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A NOTE
ON THE DISCRETE SCHRÖDINGER OPERATOR
WITH A PERTURBED PERIODIC POTENTIAL

Abstract. The aim of this paper is to study the spectrum of the one-dimensional discrete
Schrödinger operator with a perturbed periodic potential. We obtain natural conditions
under which this perturbation preserves the essential spectrum of the considered operator.
Conditions on the number of isolated eigenvalues are given.
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1. INTRODUCTION

In the paper [19] Zelenko described the spectrum of the one-dimensional Schrödinger
operator

H = − d2

dx2
+ α2(x)Ṽ (α(x)x)

acting in the Hilbert space L2(R) of all square summable functions on R. In [19] Ṽ is
a continuous real-valued periodic function and α : R→ (0, 1) is a continuous function
such that

lim
|x|→∞

α(x) = 1.

Zelenko obtains conditions under which the perturbation preserves the essential spec-
trum and an infinite number of isolated eigenvalues appear in a gap of the essential
spectrum.

In the present paper we consider the discrete version of those issues. We describe
the one-dimensional discrete Schrödinger operator H on l2(Z+) with the perturbation
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of a periodic potential that is a natural discrete version of the perturbation considered
above. More precisely, we study the operator H defined by

(Hu)(n) = u(n− 1) + u(n+ 1) + q(α(n)n)u(n), for n ∈ Z+, (1.1)

for all u ∈ l2(Z+) (we set u(−1) = 0, in what follows, this will be always assumed),
where q is a continuous real-valued function with a period T (it is supposed to be
a positive integer) and {α(n)}n∈Z+ is a sequence of numbers belonging to (0, 1). A
physical interpretation of such perturbation is the following: the function q is the
electric potential of an infinite atomic lattice and its perturbation corresponds to
a local dilatation, for instance, some local heating. The function q could be also
interpreted as potential of a one-dimensional crystal (cf. [8, Chapter 6]). We denote
by H0 the one-dimensional discrete Schrödinger operator with a potential q, that is
the operator acting as follows

(H0u)(n) = u(n− 1) + u(n+ 1) + q(n)u(n), for n ∈ Z+, (1.2)

for all u ∈ l2(Z+). This operator corresponds to an infinite lattice without any
perturbation.

In [19–21] were obtained some properties of the spectrum of perturbed operators
expressed in terms of the family of operators {Hm}m∈Z+ which comes from setting
the value of a perturbing sequence. In the present paper we also consider a fam-
ily of potentials defined in similar way, that is for m ∈ Z+ we denote by Hm the
one-dimensional discrete Schrödinger operator on l2(Z+) with the potential

qm = q(α(m)n), n ∈ Z+.

We cannot apply Zelenko’s results directly, because we immediately encounter some
technical problems that arise from differences between discrete and continuous cases.
For example, contrary to the continuous case, there is no unitary equivalence between
operators Hm and a scalar multiple of the operator H0 in the discrete version of the
considered problem.

The spectrum of the one-dimensional discrete Schrödinger operator on l2(Z) (or, in
another terminology, a Jacobi matrix) with a periodic potential and its perturbation
was studied by Naïman ([12–15], see also [8, Chapter 6]). The discrete spectrum of
perturbed Jacobi matrices on l2(Z+) was also investigated in papers [2, 4, 5] by Co-
juhari (for related results see [3,6,7]). In a more recent paper [1] estimate formulae for
the number of the eigenvalues created by perturbation in the gaps of the unperturbed
operator are obtained.

In this paper we focus on a particular form of the periodic potential perturbation
as in (1.1). We prove, under some natural conditions, the invariance of the essential
spectrum of H0 under the perturbation. We also provide some results concerning the
discrete spectrum. We concentrate only on one of the spectrum gaps but our methods
may be applied to obtain analogous results for any of them. Furthermore, we show
that under some conditions the spectrum of the operator H0 can be expressed by a
spectra of operators Hm. It should be noted that, by periodicity of the function q, one
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may use the general theory of perturbation as an alternative way for describing the
spectrum of H0 (cf. [10, 12]). Actually, spectral properties of the operator H0 could
be described by the classical Floquet theory, but we prove that σ(H0) coincides with
the set {λ ∈ C : lim supm→∞ ‖Rλ(Hm)‖ = ∞} directly. Moreover, our approach is
in a sense simpler.

The remaining part of the paper is organized as follows. In Section 2 we introduce
some basic notations and definitions. Section 3 contains the main results of the paper.
Proposition 3.1, provides us with conditions for preservation of the essential under
the perturbation. We obtained this result using the Weyl theorem. Theorems 3.3 and
3.4 concern localization of the spectrum of the unperturbed operator H0 in terms of
operators Hm. Next, in Theorems 3.7 and 3.9, the discrete spectrum of the perturbed
is studied by means of the Kneser theorem (cf., for instance, [8, p. 126]).

2. PRELIMINARIES

To begin with, we introduce notations that we will use throughout the paper. In what
follows, Z+ stands for the set {0, 1, 2 . . .}. We write l2(Z+) for the set of all square
summable sequences on Z+. For an operator H, symbols σ(H), σe(H), ρ(H) stand
for the spectrum, the essential spectrum and the resolvent set of H respectively.

In the paper we denote by H the one-dimensional discrete Schrödinger operator
on l2(Z+) with a perturbed periodic potential, that is the operator defined by

(Hu)(n) = u(n− 1) + u(n+ 1) + q(α(n)n)u(n), for n ∈ Z+, (2.1)

for all u ∈ l2(Z+) (recall that we set u(−1) = 0), where q : R → R is a continuous
periodic function (called the potential) with a period T ∈ Z+ and {α(n)}n∈Z+ is a
sequence of numbers belonging to (0, 1). Note that the sequence {q(n)}n∈Z+ is also
periodic with the same period T . We write qα for the potential of the operator H,
that is

qα(n) = q(α(n)n), for n ∈ Z+. (2.2)

For convenience, we introduce the one-dimensional discrete Schrödinger operator
on l2(Z+) with periodic potential, namely the operator acting as follows

(H0u)(n) = u(n− 1) + u(n+ 1) + q(n)u(n), for n ∈ Z+, (2.3)

for all u ∈ l2(Z+).
For the potential q and the sequence {α(n)}n∈Z+ , we will consider the ensuing

conditions:

(1) The potential q satisfies the Hölder condition, that is

∃γ > 0 ∃L > 0 ∀x, y ∈ R : |q(x)− q(y)| ≤ L|x− y|γ .

(2) The sequence {α(n)}n∈Z+ satisfies one of the following conditions:
(a) limn→∞ α(n) = 1,



196 Beata Strack

(b) limn→∞(1− α(n))n = 0,
or

(c) limn→∞(1 − α(n))γn2+γ = 0, where γ is the constant from the Hölder
condition (1).

We also consider the family of potentials {qm}m∈Z+ defined by

qm(n) = q(α(m)n), n ∈ Z+. (2.4)

We write Hm for the Schrödinger operator on l2(Z+) with the potential qm. More
precisely, for m ∈ Z+ we denote by Hm the operator acting as follows

(Hmu)(n) = u(n− 1) + u(n+ 1) + qm(n)u(n), for n ∈ Z+,

for all u ∈ l2(Z+).

3. RESULTS

The following proposition provides some natural conditions for the preservation of the
essential spectrum of H0 after the perturbation.

Proposition 3.1. Suppose that conditions (1) and (b) are satisfied. Then the
essential spectrum of the operator H coincides with the spectrum of H0, that is
σe(H0) = σe(H).

Proof. Observe that
H = H0 + (qα − q).

Moreover, from the definition of the potential qα(n) = q(α(n)n) we obtain

|qα(n)− q(n)| ≤ L(1− α(n))γ , (3.1)

where L, γ are constants as in (1). From (3.1) and assumption (b) we infer that the
perturbation (qα − q) is a compact operator on l2(Z). By the Weyl theorem (cf. [17])
we obtain σ(H0) = σe(H), which completes the proof.

Remark 3.2. It should be noted that Proposition 3.1 does not cover all cases of
preservation of the essential spectrum. Indeed, it suffices to take a perturbating
sequence of the form

α(n) = 1− T

n
for n > 0,

where T is a period of q. Then q = qα, so in fact, there is no perturbation at all, but
the sequence {α(n)}n∈Z+ does not satisfy the assumptions of Proposition 3.1.
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The following example illustrates the importance of assumption (b) in Proposi-
tion 3.1.

Example 1. Define a function q by

q(x) =

{
2− 3(x− 2k), x ∈ [2k, 1

2 + 2k] for some k ∈ Z+,

x− 2k, x ∈ [ 12 + 2k, 2(k + 1)] for some k ∈ Z+.

Then

q(n) =

{
1, n = 2k + 1, for some k ∈ Z+,

2, n = 2k for some k ∈ Z+.

Setting α(n) = 1− 1
2n for every non-zero n, we obtain

qα(n) =


2, n = 0,
1
2 , n = 2k + 1, for some k ∈ Z+,
3
2 , n = 2(k + 1) for some k ∈ Z+.

Moreover, H is a one dimensional perturbation of the operator H0− 1
2I. As a result,

σe(H) = {λ ∈ C : λ+
1
2
∈ σe(H̃)},

so the essential spectrum is not preserved.

Now let Rλ(Hm) = (Hm − λI)−1 be the resolvent of the operator Hm for λ ∈
ρ(Hm). In addition to this, we put ‖Rλ(Hm)‖ =∞ for λ ∈ σ(Hm). Consider the set

Γ = {λ ∈ C : lim sup
m→∞

‖Rλ(Hm)‖ =∞}. (3.2)

It turns out that under some conditions on the perturbation, the set Γ coincides with
the spectrum of the operator H0.

Theorem 3.3. Suppose that conditions (1) and (a) are satisfied. Then

σ(H0) ⊂ Γ, (3.3)

where Γ is the set defined by (3.2).

Proof. We show that C\Γ ⊂ C\σ(H0). For this purpose, take a λ ∈ C\Γ. Then there
exists δ > 0 such that

‖Rλ(Hm)‖ < δ (3.4)

for all m ∈ Z+. Let u ∈ l2(Z+) be a finite sequence for which there exists N ∈ Z+

with the property that u(n) = 0 for all n > N . Let m ∈ Z+ be chosen to satisfy

1− α(m) <
1

(2δL)
1
γN

, (3.5)
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where L, γ are constants as in (1). Condition (a) guarantees that such an m exists.
Then

‖(q − qm)u‖2 =
N∑
n=0

(q(n)− q(α(m)n))2|u(n)|2 ≤ L2((1− α(m))N)2γ‖u‖2 (3.6)

and from (3.5) we obtain

‖(q − qm)u‖ ≤ 1
2δ
‖u‖. (3.7)

Next, observe that
H0u− λu = Hmu− λu+ (q − qm)u,

which implies
u = Rλ(Hm)

(
H0u− λu− (q − qm)u

)
.

The latter equality yields

‖u‖ ≤ ‖Rλ(Hm)‖‖H0u− λu‖+ ‖Rλ(Hm)‖‖(q − qm)u‖. (3.8)

Then (3.8) combined with (3.4) and (3.7) gives

‖u‖ ≤ δ‖H0u− λu‖+ δ
1
2δ
‖u‖,

which in turn leads to
‖u‖ ≤ 2δ‖H0u− λu‖.

Since the constant 2δ does not depend on the choice of u and the set of all finite
sequences is dense in l2(Z+), we conclude that λ ∈ C\σ(H0). This finishes the
proof.

Theorem 3.4. Suppose that conditions (1), (b) are satisfied. Then

Γ ⊂ σ(H0). (3.9)

Proof. Take a λ ∈ Γ. Then there exists a sequence {kn}n∈Z+ ⊂ Z+ such that kn →∞
and

‖Rλ(Hkn)‖ → ∞ (3.10)

when n tends to ∞. From (3.10) we deduce that

∃{un} ⊂ l2(Z+) : ‖un‖ = 1, ‖Hknun − λun‖ → 0.

Let ũn ∈ l2(Z+) be a sequence with a finite support satisfying the condition

‖un − ũn‖ ≤
1
n

for all n > 0.

From the following inequalities

‖(λI −Hkn)ũn‖ ≤ ‖(λI −Hkn)un‖+ ‖(λI −Hkn)(un − ũn)‖ ≤
≤ ‖(λI −Hkn)un‖+ (‖Hkn‖+ |λ|)‖un − ũn‖
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we infer that (λI −Hkn)ũn → 0, when n tends to ∞. Notice that, without any loss
of generality, α(n) could be chosen to be rational. Denote by Tn the period of qkn .
For all non-zero n ∈ Z+, we define vn by

vn(k +mnTn) = ũn(k), k ∈ Z+,

where mn is chosen to satisfy Mn = min{n : n ∈ supp vn} ≥ kn. Observe that

‖vn‖ ≥ 1− 1
n

and

‖λvn −H0vn‖ ≤ ‖λvn −Hknvn‖+ ‖(q − qkn)vn‖ ≤
≤ ‖λũn −H0ũn‖+ L sup

k≥Mn

((1− α(k))k)γ‖vn‖.

As n tends to ∞, we obtain
‖λvn −H0vn‖ → 0,

because supk≥Mn
((1− α(k))k)→ 0, when Mn →∞. This yields λ ∈ σ(H0).

Corollary 3.5. Suppose that conditions (1), (b) are satisfied. Then

Γ = σ(H0). (3.11)

Remark 3.6. Under assumptions (1) and (a) the sequence {Hm}m∈Z+ strongly con-
verges to the operator H0, that is

Hm
s→ H0 when m→∞.

Indeed, it follows from (3.6).

Next, assuming that σe(H) = σe(H0), we investigate the number of eigenvalues
of the operator H lying in the set (−∞,minσe(H)). Our method of proof relies on
the well known Kneser theorem.

Since the function q is periodic, it follows that values of

lim inf
k→∞

k2ωk, lim sup
k→∞

k2ωk,

where
ωk = −2 + q(k)− λ0,

depend only on signs of ωk for k = 1, . . . , T . Our next theorems are based on this
simple observation.

Theorem 3.7. Suppose that σe(H) = σe(H0) and set µ0 = minσe(H0). Suppose
that ωk ≥ 0 for k = 1, . . . , T and there exists an index k0 satisfying q(k0) = 2 + µ0

and the following inequality

lim inf
k→∞

k2(q(α(k)k)− q(k)) > −1
4

(3.12)

holds. Then the operator H has at most a finite number of eigenvalues smaller than µ0.
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Proof. The potential q is periodic, so our assumptions imply

lim inf
k→∞

k2ωk = 0. (3.13)

Observe that

k2(−2 + q(α(k)k)− µ0) = k2ωk + k2(q(α(k)k)− q(k)). (3.14)

Set ηk = −2 + q(α(k)k)− µ0. From (3.14) and (3.13) we infer that

lim inf
k→∞

k2ηk ≥ lim inf
k→∞

k2(q(α(k)k)− q(k)).

Assumptions of Theorem 3.7 yield

lim inf
k→∞

k2ηk > −
1
4
.

It follows from the Kneser theorem that there is at most finite number eigenvalues
smaller than µ0.

Corollary 3.8. Suppose that conditions (1), (c) are satisfied and set µ0 =
minσe(H0). Suppose that ωk ≥ 0 for k = 1, . . . , T and there exists an index k0 such
that q(k0) = 2 + µ0. Then the operator H has at most a finite number of eigenvalues
smaller than µ0.

Proof. Note that (3.12) automatically holds if conditions (1), (c) are satisfied. Indeed,
it is a consequence of the inequality

|k2(q(α(k)k)− q(k))| ≤ Lk2+γ(1− α(k))γ .

Then from Theorem 3.1 we obtain σe(H) = σe(H0). The assertion follows directly
from Theorem 3.7.

Theorem 3.9. Suppose σe(H) = σe(H0) and µ0 = minσe(H0). Suppose that ωk ≤ 0
for k = 1, . . . , T and there exists an index k0 satisfying q(k0) = 2+µ0 and the following
inequality

lim sup
k→∞

k2(q(α(k)k)− q(k)) < −1
4
,

holds. Then operator the H has an infinite number of eigenvalues smaller than µ0.

Proof. The potential q is periodic, so by assumptions we obtain

lim sup
k→∞

k2ωk = 0. (3.15)

Analogously to the proof of Theorem 3.7, we observe that

k2ηk = k2ωk + k2(q(α(k)k)− q(k)),

where ηk = −2 + q(α(k)k) − µ0. Equality (3.15) and assumptions of Theorem 3.9
imply

lim sup
k→∞

k2ηk ≤ lim sup
k→∞

k2(q(α(k)k)− q(k)) < −1
4
.

This, in view of the Kneser theorem, leads to the desired conclusion.
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