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ON A PROPERTY
OF φ-VARIATIONAL MODULAR SPACES

Abstract. Maligranda pointed out whether condition (B.1) is satisfied in the variational
modular space X∗ρ is an open problem. We will answer this open problem in X∗ρ

′, a subspace
of X∗ρ . As a consequence this modular space X∗ρ

′ can be F -normed.
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1. INTRODUCTION

Modular spaces were originally defined by Nakano. We can refer to [7] for the theory
of modular spaces in the sense of Nakano. Mazur and Orlicz [3] and Musielak and
Orlicz [5] modified the definition of the modular space proposed by Nakano. In the
definition of the modular space they wanted to avoid the lattice structure in the space
X on which the modular is defined as well as the monotonicity axiom for the modular.
Finally in [5] the following definition of the modular was given.

Let X be a real vector space. A functional ρ : X −→ [0,∞) is called a modular if
it satisfies the conditions:

(M1) ρ(x) = 0 if and only if x = 0;
(M2) ρ(−x) = ρ(x) for any x ∈ X;
(M3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for every x, y ∈ X,α, β ≥ 0 such that α+ β = 1.

Condition (M3) does not use any order structure of X but it guarantees that the
function f(λ) = ρ(λx) is nondecreasing on R+ = [0,∞) for a fixed x ∈ X. For a new
theory of modular spaces we refer to [6].

In this paper we will deal with the φ-variational modular ρφ, where φ is a
φ-function.

A function φ : [0,∞) −→ [0,∞) is called a φ-function, if φ satisfies the following
conditions:

(i) φ(0) = 0 and φ(u) > 0 for u > 0;
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(ii) φ is increasing and continuous;
(iii) lim

u→∞
φ(u) =∞.

If ‖ · ‖ is an F -norm in real vector space X, then (X, ‖ · ‖) is called an F-space.
Let X be the space of all real-valued functions x on the compact interval [a, b]

such that x(a) = 0 and φ be a φ-function on R+. We define on X the φ-variation ρφ
by

ρφ(x) = sup
n∑
k=1

φ(|x(tk)− x(tk−1)|),

where the supremum is taken over all partitions π : a = t0 < t1 < · · · < tn = b. For
α ≥ 0, β ≥ 0 with α+ β = 1 and x, y ∈ X, α|x(tk)− x(tk−1)|+ β|y(tk)− y(tk−1)| ≤
max{|x(tk)− x(tk−1)|, |y(tk)− y(tk−1)|}. So ρφ(αx+ βy) ≤ ρφ(x) + ρφ(y). Thus ρφ
is a modular on X. This kind of variation was introduced by Young in 1938 and as
a modular space Xρφ (for the definition of this space see below ) was considered first
by Musielak and Orlicz in [4] and [5], (see also [1]).

Two vector subspaces of X can be defined:

Xρφ = {x ∈ X : lim
λ→0+

ρφ(λx) = 0}

and
X∗ρφ = {x ∈ X : ρφ(λx) <∞ for some λ = λ(x) > 0}.

It is obvious that Xρφ ⊂ X∗ρφ . We say that the modular ρφ (or the space X∗ρφ) satisfies
condition (B.1) if lim

λ→0+
ρφ(λx) = 0 for any x ∈ X∗ρφ (see [2, 3, 5] and [1]).

Condition (B.1) is necessary and sufficient in order that the following functional

‖x‖ = inf
{
c : ρφ

(x
c

)
≤ c
}

(x ∈ X∗ρφ)

is an F -norm on X∗ρφ . This functional was first defined by Mazur and Orlicz in [3].
It is easy to see that it satisfies the conditions:

(a) ‖x‖ = 0 if and only if x = 0;
(b) ‖ − x‖ = ‖x‖ for all x ∈ X∗ρφ ;
(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X∗ρφ .

From conditions (c) it follows that the addition of elements is a continuous opera-
tion inX∗ρφ . However, as it is easy to see, the operation of the multiplication by scalars
of the elements from X∗ρφ is continuous if and only if condition (B.1) is satisfied. This
follows by the fact that for any sequence (xn)∞n=1 in X∗ρφ we have that ‖xn‖ → 0 as
n→∞ if and only if ρφ(λxn)→ 0 as n→∞ for any λ > 0. Therefore, the variational
modular space X∗ρφ is an F-space if and only if condition (B.1) is satisfied.

In contrast to the Orlicz space, it remains an open problem whether condition
(B.1) is satisfied in the space X∗ρφ (see [1]).
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A criterion for local boundedness of a variational modular space X∗ρφ is given in
[8]. Local boundedness of X∗ρφ guarantees that the modular ρφ satisfies condition
(B.1). As a consequence such a modular space can be F -normed. Thus the result in
[8] partly answers the above open problem.

In this paper, we will try to remove the criterion in [8] which guarantees that X∗ρφ
can be F -normed. We will add a weak condition on X∗ρ , and we can answer the open
problem in [1] partly.

2. MAIN RESULT

The following Lemma 2, which was proved by J. Musielak and W. Orlicz (see [1,4] or
[5]), will play an important role in the proof of our main result in this paper. Let us
begin with Lemma 2.1.

Lemma 2.1. Let f ∈ X∗ρφ , Then the set of points of discontinuity of f is countable.

Proof. Let f ∈ X∗ρφ . Then there exists k > 0 such that

ρφ(kf) = sup
π

n∑
i=1

φ(k|f(ti)− f(ti−1)|) <∞, (2.1)

where supremum is taken over all partitions π : a = t0 < t1 < · · · < tn = b. For each
x ∈ [a, b], we define the jump

Jf (x) = lim
r→0

sup{φ(k|f(y)− f(x)|)},

where the sup is taken for y ∈ [x− r, x+ r].
By (2.1), we have
(i) For any given ε > 0, there is only a finite number of points x ∈ [a, b], such that

Jf (x) > ε.

By the continuity at 0 of φ, we have
(ii) f is continuous at x if and only if Jf (x) = 0.
Let

Ai = {x ∈ [a, b] : Jr(x) >
1
i
}, A = {x ∈ [a, b] : x is discontinuity point of f}.

Then by (i) and (ii), we have

A =
∞⋃
i=1

Ai.

This implies that the set A which is the set of points, where f is not continuous is a
countable set.
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Lemma 2.2 (Helly’s extraction theorem). If supn ρφ(kxn) < ∞ for some k > 0,
then there exists a function x ∈ Xρφ such that xn(t) → x(t) for every t ∈ [a, b] (see
J. Musielak and W. Orlicz, 1959 or page 13 in [1]).

We give a sketch of the proof of Lemma 2.2 here: We write vn(t) = ρφ(kxn; a, t) =

sup
m∑
i=1

φ(k|xn(ti) − xn(ti−1)|), where the supremum is taken over all partitions π:

a = t0 < t1 < · · · < tm = t ≤ b. The functions vn(t) are non-decreasing and bounded
by K in [a, b]. Thus, we conclude from the well-known Helly extracting theorem for
sequences of monotonic functions that the sequence vn(t) includes subsequences of
vni(t) convergent to a non-decreasing function v(t) at every point t of the interval [a, b].
Using the diagonal method we extract from the sequence of indices ni a subsequence
nij such that xnij is convergent at every rational point of the interval [a, b] and at
the points a, b. Writing xnij (t) = x∗j (t) and vnij (t) = v∗j (t), we obtain v∗j (t) → v(t)
for every t ∈ [a, b] and x∗j → x(t) for every rational t ∈ [a, b] and for t = a, t = b.
Now, let us assume that t0 is a non-rational point of continuity of the function v(t)
in (a, b). We can prove that the numerical sequence x∗j (t0) is convergent. The set of
points of discontinuity of the function v(t) being at most enumerable, the diagonal
method enables us to extract from the sequence x∗j (t) a subsequence convergent to a
function x(t) at every point of the interval [a, b]. Evidently, ρφ(kx) ≤ K.

Our main result is

Theorem 2.3. Let X be the space of real-valued functions in the interval [a, b] such
that x(a) = 0 and let

ρφ(x) = sup
π

n∑
i=1

φ(|x(tk)− x(tk−1)|),

where the supremum is taken over all partitions π : a = t0 < t1 < · · · < tn = b.
Define

X∗ρφ
′ =

{
x : x ∈ X∗ρ and all the discontinuity points of x are isolated

}
.

Then condition (B.1) is satisfied in the space X∗ρφ
′.

Proof. For x ∈ X∗ρφ
′, there exists k > 0 such that

ρφ(kx) = sup
n∑
i=1

φ(k|x(hi)− x(hi−1)|) < +∞,

where sup is taken over all partitions π : a = h0 < h1 < · · · < hn = b. By Lemma 2.1
and the definition of X∗ρφ

′, we know that x(t) have at most countable discontinuity
points and all this discontinuity points are isolated. Without loss of generality, we
can suppose the countable discontinuity points are t0 < t1 < · · · < tn < · · · and the
endpoints of [a, b] are continuity points. Now we construct xn as follows.
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For convenience, we denote a, t0, t1, b as s11, s12, s13, s14, which construct a partition
of the closed interval [a, b]. Define

x1(t) =


x(s11), a = s11 ≤ t < s12,

x(s12), s12 ≤ t < s13,

x(b), s13 ≤ t < s14 = b.

Next, we divide every interval of [a, t0], [t0, t1], [t1, t2] and [t2, b] into two
non-overlapping intervals of the same length. All the intermediate points and all
endpoints of the closed intervals construct a partition of the interval [a, b]. we denote
all the points as a = s21 < s22 < · · · < s29 = b. Define

x2(t) =

{
x(s2i ), s2i ≤ t < s2i+1, i = 1, 2, · · · , 7,
x(b), s28 ≤ t ≤ s29 = b.

Then we divide every interval of [a, t0], [t0, t1], [t1, t2], [t2, t3] and [t3, b] into three
non-overlapping intervals of the same length. All the intermediate points and all
the end points of the closed interval construct a partition of the interval [a, b]. we
denote all the points as a = s31 < s32 < · · · < s316 = b. Define

x3(t) =

{
x(s2i ), s2i ≤ t < s2i+1, i = 1, 2, · · · , 14,
x(b), s215 ≤ t ≤ s216 = b.

Generally, we divided every interval of [a, t0], [t0, t1], · · · , [tn−1, tn] and [tn, b] into n
non-overlapping intervals of the same length. All the intermediate points and all the
endpoints of the closed interval construct a partition of the interval [a, b]. we denote
all the points as a = sn1 < sn2 < · · · < sn(n+1)2 = b. Define

xn(t) =

{
x(sni ), sni ≤ t < sni+1, i = 1, 2, · · · , (n+ 1)2 − 2,
x(b), sn(n+1)2−1 ≤ t ≤ s

n
(n+1)2 = b.

For every n, we denote {sni1 , s
n
i2
, · · · , snil} as a subset of {sn1 , sn2 , · · · , sn(n+1)2}, and

{sni1 , s
n
i2
, · · · , snil} is a partition of [a, b]. If sn(n+1)2−1 ∈ {s

n
i1
, sni2 , · · · , s

n
il
}, we replace

sn(n+1)2−1 with b in {sni1 , s
n
i2
, · · · , snil}. If {sn(n+1)2−1, b} ⊂ {s

n
i1
, sni2 , · · · , s

n
il
}, we delete

sn(n+1)2−1 in {sni1 , s
n
i2
, · · · , snil}. Thus we guarantee the following equality

l∑
j=1

φ(k|xn(snij )− xn(s
n
ij−1

)|) =
l∑

j=1

φ(k|x(snij )− x(s
n
ij−1

)|),

and do not affect computation of
l∑

j=1

φ(k|xn(snij ) − xn(snij−1
)|) with original

{sni1 , s
n
i2
, · · · , snil}. We use π representing all partitions of [a, b] and π1 representing all
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partitions of [a, b] which are generated by {sni1 , s
n
i2
, · · · , snil} ⊂ {s

n
1 , s

n
2 , · · · , sn(n+1)2}.

Then

ρφ(kxn) = sup
π

m∑
j=1

φ(k|xn(hj)− xn(hj−1)|) =

= sup
π1

l∑
j=1

φ(k|xn(snij )− xn(s
n
ij−1

)|) =

= sup
π1

l∑
j=1

φ(k|x(snij )− x(s
n
ij−1

)|) ≤

≤ ρφ(kx) < +∞,

here we get the second equality by the definition of xn. So

sup
n
ρφ(kxn) ≤ ρφ(kx) < +∞.

By Lemma 2.2, there exists y ∈ Xρφ , such that xn(t) → y(t) for every t ∈ [a, b]. On
the other hand, by the construction of xn(t), we know xn(t)→ x(t) for every t ∈ [a, b].
So x(t) = y(t) for every t ∈ [a, b] and x = y ∈ Xρφ . This implies condition (B.1) is
satisfied in X∗ρφ

′.

Corollary 2.4. X∗ρφ
′ can always be F -normed.
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