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FRÉCHET DIFFERENTIAL OF A POWER SERIES
IN BANACH ALGEBRAS

Abstract. We present two new forms in which the Fréchet differential of a power series in a
unitary Banach algebra can be expressed in terms of absolutely convergent series involving
the commutant C(T ) : A 7→ [A, T ]. Then we apply the results to study series of vector-valued
functions on domains in Banach spaces and to the analytic functional calculus in a complex
Banach space.
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1. INTRODUCTION

In this work we consider a general formula for the Fréchet differential of a power series
in a unitary Banach algebra A over K ∈ {R,C }. In Theorem 2.11 it is proved that
the Fréchet differential of the map g : A 3 T 7→

∑∞
n=0 αnT

n ∈ A, can be expressed
in terms of absolutely convergent series involving the commutant C(T ) : A 3 h 7→
hT −Th ∈ A with T ∈ A, in three different forms containing C(T ), C(Tn) or C(T )n.

The two forms of the Fréchet differential of a power series containing C(T ) and
C(Tn) given in statements (1) and (2) of Theorem 2.11 are new. While we give a
different proof with respect to [13], of the known formula in statement (3), containing
the form C(T )n.

These results are then applied to study series of vector-valued functions on domains
in Banach spaces and also applied to analytic functional calculus in complex Banach
spaces.

The commutant C(T )-forms in the differential of a power series g in a noncommu-
tative Banach algebra A, allows us to strongly simplify the formula of the derivative
of a function of the type R ⊇ D 3 t 7→ g(T (t)), whenever C(T (t))n

(
dT
dt (t)

)
= 0

for some n ∈ N − {0}, (see (2.37) and (2.38)). Here T is a derivable map defined
on an open subset D of R and with values in A, and D 3 t 7→ dT

dt (t) ∈ A is the
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derivative of T . In a similar way we obtain simplification also for the more general
case of differential maps (see Remark 2.13). To obtain these type of simplification
procedures in calculating the derivative or the differential maps of functions valued
in a noncommutative Banach algebra, represents one of the main motivations of this
work.

Let us start fixing some notations. Let A be a unitary Banach algebra over K
and denote by B(A) the unitary Banach algebra of all bounded linear operators on
A with the standard sup-norm. Define the linear maps R(T ) : A 3 h 7→ Th ∈ A and
L(T ) : A 3 h 7→ hT ∈ A for all T ∈ A, then it results that R,L ∈ B(A, B(A)) such
that ‖R‖B(A,B(A)) ≤ 1 and ‖L‖B(A,B(A)) ≤ 1. Let g(λ) +

∑∞
n=0 αnλ

n, with λ ∈ K ,
the coefficients αn in K and R > 0 its radius of convergence. In order to simplify
the notations, we convein to denote by the same symbol g, both the functions: the
numerical map g(λ) =

∑∞
n=0 αnλ

n ∈ K , with λ ∈ K such that |λ| < R, and the
A-valued map g(T ) =

∑∞
n=0 αnT

n ∈ A, with T ∈ A such that ‖T‖A < R, where
‖ · ‖A is the norm on A, (see Def. 2.6).

Hence if we denote by g(p) the p-derivative of the numerical map g, we have

g(p)(λ) =
∑∞
n=p p!

(
n

p

)
αnλ

n−p ∈ K , with λ ∈ K such that |λ| < R, while by consid-

ering g(p) as a B(A)-valued map we obtain g(p)(Q) =
∑∞
n=0 p!

(
n

p

)
αnQ

n−p ∈ B(A),

with Q ∈ B(A) such that ‖Q‖B(A) < R. Thus we have for all T ∈ A such that
‖T‖A < R

g(p)(R(T )) =
∞∑
n=p

p!
(
n

p

)
αnR(T )n−p ∈ B(A). (1.1)

Denote by Br(0) a ball of radius r > 0 in A and let g be considered as an A-valued
map, so g : BR(0) 3 T 7→

∑∞
n=0 αnT

n ∈ A, then g[1] : BR(0) → B(A) denotes the
Fréchet differential map of g. Therefore for T ∈ BR(0) the element g[1](T ) ∈ B(A) is
uniquely determined by the following

lim
h→0
h 6=0

‖g(T + h)− g(T )− g[1](T )(h)‖A
‖h‖A

= 0.

Finally given a series N =
∑∞
n=0 Pn, where Pn : A → B(A) for all n ∈ N, we say that

it converges absolutely uniformly on Br(0), or absolutely uniformly for T ∈ Br(0), if

∞∑
n=0

sup
T∈Br(0)

‖Pn(T )‖B(A) <∞.

For a more general definition see Def. 2.8.
It is a well-known result that a power series g(T ) +

∑∞
n=0 αnT

n in a Banach
algebra A is Fréchet differentiable term by term, the corresponding power series of
its Fréchet differential g[1] is absolutely uniformly convergent on Br(0) in the norm
topology of B(A) for all 0 < r < R, and finally that g[1] is continuous, where the
radius of convergence R of

∑∞
n=0 αnλ

n is different to zero.
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The Fréchet differentiability of g can be seen as a particular case of the Fréchet
differentiability of a power series of polynomials between two Banach spaces over K,
whose proof for K = C , was given for the first time in [10]; while the one for K = R,
was given for the first time in [11], used a weak form of Markoff’s inequality for the
derivative of a polynomial, see [14].

Our proof in Lemma 2.9 of the Fréchet differentiability term by term of g has the
advantage of giving for the particular case of Banach algebras a unified approach for
both the cases real and complex.

We are now able to state the results of the main Theorem 2.11 of this work.
We give for the first time the Fréchet differential g[1] of the A-valued function
g(T ) =

∑∞
n=0 αnT

n, in a C(T )-depending absolutely uniformly convergent series on
Br(0), for all 0 < r < R, in (1.2) and in a C(T k)-depending absolutely uniformly
convergent series on Br(0), for all 0 < r < R and with k ≥ 1, in (1.3). This allows
us to give immediately a simplified formula for the value g[1](T )(h) in the case of the
commutativity [T, h] = 0, with T ∈ BR(0) and h ∈ A (see Remark 2.13).

Finally we give a different proof with respect to [13] and in such a way generalizing
that in [5], of the known formula in (1.4), in case 0 < r < R

3 .

1. For all T ∈ BR(0)

g[1](T ) =
∞∑
n=1

nαnL(T )n−1−

{∞∑
p=0

{ ∞∑
n=p+2

(n− p− 1)αnL(T )n−(2+p)

}
R(T )p

}
C(T )

(1.2)
(here all the series converge absolutely uniformly on Br(0) for all 0 < r < R).

2. For all T ∈ BR(0)

g[1](T ) =
∞∑
n=1

nαnL(T )n−1 −
∞∑
k=2

{ ∞∑
n=k

αnL(T )n−k
}
C(T k−1). (1.3)

(here all the series converge absolutely uniformly on Br(0) for all 0 < r < R).
3. For all T ∈ BR

3
(0)

g[1](T ) =
∞∑
p=1

1
p!
g(p)(R(T ))C(T )p−1. (1.4)

(Here the series converges absolutely uniformly on Br(0) for all 0 < r < R
3 , g(p) :

K → K is the p-th derivative of the function g and g(p)(R(T )) is given in (1.1).)
Finally we applied these results in Corollary 2.16, Remarks. 2.17 and 2.18, for
describing the differential map of a series of vector-valued functions differentiable
on domains in Banach spaces, and in Cor. 3.1 to study the differential map of the
function X ⊇ D 3 x 7→ g(T (x)) ∈ B(G). Here G and X are Banach spaces, D is
an open set of X, g is the operator-valued map coming from the analytic functional
calculus on G and T : D → B(G) is a differential map, where B(G) is the unitary
Banach algebra of all bounded linear operators on G.
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2. FRÉCHET DIFFERENTIAL OF A POWER SERIES
OF DIFFERENTIABLE FUNCTIONS

Notations 2.1. We denote by N the set of all natural numbers {0, 1, 2, . . .}. Let
K ∈ {R,C } and 〈G, ‖ · ‖G〉, or simply G, be a Banach space over K , then for all
a ∈ G and r > 0 we define the open ball centered in a of radius r, to be the following
set Br(a) + {v ∈ G | ‖v − a‖G < r}, hence its closure in G is Br(a) + Br(a) = {v ∈
G | ‖v − a‖G ≤ r}.

Let F,G be two Banach spaces over K , briefly K -Banach spaces, then〈
B(F,G), ‖ · ‖B(F,G)

〉
, will denote the K -Banach space of all linear continuous map-

pings of F to G and ‖U‖B(F,G) + sup‖v‖F≤1 ‖U(v)‖G, we also set
〈
B(G), ‖ · ‖B(G)

〉
+〈

B(G,G), ‖ · ‖B(G,G)

〉
.

Let {G1, . . . , Gn} be a finite set of K -Banach spaces, then
〈∏n

k=1Gk, ‖ · ‖Qn
k=1Gk

〉
is the Banach space, where

∏n
k=1Gk is the product of the vector spaces {G1, . . . , Gn},

and ‖(v1, . . . , vn)‖Qn
k=1Gk

+ maxk∈{1,...,n} ‖vk‖Gk
.

If Gk = G for all k ∈ {1, . . . , n}, then we will use the following notation
〈Gn, ‖ · ‖Gn〉 +

〈∏n
k=1Gk, ‖ · ‖Qn

k=1Gk

〉
. Let {F1, . . . , Fn, G} be a finite set of

K -Banach spaces, then Bn(
∏n
k=1 Fk;G) is the K -vector space of all n-multilinear

continuous mappings defined on
∏n
k=1 Fk with values in G. If Fk = F for all

k ∈ {1, . . . , n}, then we set Bn(Fn;G) + Bn(
∏n
k=1 Fk;G).

In the sequel we shall deal with Fréchet differentiable functions

f : U ⊆ F → G

defined on an open set U of a K -Banach space F and with values in a K -Banach
space G. Its Fréchet differential function will be denoted by

f [1] : U ⊆ F → B(F,G).

Recall that a map f : U ⊆ F → G is Fréchet differentiable at x0 ∈ U if there exists a
T ∈ B(F,G) such that

lim
h→0
h 6=0

‖f(x0 + h)− f(x0)− T (h)‖G
‖h‖F

= 0.

T is called the Fréchet differential of f at x0 and is denoted by f [1](x0). f is Fréchet
differentiable on U if f is Fréchet differentiable at each x ∈ U , and in this case the map
f [1] : U → B(F,G) is called the Fréchet differential function of f . For the properties
of Fréchet differentials see Ch. 8 of the Dieudonne book [7].

Let A be an associative algebra over K (or briefly an associative algebra) then the
standard Lie product on A is the following map

[·, ·] : A×A 3 (A,B) 7→ [A,B] + AB −BA ∈ A
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the commutator of A,B, and for all T ∈ A the adjoint linear map of T is so defined
ad(T ) : A 3 h 7→ [T, h] ∈ A. We denote by AA the set of all maps from A to A, let
R : A → AA and L : A → AA be defined by{

R(T ) : A 3 h 7→ Th ∈ A,
L(T ) : A 3 h 7→ hT ∈ A,

(2.1)

for all T ∈ A. We also define the map C : A → AA by

C + −ad = L −R.

We consider for any n ∈ N the following mapping

un : A 3 T 7→ Tn ∈ A.

A Banach algebra over K (or briefly Banach algebra), see for example [6] or [12],
is an associative algebra A over K with a norm ‖ · ‖ on it such that 〈A, ‖ · ‖〉 is a
Banach space and for all A,B ∈ A we have

‖AB‖ ≤ ‖A‖‖B‖.

If A contains the unit element then it is called a unitary Banach algebra. We assume
for any unitary Banach algebra with unit 1 that ‖1‖ = 1.

It is easy to verify directly that for all T1, T2 ∈ A

[R(T1),L(T2)] = 0. (2.2)

By recalling definition (2.1) we have for all T, h ∈ A that ‖R(T )(h)‖A ≤ ‖T‖A‖h‖A,
and ‖L(T )(h)‖A ≤ ‖T‖A‖h‖A, hence

R(T ),L(T ) ∈ B(A) (2.3)

with
‖R(T )‖B(A) ≤ ‖T‖A, ‖L(T )‖B(A) ≤ ‖T‖A, ‖C(T )‖B(A) ≤ 2‖T‖A. (2.4)

Since L and R are linear mappings we can conclude that{
L,R ∈ B(A, B(A)),
‖R‖B(A,B(A)), ‖L‖B(A,B(A)) ≤ 1.

(2.5)

Finally for l, k ∈ N and {Aj}lj=0 ⊂ A we use the following conventions
∏l
j=k Aj =

1 and
∑l
j=k Aj = 0 for l < k.

We now present a simple formula which will be used later to decompose the com-
mutator C(Tn) in terms of C(T ).
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Lemma 2.2. Let A be an associative algebra, then for all n ∈ N and
A1, . . . , An+1, B ∈ A we have[

n+1∏
k=1

Ak, B

]
=

n∑
s=0

(
s∏

k=1

Ak

)
[As+1, B]

n+1∏
j=s+2

Aj . (2.6)

Proof. We shall prove the statement by induction. For n = 0 (2.6) is trivial. Let (2.6)
be true for n− 1, then for each A1, . . . , An+1, B ∈ A we have[
n+1∏
k=1

Ak, B

]
=

[(
n∏
k=1

Ak

)
An+1, B

]
=

and since [A1A2, B] = A1[A2, B] + [A1, B]A2 it follows

=

(
n∏
k=1

Ak

)
[An+1, B] +

[
n∏
k=1

Ak, B

]
An+1 =

and by hypothesis of the induction we conclude

=

(
n∏
k=1

Ak

)
[An+1, B] +

n−1∑
s=0

(
s∏

k=1

Ak

)
[As+1, B]

 n∏
j=s+2

Aj

An+1 =

=
n∑
s=0

(
s∏

k=1

Ak

)
[As+1, B]

n+1∏
j=s+2

Aj .

Corollary 2.3. Let A be a unitary associative algebra, then for all n ∈ N and T ∈ A
we have

C(Tn+1) =
n∑
s=0

R(T )sC(T )L(T )n−s =
n∑
s=0

R(T )sL(T )n−sC(T ).

Proof. The second equality follows by Lemma 2.2, where A1 = A2 = . . . = An+1 = T ,
the first one by the second and (2.2).

The following equality is stated without proof in the exercise 19, §1, Ch. 1 of [3].
For the sake of completeness we give a proof.

Lemma 2.4. Let A be a unitary associative algebra, then we have for all T ∈ A and
n ∈ N that

C(T )n =
n∑
k=0

(−1)k
(
n

k

)
R(T )kL(T )n−k.

Proof. Since by (2.2) L(T ) and R(T ) commute the statement follows.
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Lemma 2.5. Let A be a unitary associative algebra. Then for all T ∈ A and n ∈ N
we have

n∑
p=1

(
n

p

)
R(T )n−pC(T )p−1 =

n∑
s=1

R(T )n−sL(T )s−1. (2.7)

Proof. Since L = C +R and since C(T ) and R(T ) commute (cf.(2.2)) we have

n∑
p=1

R(T )n−pL(T )p−1 =
n∑
p=1

R(T )n−p(C(T ) +R(T ))p−1 =

=
n∑
p=1

R(T )n−p
p−1∑
k=0

(
p− 1
k

)
R(T )p−1−kC(T )k =

=
n−1∑
k=0

 n∑
p=k+1

(
p− 1
k

)R(T )n−1−kC(T )k =

=
n∑
s=1

(
n∑
p=s

(
p− 1
s− 1

))
R(T )n−sC(T )s−1 =

=
n∑
s=1

(
n

s

)
R(T )n−sC(T )s−1.

Definition 2.6. Let A be a unitary Banach algebra, f(λ) =
∑∞
n=0 αnλ

n, where the
coefficients αn ∈ K and has the radius of convergence R > 0. Then for all T ∈ A
such that ‖T‖A < R we can define

f(T ) +
∞∑
n=0

αnT
n ∈ A.

It is well-known that the map un is Fréchet differentiable. For the sake of com-
pleteness we give a direct proof of the Fréchet differential function of un in several
forms which will be used in the sequel.

Lemma 2.7. Let A be a unitary Banach algebra. Then for all n ∈ N the map
un : A 3 T 7→ Tn ∈ A is Fréchet differentiable and its Fréchet differential map
u

[1]
n : A → B(A) is such that for all T ∈ A and n ∈ N
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u[1]
n (T ) =

n∑
p=1

R(T )n−pL(T )p−1 =

= nL(T )n−1 −
n∑
k=2

L(T )n−kC(T k−1) =

=
n∑
p=1

(
n

p

)
R(T )n−pC(T )p−1 =

= nL(T )n−1 −
n−2∑
s=0

(n− s− 1)L(T )n−(s+2)R(T )sC(T ),

(2.8)

and
‖u[1]

n (T )‖B(A) ≤ n‖T‖n−1
A . (2.9)

Proof. For brevity in this proof we write ‖ · ‖ for ‖ · ‖A. The cases n = 0, 1 are trivial.
Assume that n ∈ N− {0, 1} and T, h ∈ A

n∑
p=1

R(T )n−pL(T )p−1(h) = hTn−1 + ThTn−2 + . . .+ T k−1hTn−k + . . .+ Tn−1h

so

(T + h)n = Tn +
n∑
p=1

R(T )n−pL(T )p−1(h) + T(h;T ; 2).

Here T(h;T ; 2) is a polynomial in the two variables T and h each monomial of which
is at least of degree 2 with respect to the variable h. Hence

lim
h→0

‖(T + h)n − Tn −
∑n
p=1R(T )n−pL(T )p−1(h)‖
‖h‖

=

= lim
h→0

‖T(h;T ; 2)‖
‖h‖

≤ lim
h→0

T(‖h‖; ‖T‖; 2)
‖h‖

= 0.

(2.10)

Here T(‖h‖; ‖T‖; 2) is the polynomial in the variables ‖h‖ and ‖T‖ obtained by re-
placing in T(h;T ; 2) the variable h with ‖h‖ and T with ‖T‖. Hence

u[1]
n (T ) =

n∑
p=1

R(T )n−pL(T )p−1 (2.11)

and (2.9) and the first of equalities (2.8) follow. Therefore we have for all T ∈ A and
h ∈ A

u[1]
n (T )(h) = hTn−1 + ThTn−2 + . . .+ T k−1hTn−k + . . .+ Tn−1h =

= hTn−1 + [T, h]Tn−2 + hTn−1 + . . .+ [T k−1, h]Tn−k + hTn−1 + . . .+

+ [Tn−1, h] + hTn−1,
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hence

u[1]
n (T )(h) = nhTn−1 +

n∑
k=2

[T k−1, h]Tn−k. (2.12)

This is the second equality in (2.8). The fourth equality in (2.8) follows by the second
one, by the commutativity property in (2.2) and by Corollary 2.3. By the first equality
in (2.8) and Lemma 2.5 we obtain the third equality in (2.8).

Definition 2.8. Let S be a no empty set and X be a Banach space over K , then we
define

B(S,X) +
{
F : S → X | ‖F‖B(S,X) + sup

u∈S
‖F (u)‖X <∞

}
. (2.13)

Then
〈
B(S,X), ‖ · ‖B(S,X)

〉
is a Banach space over K and the convergence in it is

called the uniform convergence on S in ‖ · ‖X-topology , or simply when this does
not cause confusion, the uniform convergence on S, (see Ch. 10 of [1]).

Let {fα}α∈D ⊂ B(S,X) then the sum
∑
α∈D fα converges uniformly on S1) if

the net of all finite partial sums converges in B(S,X), i.e. by denoting with Pω(D)
the direct ordered set of all finite subsets of D ordered by inclusion, there exists
W ∈ B(S,X) such that

lim
J∈Pω(D)

sup
u∈S

∥∥∥∥∥W (u)−
∑
α∈J

fα(u)

∥∥∥∥∥
X

= 0. (2.14)

The sum
∑
α∈D fα converges absolutely uniformly on S or converges absolutely

uniformly for u ∈ S if∑
α∈D

sup
u∈S
‖fα(u)‖X

.= lim
J∈Pω(D)

∑
α∈J

sup
u∈S
‖fα(u)‖X <∞.

Since B(S,X) is a Banach space, the absolute uniform convergence implies uniform
convergence. Similar definitions for sequences and in particular for series

∑∞
n=0 fn,

by replacing D with N, while
∑
α∈J and limα∈Pω(D) with resp.

∑N
n=0 and limN→∞,

finally
∑
α∈D with

∑∞
n=0.

Now we shall show that a power series g(T ) +
∑∞
n=0 αnT

n in a Banach algebra A
is Fréchet differentiable term by term, the corresponding power series of its Fréchet
differential g[1] is uniformly convergent on Br(0) in the norm topology of B(A) for
all 0 < r < R, and finally that g[1] is continuous, where the radius of convergence R
of
∑∞
n=0 αnλ

n is different to zero. The proofs are based on the well-known results
stating that uniform convergence in Banach spaces, preserves Fréchet differentiability
and continuity, see Theorem 8.6.3. of the [7] for the first and Theorem (2), §1.6.,
Ch. 10 of the [1] for the second one.

The Fréchet differentiability of g can be seen as a particular case of the Fréchet
differentiability of a power series of polynomials between two Banach spaces over

1) For the general definition of a summable family in a Hausdorff commutative topological group G
see Ch. 3, §5.1. of [1], in our case G = B(S,X).
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K, whose proof for K = C , was given for the first time in [10]; while the one for
K = R, given for the first time in [11], used a weak form of Markoff’s inequality for
the derivative of a polynomial, see [14].

If E1 and E2 are Banach spaces, a homogeneous polynomial of degree n on E1 to
E2 is a function pn(x) with values in E2, defined for all elements x in E1 and having the
properties (a) pn(tx) = tnpn(x), (b) pn(x+ ty) is a polynomial of degree not greater
than n in the numerical variable t, with coefficients in E2, (c) ‖pn(x)‖ ≤ m‖x‖n for
some constant m and every x; the smallest m satisfying (c) is called the modulus
m(pn) of the homogeneous polynomial. A series of the form f(x) =

∑∞
0 pn(x) is

called a power series.
Michal in [11], considers real Banach spaces only, and defines the radius of ana-

lyticity r of the power series as the radius of convergence of the ordinary power series∑∞
0 m(pn)tn. He proves that if r > 0 the function f(x) has Fréchet differentials of all

orders when ‖x‖ < r and that these differentials are given by successive term-by-term
differentiation of the series for f(x). For complex Banach spaces this result is well
known. It was first proved in [10].

Our proof in Lemma 2.9 has the advantage of giving for the particular case of
Banach algebras a unified approach for both the cases real and complex.

Lemma 2.9 (Fréchet differentiability of a power series in a Banach algebra). Let A
be a unitary Banach algebra, {αn}n∈N ⊂ K be such that the radius of convergence of
the series g(λ) +

∑∞
n=0 αnλ

n is R > 0.

1. The series
∞∑
n=0

αnun

converges absolutely uniformly on Br(0) for all 0 < r < R.2)

Hence we can define the map g : BR(0)→ A as g(T ) +
∑∞
n=0 αnun(T ).

2. g is Fréchet differentiable on BR(0) and

g[1] =
∞∑
n=1

αnu
[1]
n . (2.15)

Here the series converges absolutely uniformly on Br(0), for all 0 < r < R3)

and g[1] is continuous.

2) By Def. 2.8,
∞X

n=0

sup
T∈Br(0)

‖αnT
n‖A <∞

for all 0 < r < R.
3) By Def. 2.8

∞X
n=1

sup
T∈Br(0)

‖αnu
[1]
n (T )‖B(A) <∞

for all 0 < r < R.
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Proof. For all r ∈ (0, R), T ∈ Br(0) and n ∈ N we have ‖αnTn‖A ≤ |αn|‖T‖nA ≤
|αn|rn, so

∞∑
n=0

sup
T∈Br(0)

‖αnTn‖A ≤
∞∑
n=0

|αn|rn <∞.

Which is statement (1).
By (2.9) for all 0 < r < R

∞∑
n=0

sup
T∈Br(0)

‖αnu[1]
n (T )‖B(A) ≤

∞∑
n=0

|αn|nrn−1 <∞.

Hence the series
∑∞
n=0 αnu

[1]
n converges absolutely uniformly on Br(0) for all 0 < r <

R. Thus the mapping

T 3 BR(0) ⊂ A 7→
∞∑
n=0

αnu
[1]
n (T ) ∈ B(A) (2.16)

is well defined on BR(0) and the series converges uniformly for T ∈ Br(0) for all
0 < r < R. Hence we can apply Theorem 8.6.3. of the [7] and then deduce (2.15).

Now it remains to show the last part of the statement (2), i.e. the continuity of
the differential function g[1]. By the first part of Lemma 2.7 applied to the unitary
Banach algebra B(A) and by (2.5) for all n ∈ N the maps

A 3 T 7→ L(T )n ∈ B(A), A 3 T 7→ R(T )n ∈ B(A) (2.17)

and the product on B(A) × B(A) are continuous in the norm topology of B(A), so
by the first equality in (2.8) for all n ∈ N

u[1]
n : A → B(A) is continuous. (2.18)

By (2.18), the uniform convergence of which in the first part of statement (2), and
finally by the fact that the set of all continuous maps is closed with respect to the
topology of uniform convergence, see for example Theorem (2), §1.6., Ch. 10 of the
[1], we conclude that for all 0 < r < R the mapping g[1] � Br(0) : Br(0) ⊂ A → B(A)
is continuous. This ends the proof of statement (2).

Remark 2.10. By statement (2) of Lemma 2.9 we have

g[1](T )(h) =
∞∑
n=1

αnu
[1]
n (T )(h).

Here the series converges absolutedly uniformly for (T, h) ∈ Br(0) × BL(0), for all
L > 0 and 0 < r < R, i.e.

∞∑
n=1

sup
(T,h)∈Br(0)×BL(0)

|αn|‖u[1]
n (T )(h)‖A <∞.
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Theorem 2.11 (Fréchet differential of a power series). Let A be a unitary
Banach algebra, {αn}n∈N ⊂ K be such that the radius of convergence of the series
g(λ) +

∑∞
n=0 αnλ

n is R > 0. Then:

1. For all T ∈ BR(0)

g[1](T )=
∞∑
n=1

nαnL(T )n−1−

{ ∞∑
p=0

{ ∞∑
n=p+2

(n− p− 1)αnL(T )n−(2+p)

}
R(T )p

}
C(T ).

(2.19)
Here all the series converge absolutely uniformly on Br(0) for all 0 < r < R.

2. For all T ∈ BR(0)

g[1](T ) =
∞∑
n=1

nαnL(T )n−1 −
∞∑
k=2

{ ∞∑
n=k

αnL(T )n−k
}
C(T k−1). (2.20)

Here all the series converge absolutely uniformly on Br(0) for all 0 < r < R.
3. For all T ∈ BR

3
(0)

g[1](T ) =
∞∑
p=1

1
p!

(g)(p)(R(T ))C(T )p−1. (2.21)

Here the series converges absolutely uniformly on Br(0) for all 0 < r < R
3 and

g(p) : K → K is the p-th derivative of the function g.

Remark 2.12. If R/3 ≤ r < R then in general the series in (2.21) may not converge,
see for a counterexample the [5].

Remark 2.13. By using Def. 2.6 we have for all T ∈ BR(0)

1
p!
g(p)(R(T )) =

∞∑
n=p

(
n

p

)
αnR(T )n−p ∈ B(A).

Clearly both (2.19) and (2.20) immediately imply that if T, h ∈ A are such that
[T, h] = 0, then

g[1](T )(h) =
∞∑
n=1

nαnhT
n−1.

Proof of Theorem 2.11. By Lemmes 2.7 and 2.9

g[1](T ) =
∞∑
n=1

αnu
[1]
n (T ) =

= α11 +
∞∑
n=2

αn

(
nL(T )n−1 −

n−2∑
s=0

(n− s− 1)L(T )n−(s+2)R(T )sC(T )

)
.
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By (2.4) for all 0 < r < R

∞∑
n=2

sup
T∈Br(0)

‖αnnL(T )n−1‖B(A) ≤
∞∑
n=2

n|αn|rn−1 <∞

and
∞∑
n=2

n−2∑
s=0

sup
T∈Br(0)

‖αn(n− s− 1)L(T )n−(s+2)R(T )sC(T )‖B(A) ≤

≤
∞∑
n=2

|αn|
n−2∑
s=0

(n− s− 1)rn−2(2r) =
∞∑
n=2

|αn|(n− 1)nrn−1 <∞.

(2.22)

Therefore

g[1](T ) =
∞∑
n=1

αnnL(T )n−1 −
∞∑
n=2

αn

n−2∑
s=0

(n− s− 1)L(T )n−(s+2)R(T )sC(T ). (2.23)

Here each series converges absolutely uniformly on Br(0) for all 0 < r < R. Inequality
(2.22) also implies that

∞∑
n=2

αn

n−2∑
s=0

(n− s− 1)L(T )n−(s+2)R(T )sC(T ) =

=
∞∑
s=0

∞∑
n=s+2

(n− s− 1)αnL(T )n−(2+s)R(T )sC(T ) =

=

{ ∞∑
s=0

{ ∞∑
n=s+2

(n− s− 1)αnL(T )n−(2+s)

}
R(T )s

}
C(T ).

Here each series converging absolutely uniformly on Br(0) for all 0 < r < R and
statement (1) follows. Using (2.4) we can estimate

∞∑
n=2

n∑
k=2

sup
T∈Br(0)

∥∥∥∥∥
k−2∑
s=0

αnL(T )n−kR(T )sL(T )k−(2+s)C(T )

∥∥∥∥∥
B(A)

=

=
∞∑
n=2

n∑
k=2

sup
T∈Br(0)

∥∥∥∥∥
k−2∑
s=0

αnR(T )sL(T )n−(2+s)C(T )

∥∥∥∥∥
B(A)

≤

≤
∞∑
n=2

n∑
k=2

k−2∑
s=0

|αn| sup
T∈Br(0)

‖R(T )‖sB(A) ‖L(T )‖n−(2+s)
B(A) ‖C(T )‖B(A) ≤

≤ 2
∞∑
n=2

n∑
k=2

k−2∑
s=0

|αn| sup
T∈Br(0)

‖T‖n−1
A =

=
∞∑
n=2

n(n− 1)|αn| sup
T∈Br(0)

‖T‖n−1
A =

∞∑
n=2

n(n− 1)|αn|rn−1 <∞,

(2.24)
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and therefore

∞∑
n=2

n∑
k=2

k−2∑
s=0

αnL(T )n−kR(T )sL(T )k−(2+s)C(T ) =

=
∞∑
k=2

∞∑
n=k

k−2∑
s=0

αnL(T )n−kR(T )sL(T )k−(2+s)C(T ) =

=
∞∑
k=2

∞∑
n=k

αnL(T )n−k
k−2∑
s=0

R(T )sL(T )k−(2+s)C(T ) =

=
∞∑
k=2

{ ∞∑
n=k

αnL(T )n−k
}
C(T k−1). (2.25)

All the series uniformly converge for T ∈ Br(0). Here in the last equality we used
Corollary 2.3 and the fact that L(C(T k−1)) ∈ B(B(A)). Moreover by (2.2)

∞∑
n=2

n∑
k=2

k−2∑
s=0

αnL(T )n−kR(T )sL(T )k−(2+s)C(T ) =

=
∞∑
n=2

n−2∑
s=0

(n− s− 1)αnL(T )n−(2+s)R(T )sC(T )

hence by (2.25) and (2.23) we obtain statement (2). Finally we have for all r < R
3

A +
∞∑
n=1

n∑
p=1

sup
T∈Br(0)

∥∥∥∥αn(np
)
R(T )n−pC(T )p−1

∥∥∥∥
B(A)

≤

≤
∞∑
n=1

n∑
p=1

(
n

p

)
|αn| sup

T∈Br(0)

‖R(T )‖n−pB(A)‖C(T )‖p−1
B(A) ≤

≤
∞∑
n=1

n∑
p=1

(
n

p

)
|αn| sup

T∈Br(0)

‖T‖n−pA 2p−1‖T‖p−1
A =

∞∑
n=1

n∑
p=1

(
n

p

)
|αn|rn−12p−1.

Hence

A ≤
∞∑
n=1

|αn|rn−1
n∑
p=1

(
n

p

)
2p−1 <

∞∑
n=1

|αn|rn−1
n∑
p=0

(
n

p

)
2p =

=
∞∑
n=1

|αn|rn−13n = r−1
∞∑
n=1

|αn|(3r)n <∞.

Thus by the third equality in Lemma 2.7 and Lemma 2.9 we obtain statement (3).
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The previous Theorem 2.11 is the main result of the present work. Let A be
a unitary K -Banach algebra and

∑∞
n=0 αnλ

n a series at coefficients in K having
radius of convergence R > 0. We give for the first time the Fréchet differential
g[1] of the A-valued function g(T ) =

∑∞
n=0 αnT

n, in a C(T )-depending absolutely
uniformly convergent series on Br(0), for all 0 < r < R, in statement (1); and in a
C(T k)-depending absolutely uniformly convergent series on Br(0), for all 0 < r < R
and with k ≥ 1, in statement (2). This allows us to give immediately a simplified
formula for the value g[1](T )(h) in case of the commutativity [T, h] = 0, with T ∈
BR(0) and h ∈ A, (see Remark 2.13).

Finally we give a different proof with respect to [13] and in such a way generalizing
that in [5], of the known formula in statement (3), in case 0 < r < R

3 , see Remark
2.15 and Remark 2.20.

Remark 2.14. We note that the formula (2.19) explicitly contains C(T ) as a factor,
formula (2.20) gives an expansion in terms of C(T k) and finally formula (2.21) gives
an expansion in terms of C(T )k.

Remark 2.15. For all T such that ‖T‖ < R
3 and for all h ∈ A we have

g[1](T )(h) =
∞∑
p=1

1
p!
g(p)(T )C(T )p−1(h). (2.26)

Here the series is uniformly convergent for (T, h) ∈ Br(0)× BL(0) for all 0 < r < R
3

and L > 0, i.e.

∞∑
p=1

1
p!

sup
(T,h)∈Br(0)×BL(0)

‖g(p)(T )C(T )p−1(h)‖A <∞.

Corollary 2.16 (Fréchet differential of a power series of differentiable functions de-
fined on an open set of a K -Banach Space and at values in a K -Banach algebra
A). Let A be a unitary Banach algebra, and {αn}n∈N ⊂ K be such that the radius
of convergence of the series g(λ) +

∑∞
n=0 αnλ

n is R > 0 and 0 < r < R. Finally
let X be a Banach space over K , D ⊆ X an open set in X and T : D → A a
Fréchet differentiable mapping such that T (D) ⊆ Br(0) or alternatively D is convex
and bounded and supx∈D ‖T [1](x)‖B(X,A) <∞. If we set r̃ + supx∈D ‖T (x)‖A, then:

1. r̃ <∞ and if r̃ < R then

g ◦ T =
∞∑
n=0

αnT n.

Here the series is uniformly convergent on D, while T n : D 3 x 7→ T (x)n.
2. If 0 < r̃ < R then the function g ◦ T is Fréchet differentiable and

[g ◦ T ][1] (x) =
∞∑
n=0

αnu
[1]
n (T (x))T [1](x), ∀x ∈ D. (2.27)

Here the series converges in B(X,A). Moreover:
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a) If T [1] : D → B(X,A) is continuous then the function [g ◦ T ][1] : D → B(X,A),
is also continuous.

b) If supx∈D ‖T [1](x)‖B(X,A) < ∞, then the series in (2.27) absolutely uniformly
converges on D.

Proof. Let us consider the case in which D is convex and bounded, and
supx∈D ‖T [1](x)‖B(X,A) < ∞. Let a, b ∈ D and Sa,b the segment jointing a, b. D is
convex so Sa,b ⊂ D. By an application of the Mean Value Theorem, see Theorem 8.6.2
of [7], we have for any x0 ∈ D

‖T (b)− T (a)− T [1](x0)(b− a)‖A ≤ ‖b− a‖X · sup
x∈Sa,b

‖T [1](x)− T [1](x0)‖B(X,A).

Thus by ‖A‖ − ‖B‖ ≤ ‖A−B‖ in any normed space,

sup
a∈D
‖T (a)‖A ≤ sup

a∈D
‖T (b)− T [1](x0)(b− a)‖A+

+ sup
a∈D
‖b− a‖X · sup

a∈D
sup
x∈Sa,b

‖T [1](x)− T [1](x0)‖B(X,A) ≤

≤ ‖T (b)‖A + ‖T [1](x0)‖B(X,A) sup
a∈D
‖b− a‖X+

+ sup
a∈D
‖b− a‖X · sup

x∈D
‖T [1](x)− T [1](x0)‖B(X,A) ≤

≤ ‖T (b)‖A+

+ sup
a∈D
‖b− a‖X ·

(
2‖T [1](x0)‖B(X,A) + sup

x∈D
‖T [1](x)‖B(X,A)

)
<∞.

(2.28)

Here D is considered bounded and supx∈D ‖T [1](x)‖B(X,A) <∞ by hypothesis.
So by (2.28) r̃ <∞ which is the first part of statement (1.).
Let D ⊆ X be the open set of which in the hypotheses.
By r̃ <∞ we can assume that 0 < r̃ < R, then the second part of statement (1.)

follows by statement (1.) of Lemma 2.9.
In the sequel of the proof we assume that 0 < r̃ < R.
By statement (2.) of Lemma 2.9 and by the Chain Theorem, see 8.2.1. of the [7],

g ◦ T is Fréchet differentiable and its differential map is

[g ◦ T ][1] : D 3 x 7→ g[1](T (x)) ◦ T [1](x) =

{ ∞∑
n=0

αnu
[1]
n (T (x))

}
◦ T [1](x) ∈ B(X,A),

(2.29)
here it was used the fact that uniform convergence implies puntual convergence. By
statement (2.) of Lemma 2.9 and r̃ < R the previous series converges in B(A), more-
over b : B(A) × B(X,A) 3 (φ, ψ) 7→ φ ◦ ψ ∈ B(X,A) is a bilinear and continuous
map i.e.

b ∈ B2(B(A)×B(X,A);B(X,A)), (2.30)

since ‖φ ◦ ψ‖B(X,A) ≤ ‖φ‖B(A) · ‖ψ‖B(X,A). Thus (2.29) implies (2.27).
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Set
Γ : D 3 x 7→ (g[1] ◦ T (x), T [1](x)) ∈ B(A)×B(X,A).

According to (2.29)
[g ◦ T ][1] = b ◦ Γ. (2.31)

T [1] is continuous by hypothesis, and g[1] is continuous by statement (2.) of Lemma
2.9, while T is continuous being differentiable by hypothesis, so g[1] ◦T is continuous.
Therefore by Proposition 1, §4.1., Ch. 1, of the [1] the map Γ is continuous. Thus by
(2.31) and (2.30) [g ◦ T ][1] is continuous and statement (a)) follows.

By (2.9)

∞∑
n=0

sup
x∈D
‖αnu[1]

n (T (x)) ◦ T [1](x)‖B(X,A) ≤

≤
∞∑
n=0

sup
x∈D
|αn|‖u[1]

n (T (x))‖B(A) · ‖T [1](x)‖B(X,A) ≤

≤
∞∑
n=0

sup
x∈D
|αn|n‖T (x)‖n−1

A · ‖T [1](x)‖B(X,A) ≤

≤
∞∑
n=0

sup
x∈D
|αn|n‖T (x)‖n−1

A · sup
x∈D
‖T [1](x)‖B(X,A) ≤

≤M
∞∑
n=0

|αn|nr̃n−1 <∞,

where M + supx∈D ‖T [1](x)‖B(X,A) and statement (b)) follows.

Remark 2.17. By (2.29), statement (3) of Theorem 2.11 and (2.30), if 0 < r̃ < R
3 ,

we have for all x ∈ D

[g ◦ T ][1] (x) =
∞∑
p=1

1
p!
g(p)(R(T (x)))C(T (x))p−1T [1](x). (2.32)

In addition if supx∈D ‖T [1](x)‖B(X,A) <∞, then the series in the (2.32) is absolutely
uniformly convergent on D.

If 0 < r̃ < R
3 by (2.32) we have for all h ∈ X

[g ◦ T ][1] (x)(h) =
∞∑
p=1

1
p!
g(p)(T (x))C(T (x))p−1(T [1](x)(h)). (2.33)

In addition if supx∈D ‖T [1](x)‖B(X,A) < ∞, then the series in the (2.33) is abso-
lutely uniformly convergent for (x, h) ∈ D ×BL(0), for all L > 0, i.e.

∞∑
p=1

1
p!

sup
(x,h)∈D×BL(0)

‖g(p)(T (x))C(T (x))p−1(T [1](x)(h))‖A <∞.
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Remark 2.18. In a similar way as in the proof of statement b) of Corollary 2.16 we
have:

1. if 0 < r̃ < R

[g ◦ T ][1] (x)(h) =
∞∑
n=1

nαnT [1](x)(h)T (x)n−1+

+
∞∑
n=2

n−2∑
p=0

(n− p− 1)αnT (x)p[T (x), T [1](x)(h)]T (x)n−(2+p) =

=
∞∑
n=1

nαnT [1](x)(h)T (x)n−1+

+
∞∑
p=0

∞∑
n=p+2

(n− p− 1)αnT (x)p[T (x), T [1](x)(h)]T (x)n−(2+p).

(2.34)

If in addition supx∈D ‖T [1](x)‖B(X,A) <∞, then all the series in (2.34) are abso-
lutely uniformly convergent for (x, h) ∈ D ×BL(0), for all L > 0.

2. If 0 < r̃ < R we have

[g ◦ T ][1] (x) =

=
∞∑
n=1

nαnL(T (x))n−1T [1](x)−
∞∑
k=2

{ ∞∑
n=k

αnL(T (x))n−k
}
C(T (x)k−1)T [1](x).

(2.35)
If in addition supx∈D ‖T [1](x)‖B(X,A) <∞, then all the series in (2.35) are abso-
lutely uniformly convergent on D.

Definition 2.19. Let 〈G, ‖ · ‖G〉 be a C -Banach space, then we denote by GR the
vector space G over R whose operation of summation is the same as that of the
C -vector space G, and whose multiplication by scalars is the restriction to R×G of the
multiplication by scalars on C ×G, finally we set ‖·‖GR + ‖·‖G. Then 〈GR, ‖ · ‖GR〉 is
a Banach space over R and will be called the R-Banach space associated to 〈G, ‖ · ‖G〉.

Let F,G be two C -Banach spaces then of course B(F,G) ⊂ B(FR, GR), where the
inclusion is to be intended only as a set inclusion. Let A ⊆ F then if A is open in F
it is open also in FR. For a mapping f : A ⊆ F → G, we will denote with the symbol
fR : A ⊆ FR → GR the same mapping but considered defined in the subset A of the
R-Banach space associated to F and at values in the R-Banach space associated to G.

Remark 2.20. Let Y,Z be two C -Banach spaces, then by considering that B(Y,Z) ⊂
B(YR, ZR), we have that for each Fréchet differential function f : A ⊆ Y → Z the
same function fR : A ⊆ YR → ZR considered in the corresponding real Banach spaces,
is differentiable, in addition f [1] = (fR)[1]. Therefore if we get a real Banach space
X, we shall obtain the same statements of Corollary 2.16, Remark 2.17 and Remark
2.18 by replacing A with AR.

In particular take X + R, and recall that for every differential map H : D ⊆ R→
AR we have H [1](t)(1) = dH

dt (t) for all t ∈ D, where dH
dt : D → AR is the derivative
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of H. Hence if we denote g(λ) +
∑∞
n=0 αnλ

n and assume 0 < r̃ < R
3 , then we obtain

by (2.33) that for all t ∈ D ⊆ R

d gR ◦ T
dt

(t) =
∞∑
p=1

1
p!
g(p)(T (t))C(T (t))p−1

(
dT
dt

(t)
)
. (2.36)

In addition if supt∈D ‖dTdt (t)‖A < ∞, then the series in the (2.36) is absolutely uni-
formly convergent on D.

This formula has been shown for the first time by Victor I. Burenkov in [5].

Notice that C(T (t))0 = 1 and for all n ∈ N− {0}

C(T (t))n
(
dT
dt

(t)
)

=

n︷ ︸︸ ︷[
· · ·
[[

dT
dt

(t), T (t)

n︷ ︸︸ ︷]
, T (t)

]
, · · ·

]
.

In particular if
[
dT
dt (t), T (t)

]
= 0, then

d gR ◦ T
dt

(t) = g(1)(T (t))
dT
dt

(t). (2.37)

If
[[
dT
dt (t), T (t)

]
, T (t)

]
= 0 then

d gR ◦ T
dt

(t) = g(1)(T (t))
dT
dt

(t) +
1
2
g(2)(T (t))

[
dT
dt

(t), T (t)
]

(2.38)

and so on.

Corollary 2.21. Let A be a unitary Banach algebra, {αn}n∈N ⊂ K be such that the
radius of convergence of the series g(λ) +

∑∞
n=0 αnλ

n is R > 0. Finally let W ∈ A,

0 < r < R, D(r,W ) +
]
− r
‖W‖ ,

r
‖W‖

[
with the convention r

0 +∞ and

T (t) = tW

for all t ∈ D(r,W ). Then with the notations adopted in the statements of Lemma 2.9,
we have:

1.

gR ◦ T (t) =
∞∑
n=0

αnt
nWn

and the series is absolutely uniformly convergent for t ∈ D(r,W ).
2. gR ◦ T is derivable, the following map

d gR ◦ T
dt

(t) = W

∞∑
n=1

αnnt
n−1Wn−1 = W

dg

dλ
◦ T (t) (2.39)

for all t ∈ D(r,W ) is the derivative function of gR ◦ T , is continuous and the series
in the (2.39) is absolutely uniformly convergent.

Proof. Statement (1) is trivial. The map T is derivable with constant derivative equal
to W ∈ A, hence we have statement (2) by Remark 2.20 and (2.34).
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3. APPLICATION TO THE ANALYTIC FUNCTIONAL CALCULUS
IN A C -BANACH SPACE

In this section G is a complex Banach space and Open(C ) is the set of all open
subsets of C . We denote by σ(T ) the spectrum of T for all T ∈ B(G), and for all
U ∈ Open(C ) such that σ(T ) ⊂ U and g : U → C analytic, by g(T ) the operator
belonging to B(G) as defined in the analytic functional calculus framework given in
Definition 7.3.9. of the [8], that is

g(T ) +
1

2πi

∫
B

g(λ)R(λ;T )dλ.

Here
R(λ;T ) + (λ1 − T )−1 is the resolvent of T , while B ⊂ U is the boundary of

an open set containing σ(T ) and consisting of a finite number of rectifiable Jordan
curves. If U is an open neighborhood of 0 and g(λ) =

∑∞
n=0 αnλ

n for all λ ∈ U , then
by Theorem 7.3.10. of the [8] g(T ) =

∑∞
n=0 αnT

n converging in B(G). Therefore for
this case we can apply all the results in Section 2.

Corollary 3.1 (Fréchet differential of an operator valued analytic function defined
on an open set of a R-Banach Space). Let U0 be an open neighborhood of 0 ∈ C ,
g : U0 → C an analytic function such that g(λ) =

∑∞
n=0 αnλ

n, for all λ ∈ U0. Let
R > 0 be the radius of convergence of the series

∑∞
n=0 αnλ

n. Finally let X be a
Banach space over R, D ⊆ X an open set of X and T : D → B(G)R a Fréchet
differentiable mapping such that there exists r ∈ R+ | 0 < r < R such that:

1. T (D) ⊆ Br(0)
2. σ(T (x)) ⊆ U0, for all x ∈ D.

Then:

1.

gR ◦ T =
∞∑
n=0

αnT n.

Here the series absolutely uniformly converges on D.
2. The statements of Corollary 2.16, Remark 2.17 and Remark 2.18 hold with A

replaced by B(G)R, while Remark 2.20 holds with A replaced by B(G).

Proof. The map gR ◦ T is well defined by the condition σ(T (x)) ⊆ U0 for all x ∈ D,
while the power series expansion follows by Theorem 7.3.10. of the [8]. Therefore
statement 1. follows by the hypothesis T (D) ⊆ Br(0), with 0 < r < R and Remark
2.20. Statement 2. is by Corollary 2.16 and Remark 2.20.

Remark 3.2. If we assume that G is a complex Hilbert space and T (x) is a normal
operator for all x ∈ D, then the condition T (D) ⊆ Br(0) is equivalent to the following
one σ(T (x)) ⊆ Br(0) for all x ∈ D.
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Although the following is a well-known result, for the sake of completeness we
shall give a proof by using Corollary 2.21.

Corollary 3.3. Let {αn}n∈N ⊂ C be such that the radius of convergence of the
series g(λ) =

∑∞
n=0 αnλ

n is R > 0. Moreover let W ∈ B(G), 0 < r < R, and

D(r,W ) +
]
− r
‖W‖ ,

r
‖W‖

[
with the convention r

0 +∞. Then the operator g(tW ) is well
defined for all t ∈ D(r,W ) and

g(tW ) =
∞∑
n=0

αnt
nWn.

Here the series converges absolutely uniformly on D(r,W ). Moreover the map D(r,W ) 3
t 7→ dg

dλ (tW ) is Lebesgue integrable in B(G) in the sense defined in [4], Definition 2
Ch. IV , §3, n◦4, and for all u1, u2 ∈ D(r,W )

W

u2∫
u1

dg

dλ
(tW ) dt = g(u2W )− g(u1W ).

Here
∫ u2

u1

dg
dλ (tW ) dt is the Lebesgue integral of the map D(r,W ) 3 t 7→ dg

dλ (tW ) as
defined in Definition 1 Ch. IV , §4, n◦1 of [4].

Proof. By (2.3)
R(W ) ∈ B(B(G)). (3.1)

Set T (t) + tW for all t ∈ D(r,W ). Then d g
dλ ◦ T (t) =

∑∞
n=1 αnnt

n−1Wn−1 and
the map D(r,W ) 3 t 7→ d g

dλ ◦ T (t) is continuous in B(G), as a corollary of (2.39), by
replacing the map g with dg

dλ , hence it is Lebesgue-measurable in B(G). Finally let
u1, u2 ∈ D(r,W )

∗∫
[u1,u2]

‖d g
dλ

(tW )‖d t =

∗∫
[u1,u2]

‖
∞∑
n=1

αnnt
n−1Wn−1‖d t ≤

≤
∗∫

[u1,u2]

∞∑
n=1

|αn|nrn−1dt = |u2 − u1|
∞∑
n=1

|αn|nrn−1 <∞.

Here
∫ ∗
[u1,u2]

is the upper integral of the Lebesgue measure on [u1, u2]. By this bound-
edness and by its Lebesgue- measurability we conclude by Theorem 5, IV.71 of [4]
that [u1, u2] 3 t 7→ d g

dλ ◦ T (t) ∈ B(G) is Lebesgue-integrable in B(G), so in particular
by Definition 1, IV.33 of [4]

u2∫
u1

d g

dλ
◦ T (t)dt ∈ B(G). (3.2)
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Therefore by (3.1), (3.2), Theorem 1, IV.35 of [4] and (2.39)

W

u2∫
u1

d g

dλ
◦ T (t)dt =

u2∫
u1

W
dg

dλ
◦ T (t)dt =

u2∫
u1

d gR(T (t))
dt

dt. (3.3)

Furthermore by the continuity of the map D(r,W ) 3 t 7→ d g
dλ ◦ T (t) in B(G) and

by (2.39), D(r,W ) 3 t 7→ d gR(T (t))
dt is continuous in B(G) and it is the derivative of

the map D(r,W ) 3 t 7→ gR ◦ T (t). Therefore it is Lebesgue integrable in B(G), where
the integral has to be understood as defined in Ch. II of [2], see Proposition 3, n◦3,
§1, Ch. II of [2]. Finally the Lebesgue integral for functions with values in a Banach
space as defined in Ch. II of [2], turns out to be the integral with respect to the
Lebesgue measure as defined in Ch. IV , §4, n◦1 of [4] (see Ch. III, §3, n◦3 and
example in Ch. IV , §4, n◦4 of [4]). Thus the statement follows by (3.3).

Finally we want to remark that one of the main aims of our work [16] is proving
this formula for a certain class of unbounded operators in a Banach space and by
considering the integral in weaker topologies than that induced by the norm in B(G).
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