Martin Sonntag, Hanns-Martin Teichert

DOMINATION HYPERGRAPHS OF CERTAIN DIGRAPHS

Abstract

If $D=(V, A)$ is a digraph, its domination hypergraph $\mathcal{D H}(D)=(V, \mathcal{E})$ has the vertex set V and $e \subseteq V$ is an edge of $\mathcal{D} \mathcal{H}(D)$ if and only if e is a minimal dominating set of D. We investigate domination hypergraphs of special classes of digraphs, namely tournaments, paths and cycles. Finally, using a special decomposition/composition method we construct edge sets of domination hypergraphs of certain digraphs.

Keywords: hypergraph, dominating set, directed graph.

Mathematics Subject Classification: 05C65, 05C20.

1. INTRODUCTION AND DEFINITIONS

All hypergraphs $\mathcal{H}=(V(\mathcal{H}), \mathcal{E}(\mathcal{H}))$, graphs $G=(V(G), E(G))$ and digraphs $D=$ $(V(D), A(D))$ considered here may have isolated vertices but no multiple edges. In the case of digraphs, loops are forbidden, because they are irrelevant for the investigation of the corresponding domination graphs or hypergraphs. In standard terminology we follow Berge [1].

Let $D=(V, A)$ be a digraph. A nonempty vertex set $V^{\prime} \subseteq V$ dominates the digraph D if and only if every vertex $v \in V \backslash V^{\prime}$ has a predecessor in $V^{\prime} . \mathcal{D}(D)=(V, E)$ is the domination graph of the digraph $D=(V, A)$ if and only if it has the the same vertex set as D and

$$
E=\{\{u, v\} \mid u \neq v \wedge\{u, v\} \subseteq V \text { dominates } D\} .
$$

Many results on domination in graphs (and digraphs) can be found in Haynes, Hedetniemi and Slater [8, 9]. A lot of the investigations of domination graphs of digraphs deal with tournaments, i.e., oriented complete graphs (cf. Cho et al. [2], Fisher et al. [3-7], McKenna et al. [10]).

The most interesting structural result on domination graphs of tournaments is due to Fisher, Lundgren, Merz and Reid:

Theorem $1.1([3,6])$. The domination graph of a tournament is either a spiked odd cycle with or without isolated vertices, or a forest of caterpillars.

Note that a caterpillar and a spiked cycle is a connected graph such that the removal of all end vertices results in a (possibly trivial) path and a cycle, respectively. In domination graphs, edges represent only dominating sets of cardinality two, but in many cases dominating sets of other cardinalities are of interest (cf. [8,9]). Therefore the following definition is natural: If $D=(V, A)$ is a digraph its domination hypergraph $\mathcal{D H}(D)=(V, \mathcal{E})$ has the vertex set V and $e \subseteq V$ is an edge of $\mathcal{D H}(D)$ if and only if e is a minimal dominating set of D.

Figure 1 shows a tournament T_{5} with five vertices and its domination hypergraph.

T_{5}

$\mathcal{D H}\left(T_{5}\right)$

Fig. 1. A tournament T_{5} and its domination hypergraph

In a digraph $D=(V, A)$ a vertex $v \in V$ is a source [sink] if and only if it has indegree $d^{-}(v)=0$ [outdegree $d^{+}(v)=0$]. By $N^{+}(v)$ and $N^{-}(v)$ we denote the set of all successors and the set of all predecessors of v in D, respectively.

Note that a loop in $\mathcal{D} \mathcal{H}(D)$ represents a vertex of the digraph D dominating all other vertices, e.g. if D is a tournament containing such a vertex v then v is the (unique) source of D. Moreover, for any digraph D the domination graph $\mathcal{D}(D)$ is a subhypergraph of the domination hypergraph $\mathcal{D H}(D)$, if $\mathcal{D H}(D)$ has no loop.

Therefore, for tournaments Theorem 1.1 implies that the deletion of all hyperedges of cardinalities different from two in $\mathcal{D} \mathcal{H}\left(T_{n}\right)$ leads to a forest of caterpillars or a spiked odd cycle (with or without isolated vertices). In Figure 1 the star with the center vertex 4 corresponds to this forest of caterpillars.

In Section 2 and 3 we investigate domination hypergraphs of special classes of digraphs, namely tournaments, paths and cycles. Finally, using a special decomposition/composition method we deal in Section 4 with the construction of the edge set of the domination hypergraph of a given digraph.

2. DOMINATION HYPERGRAPHS OF TOURNAMENTS

We start with two simple properties of domination hypergraphs of tournaments.
Proposition 2.1. (1) If $T_{n}=(V, A)$ is a tournament with n vertices and $\mathcal{D H}\left(T_{n}\right)=$ (V, \mathcal{E}), then every edge $e \in \mathcal{E}$ has a cardinality of at most $\left\lceil\frac{n}{2}\right\rceil$.
(2) For every $k \in\left\{1, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$ there exists a tournament $T_{n}^{k}=(V, A)$ with n vertices such that its domination hypergraph $\mathcal{D H}\left(T_{n}^{k}\right)=(V, \mathcal{E})$ possesses an edge $e \in \mathcal{E}$ of cardinality k.

Proof. (1) Assume, $e \in \mathcal{E}$ with $|e|>\left\lceil\frac{n}{2}\right\rceil$. Since e is a minimal dominating set, a vertex $v \in e$ must have the property that there exists a vertex $v^{\prime} \in V \backslash e$ such that v is the only predecessor of v^{\prime} in e or v is not dominated by $e \backslash\{v\}$. Then e contains at most one vertex of the second kind and $|V \backslash e|$ vertices of the first kind, a contradiction.
(2) In Figure 2 we give, for $k \leq \frac{n}{2}$ and $k=\frac{n+1}{2}$ (where n is odd), respectively, a tournament T_{n}^{k} with a minimal dominating set $e=\{1,2, \ldots, k\}$. To simplify Figure 2 we draw only some of the arcs; the remaining arcs between the subtournaments A and B are going from B to A; inside the subtournaments the arcs can be arbitrarily directed.

Fig. 2. Two tournaments with minimal dominating set $\{1,2, \ldots, k\}$

Note that there are many examples of nonisomorphic tournaments T_{n} and T_{n}^{\prime} with isomorphic domination hypergraphs (cf. Fig. 3).

An open problem is to find a characterization of domination hypergraphs of tournaments, but this seems to be difficult and we are far from a solution.

T_{6}

T_{6}^{\prime}

$\mathcal{D H}\left(T_{6}\right)=\mathcal{D} \mathcal{H}\left(T_{6}^{\prime}\right)$

Fig. 3. Two nonisomorphic tournaments with the same domination hypergraph

In a hypergraph \mathcal{H} a trivial component of \mathcal{H} is referred to as an isolated vertex as well as a vertex of degree one being contained in a loop. It is known that domination graphs of tournaments can have several nontrivial components (cf. Theorem 1.1). By computer we tested hundreds of tournaments T_{n} having up to $n=23$ vertices, but we did not find any domination hypergraph $\mathcal{D H}\left(T_{n}\right)$ which has more than one nontrivial component. Moreover, a computer-aided construction of the domination hypergraph of all tournaments up to $n=9$ vertices showed, that more than one nontrivial component is impossible for $n \leq 9$ (cf. Wartner [12]). It seems that the "bigger" edges of $\mathcal{D} \mathcal{H}\left(T_{n}\right)$ can guarantee the connectedness of the domination hypergraph (up to isolated vertices).

Conjecture. The domination hypergraph $\mathcal{D H}\left(T_{n}\right)$ of a tournament T_{n} consists of at most one nontrivial connected component.

We give a result concerning this conjecture.
Proposition 2.2. Let $T_{n}=(V, A)$ be a tournament with n vertices. Then every nontrivial connected component of the domination hypergraph $\mathcal{D H}\left(T_{n}\right)=(V, \mathcal{E})$ contains at least three edges.

Proof. Let $e_{1} \in \mathcal{E}$ and $x, x^{-} \in e_{1}$, where x^{-}is a predecessor of x in T_{n}. Because e_{1} is a minimal dominating set in T_{n} and x is dominated by $x^{-} \in e_{1}$ there must exist at least one vertex $x^{+} \in V \backslash e_{1}$ which is dominated by the vertex x in T_{n} but by no other vertex of e_{1}. Let $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\} \subseteq N^{+}(x) \cap\left(V \backslash e_{1}\right)$ be the set of all such vertices; this implies $\forall z \in e_{1} \backslash\{x\} \forall i \in\{1, \ldots, t\}: v_{i} \notin N^{+}(z)$. Obviously, $\widetilde{e_{1}}:=\left(e_{1} \backslash\{x\}\right) \cup\left\{v_{1}, \ldots, v_{t}\right\}$ is a dominating set in T_{n}. Hence there exists a minimal dominating set $e_{2} \subseteq \widetilde{e_{1}}$, such that e_{2} contains at least one of the vertices v_{1}, \ldots, v_{t}, say $v_{1}, \ldots, v_{t^{\prime}}$, and in $e_{2} \backslash\left\{v_{1}, \ldots, v_{t^{\prime}}\right\}$ we have a predecessor of x. Without loss of generality we choose such a predecessor and refer to it again as x^{-}. Since $x^{-} \in e_{1} \cap e_{2}$ the edge $e_{2} \neq e_{1}$ is in the same component of $\mathcal{D H}\left(T_{n}\right)$ as e_{1}.

Note that $\emptyset \neq\left\{v_{1}, \ldots, v_{t^{\prime}}\right\} \subseteq N^{-}\left(x^{-}\right)$, because $x \neq x^{-}$is the only dominator (i.e. predecessor) of $v_{1}, \ldots, v_{t^{\prime}}$ in e_{1}.

Now we apply the analogous procedure to e_{2} and $x^{-}: x^{-}$is dominated by $v_{1} \in e_{2}$; consequently there must exist at least one vertex in $V \backslash e_{2}$ which is dominated by the vertex x^{-}in T_{n} but by no other vertex of e_{2}. Let $\left\{w_{1}, w_{2}, \ldots, w_{s}\right\} \subseteq N^{+}\left(x^{-}\right) \cap\left(V \backslash e_{2}\right)$ be the set of all vertices of $V \backslash e_{2}$ being dominated by x^{-}but by no other vertex of e_{2}. This implies $\forall z \in e_{2} \backslash\left\{x^{-}\right\} \forall i \in\{1, \ldots, s\}: w_{i} \notin N^{+}(z)$. (Of course, $x \in\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ is possible.)

It follows that $\widetilde{e_{2}}:=\left(e_{2} \backslash\left\{x^{-}\right\}\right) \cup\left\{w_{1}, \ldots, w_{s}\right\}$ is a dominating set in T_{n} and has to contain a minimal dominating set e_{3} of T_{n}. Owing to $x^{-} \notin e_{3}$ we obtain $e_{1} \neq e_{3} \neq e_{2}$. Since none of w_{1}, \ldots, w_{s} dominates x^{-}at least one of the predecessors $v_{1}, \ldots, v_{t^{\prime}} \in e_{2}$ of x^{-}in T_{n} has to be an element of e_{3}. Therefore, e_{3}, e_{2} and e_{1} are in the same component of $\mathcal{D H}\left(T_{n}\right)$.

It is easy to construct digraphs $D=(V, A)$ with $n \geq 3$ vertices such that the domination hypergraph $\mathcal{D H}(D)=(V, \mathcal{E})$ has a connected component with exactly three edges:

Let $\{x, y, z\} \subseteq V$ generate an oriented 3 -cycle in D and each of the vertices x, y, z dominates $V \backslash\{x, y, z\}$. If none of x, y, z has a predecessor in $V \backslash\{x, y, z\}$, then $\mathcal{D H}(D)=(V,\{\{x, y\},\{x, z\},\{y, z\}\})$.

3. DOMINATION HYPERGRAPHS OF ORIENTED PATHS AND CYCLES

For special types of digraphs the domination hypergraphs can be easily found. A first example is any digraph with n vertices and a source v of outdegree $n-1$ (e.g. directed stars and directed wheels with center v or transitive tournaments); in this case $\mathcal{D H}(D)=(V,\{\{v\}\})$. Secondly, if $D=(V, A)$ has only three kinds of vertices: sources, sinks and possibly some isolated vertices, then $\mathcal{D H}(D)=\left(V,\left\{V^{\prime}\right\}\right)$, where V^{\prime} contains all sources and all isolated vertices of D. Note that connected digraphs, where all vertices are sources or sinks are often referred to as alternating digraphs. In such digraphs every path is alternating, i.e. any two consecutive arcs in a path have opposite orientation.

Let $P_{n}=(V, A)$ and $C_{n}=(V, A \cup\{(n, 1)\})$ be the oriented path and the oriented cycle with n vertices, respectively, i.e. $V=\{1,2, \ldots, n\}$ and $A=$ $\{(1,2),(2,3), \ldots,(n-1, n)\}$.

Theorem 3.1. Let $\mathcal{D H}\left(P_{n}\right)=(V, \mathcal{E})$ be the domination hypergraph of the oriented path $P_{n}=(V, A)$. Then:
(1) $e \in \mathcal{E}$ if and only if $1 \in e \wedge$
$\forall i \in\{1,2, \ldots, n-1\}:|\{i, i+1\} \cap e| \geq 1 \wedge(i \leq n-2 \Rightarrow|\{i, i+1, i+2\} \cap e| \leq 2)$.
(2) $\forall e \in \mathcal{E}:\left\lceil\frac{n}{2}\right\rceil \leq|e| \leq \begin{cases}\frac{2}{3} n, & n \equiv 0 \bmod 3, \\ 2\left\lfloor\frac{n}{3}\right\rfloor+1, & \text { otherwise. }\end{cases}$
(3) With $a_{n}:=\left|\mathcal{E}\left(\mathcal{D H}\left(P_{n}\right)\right)\right|, n \in \mathbb{N}^{+}$, we obtain $a_{1}=a_{2}=1, a_{3}=2$ and $a_{n}=a_{n-2}+a_{n-3}$, for $n \geq 4$.

Proof. (1). The three conditions are obvious.
(2). The lower bound is reached by $e=\left\{1,3, \ldots, 2\left\lceil\frac{n}{2}\right\rceil-1\right\}$. The upper bound we obtain with $e=\{1,2,4,5,7,8, \ldots, n-2, n-1\}$, if $n \equiv 0 \bmod 3$, and $e=$ $\left\{1,2,4,5,7,8, \ldots, 3\left\lfloor\frac{n}{3}\right\rfloor-2,3\left\lfloor\frac{n}{3}\right\rfloor-1,3\left\lfloor\frac{n}{3}\right\rfloor+1\right\}$, otherwise.
(3). The proof will be done by induction. The case $n \leq 3$ is clear, let us consider $n \geq 4$. We will construct a bijection from the disjoint union of the system $\mathcal{E}_{n-2}=\mathcal{E}\left(\mathcal{D H}\left(P_{n-2}\right)\right)$ of the minimal dominating sets of P_{n-2} and the system $\mathcal{E}_{n-3}=\mathcal{E}\left(\mathcal{D H}\left(P_{n-3}\right)\right)$ onto $\mathcal{E}_{n}=\mathcal{E}\left(\mathcal{D H}\left(P_{n}\right)\right)$. First, starting with P_{n-2}, we construct a bijection from \mathcal{E}_{n-2} onto a subset $\mathcal{E}^{\prime} \subseteq \mathcal{E}_{n}$; then the edges of $\mathcal{E}_{n} \backslash \mathcal{E}^{\prime}$ will be constructed from \mathcal{E}_{n-3} analogously.

Algorithm A:

Let $\mathcal{D} \mathcal{H}\left(P_{n-2}\right)=\left(V \backslash\{n-1, n\}, \mathcal{E}_{n-2}\right)$ and $\mathcal{D} \mathcal{H}\left(P_{n-3}\right)=\left(V \backslash\{n-2, n-1, n\}, \mathcal{E}_{n-3}\right)$. Then the edge set of $\mathcal{D} \mathcal{H}\left(P_{n}\right)=\left(V, \mathcal{E}_{n}\right)$ can be constructed as follows:

Let $\mathcal{E}:=\emptyset$.

Let $e \in \mathcal{E}_{n-2}$.
2.1. If $n-2 \in e$, then $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n\}\}$ else $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n-1\}\}$.
2.2. $\mathcal{E}_{n-2}:=\mathcal{E}_{n-2} \backslash\{e\}$.
2.3. If $\mathcal{E}_{n-2} \neq \emptyset$, then go to 2 .
3. Let $e \in \mathcal{E}_{n-3}$.
3.1. If $\quad n-3 \in e$, then $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n-2, n\}\}$ else $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n-2, n-1\}\}$.
3.2. $\quad \mathcal{E}_{n-3}:=\mathcal{E}_{n-3} \backslash\{e\}$.
3.3. If $\quad \mathcal{E}_{n-3} \neq \emptyset$, then go to 3 , else $\mathcal{E}=\mathcal{E}_{n}$.
4. Stop.

In step 2.1 and step 3.1 every edge e of \mathcal{E}_{n-2} and of \mathcal{E}_{n-3}, respectively, is taken exactly once to construct an edge of $\mathcal{E}=\mathcal{E}_{n}$.
Assume, two of the sets $e_{1} \cup\{n\}, e_{2} \cup\{n-1\}$ (cf. 2.1) and $e_{3} \cup\{n-2, n\}, e_{4} \cup\{n-2, n-1\}$ (cf. 3.1) coincide. Obviously, this is only possible for a pair $e_{1} \cup\{n\}, e_{3} \cup\{n-2, n\}$ and $e_{2} \cup\{n-1\}, e_{4} \cup\{n-2, n-1\}$, respectively. Consider the case $e_{1} \cup\{n\}=e_{3} \cup\{n-2, n\}$. Because of $n-2 \in e_{1}$ (see 2.1) we obtain $n-3 \notin e_{1}$, since e_{1} is minimal dominating, i.e. $n-3 \notin e_{1} \cup\{n\}$. Step 3.1 includes $n-3 \in e_{3} \subset e_{3} \cup\{n-2, n\}$, therefore $e_{1} \cup\{n\}=e_{3} \cup\{n-2, n\}$ is impossible.

It remains to investigate $e_{2} \cup\{n-1\}=e_{4} \cup\{n-2, n-1\}$. Step 2.1 implies $n-2 \notin e_{2} \cup\{n-1\}$, but $n-2 \in e_{4} \cup\{n-2, n-1\}$ (see 3.1). Consequently, all of the sets $e_{1} \cup\{n\}, e_{2} \cup\{n-1\}, e_{3} \cup\{n-2, n\}$ and $e_{4} \cup\{n-2, n-1\}$ are pairwise distinct, i.e. our algorithm describes a bijection of the disjoint union of \mathcal{E}_{n-2} and \mathcal{E}_{n-3} onto \mathcal{E}.

It is easy to see that our construction in 2.1 and 3.1 leads to minimal dominating sets of P_{n} (we add no superfluous vertices to the minimal dominating sets e of P_{n-2} and P_{n-3}, respectively). Hence, the set \mathcal{E} constructed in the algorithm is a subset of \mathcal{E}_{n}.

Vice versa, let $e \in \mathcal{E}_{n}$ be minimal dominating in P_{n}. In the case $n \in e$ we obtain $n-1 \notin e, n-2 \in e$ and if $n-3 \notin e$, then $e \backslash\{n\} \in \mathcal{E}_{n-2}$. Otherwise $e \backslash\{n-2, n\} \in \mathcal{E}_{n-3}$.

Now consider $n \notin e$, i.e. $n-1 \in e$. If $n-2 \notin e$, then $n-3 \in e$ as well as $e \backslash\{n-1\} \in \mathcal{E}_{n-2}$, otherwise $e \backslash\{n-2, n-1\} \in \mathcal{E}_{n-3}$ with $n-3 \notin e$. Therefore, \mathcal{E}_{n} is a subset of the set \mathcal{E} from the algorithm, i.e. $\mathcal{E}_{n}=\mathcal{E}$.

Observe that an arbitrary path can be decomposed into oriented subpaths. Thus, using Theorem 3.1 and the decomposition principle described in Section 4, the domination hypergraph of an arbitrary path can be determined.

Theorem 3.2. Let $\mathcal{D H}\left(C_{n}\right)=(V, \mathcal{E})$ be the domination hypergraph of the oriented cycle $C_{n}=(V, A)$. Then it holds:
(1) $e \in \mathcal{E}$ if and only if

$$
\forall i \in\{1,2, \ldots, n\}:|\{i, i+1\} \cap e| \geq 1 \wedge|\{i, i+1, i+2\} \cap e| \leq 2) \quad(\text { modulo } n) .
$$

(2) $\forall e \in \mathcal{E}:\left\lceil\frac{n}{2}\right\rceil \leq|e| \leq \begin{cases}\frac{2}{3} n, & n \equiv 0 \bmod 3, \\ \frac{2}{3}(n-1), & n \equiv 1 \bmod 3, \\ \frac{2}{3}(n-2)+1, & n \equiv 2 \bmod 3 .\end{cases}$
(3) With $a_{n}:=\left|\mathcal{E}\left(\mathcal{D H}\left(C_{n}\right)\right)\right|, n \geq 2$, we obtain $a_{2}=2, a_{3}=3, a_{4}=2$ and $a_{n}=a_{n-2}+a_{n-3}$, for $n \geq 5$.

Proof. (1). This is evident.
(2). For the lower bound we can take the same dominating set as in (2) of the proof of Theorem 3.1. The upper bound can be obtained with
$e=\left\{1,2,4,5, \ldots \begin{cases}\ldots, n-2, n-1\}, & n \equiv 0 \bmod 3, \\ \ldots, n-6, n-5, n-3, n-1\}, & n \equiv 1 \bmod 3, \\ \ldots, n-4, n-3, n-1\}, & n \equiv 2 \bmod 3 .\end{cases}\right.$
(3). Again, we prove this part by induction. The values a_{n} for $n \leq 4$ can be easily verified, so we assume $n \geq 5$. In the following algorithm a bijection from the disjoint union of the system $\mathcal{E}_{n-2}=\mathcal{E}\left(\mathcal{D} \mathcal{H}\left(C_{n-2}\right)\right)$ of the minimal dominating sets of C_{n-2} and the system $\mathcal{E}_{n-3}=\mathcal{E}\left(\mathcal{D H}\left(C_{n-3}\right)\right)$ onto $\mathcal{E}_{n}=\mathcal{E}\left(\mathcal{D H}\left(C_{n}\right)\right)$ will be constructed.

Algorithm B:

Let $\mathcal{D H}\left(C_{n-2}\right)=\left(V \backslash\{n-1, n\}, \mathcal{E}_{n-2}\right)$ and $\mathcal{D H}\left(C_{n-3}\right)=(V \backslash\{n-2, n-1, n\}$, $\left.\mathcal{E}_{n-3}\right)$. Then the edge set of $\mathcal{D H}\left(C_{n}\right)=\left(V, \mathcal{E}_{n}\right)$ can be constructed as follows:

1. Let $\mathcal{E}:=\emptyset$.
2. Let $e \in \mathcal{E}_{n-2}$.
2.1. If $n-2 \in e$, then $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n\}\}$.
2.2. If $n-2 \notin e$, then $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n-1\}\}$.
2.3. $\mathcal{E}_{n-2}:=\mathcal{E}_{n-2} \backslash\{e\}$.
2.4. If $\mathcal{E}_{n-2} \neq \emptyset$, then go to 2 .
3. Let $e \in \mathcal{E}_{n-3}$.
3.1. If $1 \in e \wedge n-3 \notin e$, then $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n-2, n-1\}\}$.
3.2. If $1 \in e \wedge n-3 \in e$, then $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n-2, n\}\}$.
3.3. If $1 \notin e \quad$ then $\mathcal{E}:=\mathcal{E} \cup\{e \cup\{n-1, n\}\}$.
3.4. $\quad \mathcal{E}_{n-3}:=\mathcal{E}_{n-3} \backslash\{e\}$.
3.5. If $\quad \mathcal{E}_{n-3} \neq \emptyset$, then go to 3 else $\mathcal{E}=\mathcal{E}_{n}$.
4. Stop.

In step 2 and step 3 every edge e of \mathcal{E}_{n-2} and of \mathcal{E}_{n-3}, respectively, is used exactly once to construct an edge of $\mathcal{E}=\mathcal{E}_{n}$. To demonstrate that all edges generated in the algorithm are pairwise distinct and that $\mathcal{E}=\mathcal{E}_{n}$ (cf. 3.5.), we study the structure of these edges. For this purpose we use the notation $\tilde{e}_{1}=e_{1} \cup\{n\}, \tilde{e}_{2}=e_{2} \cup\{n-1\}$, $\tilde{e}_{3}=e_{3} \cup\{n-2, n-1\}, \tilde{e}_{4}=e_{4} \cup\{n-2, n\}$ and $\tilde{e}_{5}=e_{5} \cup\{n-1, n\}$ for the edge " $e \cup\{\ldots\}$ " in 2.1, 2.2, 3.1, 3.2 and 3.3, respectively.

Hence it can be verified that

$$
\begin{aligned}
& \tilde{e}_{1}= \begin{cases}\{1,3, \ldots, n-4, n-2, n\}, & \text { if } 1 \in e_{1}, \\
\{2, \ldots, n-2, n\}, & \text { if } 1 \notin e_{1} .\end{cases} \\
& \tilde{e}_{2}=\{1, \ldots, n-3, n-1\} . \\
& \tilde{e}_{3}=\{1, \ldots, n-4, n-2, n-1\} . \\
& \tilde{e}_{4}=\{1,3, \ldots, n-5, n-3, n-2, n\} . \\
& \tilde{e}_{5}=\{2, \ldots, n-3, n-1, n\} .
\end{aligned}
$$

Now it is easy to see that $\tilde{e}_{1}, \tilde{e}_{2}, \ldots, \tilde{e}_{5}$ are pairwise distinct. Note that minimal dominating sets having the same structure $\tilde{e}_{i}, i \in\{1, \ldots, 5\}$, are distinct, since their origins are distinct minimal dominating sets of $C_{j}, j \in\{n-2, n-3\}$.

The deletion of the vertices $n-1, n$ or $n-2, n-1, n$ in a dominating set of C_{n} always results in a dominating set of C_{n-2} or of C_{n-3}. Therefore, in order to show that Algorithm B yields all dominating sets of C_{n}, it suffices to ensure that all possible configurations of the first vertices $1,2,3$ and the last vertices $n-5, n-4, \ldots, n$ occur in $\tilde{e}_{1}, \tilde{e}_{2}, \ldots, \tilde{e}_{5}$. This can be done by checking that in $\tilde{e}_{1}, \tilde{e}_{2}, \ldots, \tilde{e}_{5}$ there are no three immediately consecutive vertices of C_{n} and that it is impossible to add other vertices or to replace vertices at the "beginning" or the "end" of the dominating sets $\tilde{e}_{1}, \tilde{e}_{2}, \ldots, \tilde{e}_{5}$.

4. A DECOMPOSITION PRINCIPLE FOR THE CONSTRUCTION OF MINIMAL DOMINATING SETS

In this section we describe how to combine minimal dominating sets of certain subdigraphs of a given digraph $D=(V, A)$ to a minimal dominating set of D. The construction makes use of (possibly existing) articulation vertices to decompose a digraph D into smaller subdigraphs. Iterating this procedure we can try to obtain simple subdigraphs (e.g. paths, cycles etc.) for which minimal dominating sets can be easily found. Step by step these dominating sets can be combined to build a minimal dominating set of D.

Let $z \in V$ be an articulation vertex of the connected digraph $D=(V, A)$, i.e. $D \backslash\{z\}$ consists of more than one pairwise distinct connected components $D_{1}, D_{2}, \ldots, D_{k}$. Choose $l \in\{1,2, \ldots, k-1\}$ and set $S_{1}:=D\left[\bigcup_{i=1}^{l} V\left(D_{i}\right) \cup\{z\}\right]$ and $S_{2}:=D\left[\bigcup_{i=l+1}^{k} V\left(D_{i}\right) \cup\{z\}\right]$, where $D\left[V^{\prime}\right]$ denotes the subdigraph induced by the vertex set $V^{\prime} \subseteq V$ in D. We say that S_{1} and S_{2} can be obtained from D by splitting the articulation vertex z. Obviously, the reversal operation of splitting the articulation vertex z is the union of S_{1} and S_{2}, i.e. $D=S_{1} \cup S_{2}:=\left(V\left(S_{1}\right) \cup V\left(S_{2}\right), A\left(S_{1}\right) \cup A\left(S_{2}\right)\right)$. Note that the splitting of an articulation vertex z for $k>2$ is not unique.

Now we split the articulation vertex z of the digraph $D=(V, A)$ and obtain the subdigraphs S_{1} and S_{2}. In the following, for such a situation we write $D=S_{1} \cup^{z} S_{2}$.

For given minimal dominating sets e_{1} of S_{1} and e_{2} of S_{2} we want to construct a minimal dominating set $e=e\left(e_{1}, e_{2}\right)$ of the digraph $D=S_{1} \stackrel{\sim}{\cup} S_{2}$. Before tackling this problem, we need some basic properties of minimal dominating sets of D.

If e is a minimal dominating set of the digraph $D=(V, A)$, there are two reasons for a vertex v to be in $e: N^{-}(v) \cap e=\emptyset$ or there exists a vertex $v^{+} \in N^{+}(v) \backslash e$ such that $N^{-}\left(v^{+}\right) \cap e=\{v\}$.
In the first case, v is in e since it is not dominated by another vertex of e, and we say that v is in e for itself. In the second case, v is in e because it is needed to dominate another vertex $v^{+} \notin e$, i.e. v is in e as a dominator (of v^{+}). Of course, both cases do not exclude each other.

In order to obtain some information on the relations between a minimal dominating set e of $D=S_{1} \stackrel{z}{\cup} S_{2}$ and minimal dominating sets of S_{1} and S_{2} we investigate $e^{1}:=e \cap S_{1}$ and $e^{2}:=e \cap S_{2}$. The following cases can occur:

1. $z \notin e$.
a) e^{1} and e^{2} are minimal dominating for S_{1} and S_{2}, respectively.

Note that z is dominated by at least one vertex of e^{1} and at least one vertex of e^{2}.
b) Only one of the sets e^{1} and e^{2} is minimal dominating for S_{1} and S_{2}, respectively. Let $\{i, j\}=\{1,2\}$ and e^{i} be minimal dominating for S_{i}. Then e^{j} is minimal dominating for $S_{j} \backslash\{z\}$ and z is not dominated by e^{j}.
c) Neither e^{1} nor e^{2} is minimal dominating for S_{1} and S_{2}, respectively.

This case is impossible.
2. $z \in e$.
a) e^{1} and e^{2} are minimal dominating for S_{1} and S_{2}, respectively. Obviously, z is needed in e^{1} as well as in e^{2} to be a dominating set.
b) Only one of e^{1} and e^{2} is minimal dominating for S_{1} and S_{2}, respectively.

Let $\{i, j\}=\{1,2\}$ and e^{i} be minimal dominating for S_{i}. Again, z is needed in e^{i} to be a dominating set. Note that e^{j} dominates S_{j}, but e^{j} is not minimal dominating. Hence, $\exists e_{0}^{j} \subset e^{j}: e_{0}^{j}$ is minimal dominating for S_{2}. The assumption $z \in e_{0}^{j}$ leads to a dominating set $e^{i} \cup e_{0}^{j} \subset e_{1} \cup e_{2}$ for D, in contradiction to the fact that $e_{1} \cup e_{2}$ is minimal dominating for D. Therefore we obtain $e_{0}^{j}=e^{j} \backslash\{z\}$, because $e_{0}^{j} \subset e^{j} \backslash\{z\}$ would lead to the same contradiction as the assumption $z \in e_{0}^{j}$.
Consequently, case (2b) is equivalent to e^{i} and $e^{j} \backslash\{z\}$ is minimal dominating for S_{i} and S_{j}, respectively.
c) Neither e^{1} nor e^{2} is minimal dominating for S_{1} and S_{2}, respectively.

Since e^{i} is dominating for S_{i}, the deletion of some vertices of e^{i} would lead to minimal dominating sets $e_{0}^{i} \subset e^{i}$ of $S_{i}(i=1,2)$. It follows that $e_{0}^{1} \cup e_{0}^{2} \subset e_{1} \cup e_{2}$ is dominating for D, a contradiction. That is, case (2c) cannot occur.

Note that if we rename e_{0}^{j} to e^{j} in case (2b) we have:
(1): $z \notin e^{1} \cup e^{2}$,
(2a): $z \in e^{1} \cap e^{2}$,
(2b): $z \in e^{1} \triangle e^{2}:=\left(e^{1} \cup e^{2}\right) \backslash\left(e^{1} \cap e^{2}\right)$.
Summarizing the considerations above, we obtain the following.
Theorem 4.1. Every minimal dominating set e of a digraph $D=S_{1} \cup^{z} S_{2}$ is the union of certain minimal dominating sets e_{1} and e_{2} of S_{1} (or $S_{1} \backslash\{z\}$) and S_{2} (or $S_{2} \backslash\{z\}$), respectively. In detail, $e=e_{1} \cup e_{2}$, where the following situations can appear:
(i) e_{1} and e_{2} is minimal dominating for S_{1} and S_{2}, respectively, or
(ii) with $\{i, j\}=\{1,2\}$, e_{i} and e_{j} is minimal dominating for S_{i} and $S_{j} \backslash\{z\}$, respectively, where $z \notin e_{i} \cup e_{j}$ and $N^{-}(z) \cap e_{j}=\emptyset$.

Proof. Let e be a minimal dominating set for $D, e^{1}:=e \cap S_{1}$ and $e^{2}:=e \cap S_{2}$.
Setting $e_{1}:=e^{1}$ and $e_{2}:=e^{2}$ (with the exception $e_{j}:=e^{j} \backslash\{z\}$ for (2b)), in the cases (1a), (2a) and (2b) we obtain (i). Case (1b) corresponds to (ii).

CONSTRUCTION OF A MINIMAL DOMINATING SET e OF $D=S_{1} \stackrel{Z}{z}^{S_{2}}$
Let e_{1} and e_{2} be minimal dominating for S_{1} and S_{2}, respectively.

1. $z \notin e_{1} \cup e_{2}$.

If there is an $i \in\{1,2\}$ and a vertex $z^{-} \in N^{-}(z) \cap e_{i}$ such that in e_{i} the vertex z^{-}is needed only as the dominator of z (i.e. z^{-}is the only dominator of z in e_{i} and z^{-}itself has a dominator in e_{i}), then this z^{-}is unique in e_{i}. Moreover, $e_{i} \backslash\left\{z^{-}\right\}$is minimal dominating for $S_{i} \backslash\{z\}$. If such vertices z^{-}exist in e_{1} or e_{2}, we delete exactly one of them in $e_{1} \cup e_{2}$:

$$
e:= \begin{cases}\left(e_{1} \cup e_{2}\right) \backslash\left\{z^{-}\right\}, & \text {if } z^{-} \text {exists, } \\ e_{1} \cup e_{2}, & \text { otherwise }\end{cases}
$$

Then in e there is at most one other vertex z_{0}^{-}of this kind: if $z^{-} \in e_{i}$, then $z_{0}^{-} \in e_{j}$, where $\{i, j\}=\{1,2\}$. Obviously, in e the vertex z_{0}^{-}is needed to dominate z, we cannot delete it in e.
2. $z \in e_{1} \cup e_{2}$.
a) $z \in e_{1} \cap e_{2}$.

In this case, z is needed in both minimal dominating sets, e_{1} and e_{2}. Therefore z is needed in the dominating set $e_{1} \cup e_{2}$, too. Because e_{1} and e_{2} are minimal dominating, no other vertex of $e_{1} \cup e_{2}$ can be deleted, i.e. a minimal dominating set of D is

$$
e:=e_{1} \cup e_{2}
$$

b) $z \in e_{1} \triangle e_{2}$.

Let $z \in e_{i}$ and $\{i, j\}=\{1,2\}$.
(b1) z is in e_{i} only for itself.
Since z has a dominator in e_{j}, we can delete z :

$$
e:=\left(e_{1} \cup e_{2}\right) \backslash\{z\} .
$$

(b2) z is needed in e_{i} as a dominator.
We do not delete z; otherwise we had to add some vertices of $N^{+}(z) \cap e_{i}$ or predecessors of such vertices, but this could be difficult.
Let e_{i} remain unchanged and modify e_{j} to obtain a new dominating set e_{j}^{\prime} of S_{j} :
(i) Delete $z^{-} \in N^{-}(z) \cap e_{j}$, if z^{-}is needed in e_{j} only as the dominator of z (obviously, at most one such z^{-}can exist).
(ii) As long as they exist in e_{j} we delete successively all vertices z^{+}and z^{\prime} of the following kind:

- $z^{+} \in N^{+}(z) \cap e_{j}$, if $z^{+} \in e_{j}$ only for itself,
- $z^{\prime} \in N^{-}\left(z^{+}\right) \cap e_{j}$, if the only reason for $z^{\prime} \in e_{j}$ is that z^{\prime} is needed in e_{j} as the only dominator of certain vertices $z^{+} \in N^{+}(z) \cap e_{j}$.
(iii) Add z to e_{j}.

Note that the vertices being deleted in (i) and (ii) became superfluous because of (iii).
If we denote the resulting set by e_{j}^{\prime} we see that e_{j}^{\prime} is dominating but not necessarily minimal dominating for S_{j}. For example, this situation occurs if z has a dominator in $e_{j}^{\prime} \backslash\{z\}$ but z is not needed in e_{j}^{\prime} to dominate a vertex of $V\left(S_{j}\right) \backslash e_{j}^{\prime}$ (i.e. all vertices of $V\left(S_{j}\right) \backslash e_{j}^{\prime}$ have a dominator in $\left.e_{j}^{\prime} \backslash\{z\}\right)$. Now a minimal dominating set of D is $e:=e_{i} \cup e_{j}^{\prime}$.

END OF CONSTRUCTION.

Considering digraphs D with articulation vertices, this construction principle enables us to reduce the search for minimal dominating sets in D to the analogous problem in (smaller) subdigraphs. As an example we consider a special class of directed cacti.

A connected digraph $D=(V, A)$ is a (directed) cactus if and only if every arc $e \in A$ is contained in at most one cycle. A directed cactus $D=(V, A)$ is referred to as a cycle-oriented cactus if and only if each cycle in D is oriented.

By stepwise splitting of articulation vertices a cycle-oriented cactus $D=(V, A)$ can be decomposed into a system of oriented paths and cycles. Because we know all minimal dominating sets of oriented paths and cycles (cf. Theorems 3.1 and 3.2), starting with such minimal dominating sets we are able to compose minimal dominating sets of the cactus D.

As an example, we construct a minimal dominating set of the cycle-oriented cactus $D=(V, A)$ shown in Figure 4.

We decompose $D=(V, A)$ into the oriented paths $P_{1}=(\{1,2,3\},\{(1,2),(2,3)\})$, $P_{2}=(\{5,8,9\},\{(5,8),(8,9)\})$ and $P_{3}=(\{9,10\},\{(10,9)\})$, and the oriented cycle $C=(\{3,4,5,6,7\},\{(3,4),(4,5),(5,6),(6,7),(7,3)\})$. The sets $e_{P_{1}}=\{1,3\}, e_{P_{2}}=$ $\{5,9\}, e_{P_{3}}=\{10\}$ and $e_{C}=\{3,4,6\}$ are minimal dominating sets for P_{1}, P_{2}, P_{3} and C, respectively. With (2a) (see the construction described above) from $e_{P_{1}}$ and e_{C} we
obtain the set $e_{P_{1} C}=\{1,3,4,6\}$ which is minimal dominating for $P_{1} \cup^{3} C$. Considering $e_{P_{1} C}$ and $e_{P_{2}}$ by (2b)(ii) we get $e_{P_{1} C P_{2}}=\{1,3,5,6,9\}$ as a minimal dominating set of $P_{1} \cup^{3} C \cup^{5} P_{2}$. Finally, (2b)(i) leads from $e_{P_{1} C P_{2}}$ and $e_{P_{3}}$ to the minimal dominating set $e=\{1,3,5,6,10\}$ of D.

Fig. 4. A cycle-oriented cactus

Note that our decomposition/composition principle together with Theorems 3.1 and 3.2 allows to construct all minimal dominating sets of a cycle-oriented cactus. More generally, the domination hypergraph of a digraph $D=S_{1} \cup{\underset{1}{1}}^{z_{2}} S_{2}^{z_{2}} \ldots \stackrel{z}{k}_{\cup}^{\cup} S_{k+1}$ can be obtained from the domination hypergraphs of S_{1}, \ldots, S_{k+1}.

Acknowledgments

The authors would like to thank one of the referees for his valuable suggestions.

REFERENCES

[1] C. Berge, Hypergraphs, North Holland, Amsterdam-New York-Oxford-Tokyo, 1989.
[2] H.H. Cho, S.-R. Kim, J.R. Lundgren, Domination graphs of regular tournaments, Discrete Mathematics 252 (2002), 57-71.
[3] D.C. Fisher, D. Guichard, J.R. Lundgren, S.K. Merz, K.B. Reid, Domination graphs with nontrivial components, Graphs and Combinatorics 17 (2001), 227-236.
[4] D.C. Fisher, J.R. Lundgren, D. Guichard, S.K. Merz, K.B. Reid, Domination graphs of tournaments with isolated vertices, Ars Combinatoria 66 (2003), 299-311.
[5] D.C. Fisher, J.R. Lundgren, S.K. Merz, K.B. Reid, Domination graphs of tournaments and digraphs, Congressus Numerantium 108 (1995), 97-107.
[6] D.C. Fisher, J.R. Lundgren, S.K. Merz, K.B. Reid, The domination and competition graphs of a tournament, Journal of Graph Theory 29 (1998), 103-110.
[7] D.C. Fisher, J.R. Lundgren, S.K. Merz, K.B. Reid, Connected domination graphs of tournaments, J. Combin. Math. Combin. Comput. 31 (1999), 169-176.
[8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds.), Fundamentals of domination in graphs, Marcel Dekker, New York-Basel, 1998.
[9] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds.), Domination in graphs - Advanced topics, Marcel Dekker, New York-Basel-Hong Kong, 1998.
[10] P. McKenna, M. Morton, J. Sneddon, New domination conditions for tournaments, Australasian J. of Combin. 26 (2002), 171-182.
[11] K.B. Reid, Tournaments: scores, kings, generalizations and special topics, Congressus Numerantium 115 (1996), 171-211.
[12] C. Wartner, Konkurrenzgraphen und Dominanzhypergraphen von Digraphen, Bachelor Thesis, Technische Universität Bergakademie Freiberg, 2006.

Martin Sonntag

sonntag@tu-freiberg.de
Freiberg University of Mining and Technology
Faculty of Mathematics and Computer Science
Prüferstr. 1, D-09596 Freiberg, Germany
Hanns-Martin Teichert
teichert@math.uni-luebeck.de
University of Lübeck
Institute of Mathematics
Wallstr. 40, D-23560 Lübeck, Germany
Received: July 16, 2009.
Revised: January 7, 2010.
Accepted: January 9, 2010.

