musielak and
Orlicz [5] modified the definition of the modular space proposed by Nakano. In the
definition of the modular space they wanted to avoid the lattice structure in the space
X on which the modular is defined as well as the monotonicity axiom for the modular.
Finally in [5] the following definition of the modular was given.

Let X be a real vector space. A functional p : X — [0, 00) is called a modular if
it satisfies the conditions:

(M1) p(x) =0 if and only if z = 0;
(M2) p(—z) = p(z) for any = € X;
(M3) plaz+ By) < p(x) + p(y) for every z,y € X,a, 3 > 0 such that o + = 1.

Condition (M3) does not use any order structure of X but it guarantees that the
function f(A\) = p(Az) is nondecreasing on RT = [0, 00) for a fixed z € X. For a new
theory of modular spaces we refer to [6].

In this paper we will deal with the ¢-variational modular p,, where ¢ is a
¢-function.

A function ¢ : [0,00) — [0, 00) is called a ¢-function, if ¢ satisfies the following
conditions:

(i) ¢(0) =0 and ¢(u) > 0 for u > 0;
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(ii) ¢ is increasing and continuous;
(i) lim ¢(u) = co.
u—00

If || - || is an F-norm in real vector space X, then (X, || -||) is called an F-space.

Let X be the space of all real-valued functions = on the compact interval [a, b]
such that z(a) = 0 and ¢ be a ¢-function on RT. We define on X the ¢-variation py
by

po(r) =sup ¥ _ ¢(|z(tr) — (ts-1)]),
k=1
where the supremum is taken over all partitions 7 : a = tg < t; < --- < t, = b. For
a>0,>0witha+3=1and z,y € X, a|z(tx) — z(tg—1)| + Bly(tr) — y(tr-1)| <
max{[z(te) — (tx—1), [y(te) — y(te—1)[}. S0 po(aw + By) < pys(x) + ps(y). Thus p,
is a modular on X. This kind of variation was introduced by Young in 1938 and as
a modular space X,, (for the definition of this space see below ) was considered first
by Musielak and Orlicz in [4] and [5], (see also [1]).
Two vector subspaces of X can be defined:

X,, ={reX: )\li)rng po(Az) = 0}

and
X, ={7 € X :py(Ar) < oo for some A = A(z) > 0}.

It is obvious that X,, C X, Wesay that the modular p, (or the space X;d)) satisfies
condition (B.1) if /\lim+ py(Ax) =0 for any = € X (see [2,3,5] and [1]).
—0

Condition (B.1) is necessary and sufficient in order that the following functional
. &€ *
1| :mf{c:p¢ (Z> §c} (x e X;,)

is an F-norm on X . This functional was first defined by Mazur and Orlicz in [3].
It is easy to see that it satisfies the conditions:

(a) |lz|| = 0 if and only if z = 0;

() || = [ = ||lz[| for all z € X ;

(©) llz+yll <zl +[lyll for all 2,y € X7 .

From conditions (c) it follows that the addition of elements is a continuous opera-
tion in X . However, as it is easy to see, the operation of the multiplication by scalars
of the elements from X is continuous if and only if condition (B.1) is satisfied. This
follows by the fact that for any sequence (2,,)52, in X we have that ||z, — 0 as
n — oo if and only if py(Az,) — 0 as n — oo for any A > 0. Therefore, the variational
modular space X/ is an F-space if and only if condition (B.1) is satisfied.

In contrast to the Orlicz space, it remains an open problem whether condition
(B.1) is satisfied in the space X (see [1]).
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A criterion for local boundedness of a variational modular space X is given in
[8]. Local boundedness of X ;¢ guarantees that the modular py4 satisfies condition
(B.1). As a consequence such a modular space can be F-normed. Thus the result in
[8] partly answers the above open problem.

In this paper, we will try to remove the criterion in [8] which guarantees that X, .
can be F-normed. We will add a weak condition on X7, and we can answer the open
problem in [1] partly.

2. MAIN RESULT

The following Lemma 2, which was proved by J. Musielak and W. Orlicz (see [1,4] or
[5]), will play an important role in the proof of our main result in this paper. Let us
begin with Lemma 2.1.

Lemma 2.1. Let f € X;W Then the set of points of discontinuity of f is countable.
Proof. Let f € X,,- Then there exists k > 0 such that

po(kf) =sup Y o(k|f(t:) — f(ti1)]) < o, (2.1)
Toi=1

where supremum is taken over all partitions 7 :a =tg < t; < --- < t, = b. For each
x € [a,b], we define the jump

Jp(x) = lim sup{6(k]f(4) — F(2)])}.

where the sup is taken for y € [x — 7,z + 7).
By (2.1), we have
(i) For any given € > 0, there is only a finite number of points x € [a, b], such that

Ji(x) > e.
By the continuity at 0 of ¢, we have

(ii) f is continuous at z if and only if Jy(z) = 0.
Let

1
A;={x €a,b]: J-(x) > =}, A={z€[a,b]:x is discontinuity point of f}.
i

Then by (i) and (ii), we have

This implies that the set A which is the set of points, where f is not continuous is a
countable set. O
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Lemma 2.2 (Helly’s extraction theorem). If sup,, py(kz,) < oo for some k > 0,
then there exists a function x € X, such that x,(t) — x(t) for every t € [a,b] (see
J. Musielak and W. Orlicz, 1959 or page 13 in [1]).

We give a sketch of the proof of Lemma 2.2 here: We write v, (t) = pg(kzn;a,t) =
m

sup > ¢(k|xn(t;) — xn(ti—1)|), where the supremum is taken over all partitions 7:
i=1

a=ty <ty <- <ty =1t<b. The functions v, (t) are non-decreasing and bounded
by K in [a,b]. Thus, we conclude from the well-known Helly extracting theorem for
sequences of monotonic functions that the sequence v, (t) includes subsequences of
Un, (t) convergent to a non-decreasing function v(¢) at every point ¢ of the interval [a, ].
Using the diagonal method we extract from the sequence of indices n; a subsequence
n;; such that x,, is convergent at every rational point of the interval [a,b] and at
the points a,b. Writing (t) = ;(t) and Un,, (t) = vj(t), we obtain v}(t) — v(t)
for every t € [a,b] and 2} — z(t) for every rational ¢ € [a,b] and for t = a,t = b.
Now, let us assume that ¢, is a non-rational point of continuity of the function wv(t)
in (a,b). We can prove that the numerical sequence z7(to) is convergent. The set of
points of discontinuity of the function v(¢) being at most enumerable, the diagonal
method enables us to extract from the sequence () a subsequence convergent to a
function x(t) at every point of the interval [a, b]. Evidently, py(kz) < K.

Our main result is

Theorem 2.3. Let X be the space of real-valued functions in the interval [a,b] such
that z(a) = 0 and let

n

po(w) = sup Y ol (tr) — w(tr-1)]),

T =1
where the supremum is taken over all partitions m : a = tg < t1 < -+ < t, = b.
Define

X;¢I ={z:z¢ X7 and all the discontinuity points of x are isolated} .

Then condition (B.1) is satisfied in the space X;¢'.

Proof. For x € X;¢'7 there exists k£ > 0 such that

po(kx) = sup Y ¢(k|z(hi) — x(hi1)]) < +o0,
=1

where sup is taken over all partitions 7 :a = hg < hy < --- < h,, =b. By Lemma 2.1
and the definition of X* ’, we know that z(t) have at most countable discontinuity
points and all this discontinuity points are isolated. Without loss of generality, we
can suppose the countable discontinuity points are tg < t; < --- < t, < --- and the
endpoints of [a,b] are continuity points. Now we construct x,, as follows.
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For convenience, we denote a, tg,t1,b as s, s3, s3, si, which construct a partition
of the closed interval [a, b]. Define

x(s}), a=si <t<si,
z1(t) = ¢ 2(sd), si <t<si,
z(b), si<t<si=b

Next, we divide every interval of [a,to], [to,?1],[t1,t2] and [to,b] into two
non-overlapping intervals of the same length. All the intermediate points and all
endpoints of the closed intervals construct a partition of the interval [a, b]. we denote
all the points as a = s? < s3 < --- < s2 = b. Define

Then we divide every interval of [a,to], [to, t1], [t1, 2], [t2, t3] and [ts,b] into three
non-overlapping intervals of the same length. All the intermediate points and all
the end points of the closed interval construct a partition of the interval [a,b]. we
denote all the points as a = s3 < s3 < --- < s35 = b. Define

25(t) = x(s?), s7<t<sig,i=1,2,---,14,
z(b), si5 <t <s3=b.

Generally, we divided every interval of [a,to], [to, t1]," -, [tn—1,tn] and [t,,]] into n
non-overlapping intervals of the same length. All the intermediate points and all the
endpoints of the closed interval construct a partition of the interval [a, b]. we denote

all the points as a = s <s§ < - < Sty = b. Define

z(s?), sP<t<st,i=12--,(n+1)2-
In(t):{ (z) :L— i+1 ( )

z(b), S(n+1)2-1 <t< 3?n+1)2 =b.
For every n, we denote {s},si,---,si} as a subset of {s{,s}, - ,S?HH)Q}, and
{st,, s, -+, s} is a partition of [a,b]. If Slni1)2—1 € {st, 22,~~ , 85}, we replace
5(n+1)2 1 Wlth bin {s?, s, - ,sp} If {3(n+1)2 by C sl s,y s}, we delete
s(n+1)2_1 in {s?',si,-,s;}. Thus we guarantee the following equality

l l
> oklea(st) —aa(st_ ) =Y é(kla(sy) — (st _,))),
j=1 j=1

and do not affect computation of Z¢(k|xn( ) — an(s]
j=1

{sf 8%, , s }. We use 7 representing all partitions of [a,b] and 7 representing all

)|) with original

—1
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pz}xlrtitions of [a,b] which are generated by {sf,sf, - ,si} C {s],s5, - ,S?HH)Q}.
Then

m

po(kan) =sup Y d(k|zn(hy) — wn(hy-1)]) =

l
=sup Y p(klan(s]) —wa(s)_)]) =
T j:1

l
=sup ) _@(kla(s}) —a(sy_,)) <
1 j:1
< p¢(kx) < too,
here we get the second equality by the definition of z,. So

sup pg (kxy) < py(kx) < +o00.

By Lemma 2.2, there exists y € X,,, such that z,(t) — y(t) for every t € [a,b]. On
the other hand, by the construction of z,,(t), we know x,,(t) — z(t) for every ¢ € [a, b].
So x(t) = y(t) for every t € [a,b] and x = y € X,,. This implies condition (B.1) is
satisfied in X;¢/' O

Corollary 2.4. X;¢' can always be F-normed.
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