PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A note on the discrete Schrodinger operator with a perturbed periodic potential

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to study the spectrum of the one-dimensional discrete Schrödinger operator with a perturbed periodic potential. We obtain natural conditions under which this perturbation preserves the essential spectrum of the considered operator. Conditions on the number of isolated eigenvalues are given.
Rocznik
Strony
193--202
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Kraków, Poland, bstrack@agh.edu.pl
Bibliografia
  • [1] P.A. Cojuhari, Discrete spectrum in the gaps for perturbations of periodic Jacobi matrices, J. of Comput. and Appl. Math. 225 (2009) 2, 374–386.
  • [2] P.A. Cojuhari, Spectrum of the perturbed matrix Wiener-Hopf operator, Linear Operators and Integral Equations, Mat. Issled. 61 (1981), 29–39 [in Russian].
  • [3] P.A. Cojuhari, The spectrum of a perturbed Wiener-Hopf operator, Operators in Banach spaces. Mat. Issled. 47 (1978), 25–34 [in Russian].
  • [4] P.A. Cojuhari, Estimates of the number of perturbed eigenvalues, Operator theoretical methods, 1998, 97–111, The Theta Found., Bucharest, 2000.
  • [5] P.A. Cojuhari, Finiteness of the discrete spectrum of Jacobi matrices, Inv. Diff. Eq. and Math. Analysis 173 (1988), 80–93 [in Russian].
  • [6] P.A. Cojuhari, The problem of the finiteness of the point spectrum for self adjoint operators. Perturbations of Wiener-Hopf operators and applications to Jacobie matrices. Spectral methods for operators of mathematical physic, Oper. Theory Adv. Appl., Birkhäuser, Bessel, 2004, 35–50.
  • [7] P.A. Cojuhari, On the spectrum of a class of block Jacobi matrices, Operator theory, structured matrices, and dilations, Theta Ser. Adv. Math., Bucharest, 2007, 137–152.
  • [8] I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, I.P.S.T., Jerusalem, 1965.
  • [9] K. Jorgens, J. Weidmann, Spectral Properties of Hamiltonian Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
  • [10] G. Heining, The inversion of periodic and limit-periodic Jacobi matrices, Mat. Issled. 8: 1(27)(1973), 180–200 [in Russian].
  • [11] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
  • [12] P.B. Naiman, On the theory of periodic and limit-periodic Jacobi matrices, Dokl. Akad. Nauk 143 (2) (1982), 277–279 [in Russian].
  • [13] P.B. Naïman, On the spectral theory of the non-hermitian periodic Jacobi matrices, Dopov. Akad. Nauk Ukr. RSR 10 (1963), 1307–1311 [in Ukrainian].
  • [14] P.B. Naïman, On the spectral theory of the non-symetric periodic Jacobi matrices, Notes of the Faculty of MAth. and Mech. of Kharkov’s State University and of Kharkov’s Math. Society 30 (1964), 138–151 [in Russian].
  • [15] P.B. Naïman, On the set of growth points of spectral function of limit-constant Jacobi matrices, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1959), 129–135 [in Russian].
  • [16] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, American Mathematical Society, 2000.
  • [17] J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
  • [18] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Springer-Verlag Berlin-Heidelberg-New York, 1980.
  • [19] L. Zelenko, Spectrum of the one-dimensional Schrödinger operator with a periodic potential subjected to a local dilative perturbation, Integral Equations and Operator Theory 58 (2007), 573–589.
  • [20] L. Zelenko, Construction of the essential spectrum for a multidimensional non-self- -adjoint Schrodinger operator via the spectra of operators with periodic potentials, Part I, Integral Equations and Operator Theory 46 (2003), 11–68.
  • [21] L. Zelenko, Construction of the essential spectrum for a multidimensional non-self-adjoint Schrödinger operator via the spectra of operators with periodic potentials, Part II, Integral Equations and Operator Theory 46 (2003), 69–124.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0002-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.