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PSEUDOSPECTRAL METHOD
FOR SEMILINEAR PARTIAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

Abstract. We present a convergence result for two spectral methods applied to an initial
boundary value problem with functional dependence of Volterra type. Explicit condition of
Courant-Friedrichs-Levy type is assumed on time step τ and the number N of collocation
points. Stability statements and error estimates are written using continuous norms in
weighted Jacobi spaces.
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1. INTRODUCTION

We are concerned here with a numerical method for a semi-linear functional differen-
tial equation with initial boundary conditions. In recent years, many papers have been
published, covering various approximation methods for partial functional differential
equations, see [7] for a bibliography. The main stream of these works is connected
with finite difference approximations. It is known that the explicit finite difference
methods for hyperbolic or parabolic problems should obey a Courant-Friedrichs-Levy
(CFL) condition to remain stable. Similar condition appears when one considers
pseudospectral approximations for hyperbolic problems, consisting of the truncation
and collocation of N -term spatial expansions, which are expressed in terms of Jacobi
polynomials. This is covered in the papers [3, 4], of which the second one we follow
closely. Stability estimates are given there with the use of discrete L2-weighted norms,
which we translate into continuous norms of this type, and combine with relevant
approximation results from [6], to obtain convergence.

The work [4] may be also treated as introductory for one interested in Jacobi
spectral methods for hyperbolic equations. For more information on spectral and
pseudospectral methods for various partial differential problems, see the book [2].
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The paper is organized as follows. In the next section we formulate the differential
problem after defining function spaces for its solutions. The pseudospectral scheme
is described in Section 3. The Section also explains how to deal with the functional
dependence inside a given function. In Section 4 we prove stability results for homo-
geneous and inhomogeneous cases of our problem. A convergence proof is given in
Section 5. The last section contains numerical examples.

2. DIFFERENTIAL PROBLEM

Let α, β > −1. Denote χ(α,β)(x) = (1 − x)α(1 + x)β and Λ = [−1, 1]. The Jacobi
polynomials {P (α,β)

k }k≥0 are the eigenfunctions of the Sturm-Liouville problem

∂x((1− x2)χ(α,β)(x)∂xv(x)) + λ χ(α,β)(x)v(x) = 0, x ∈ Λ,

with the corresponding eigenvalues (see [8])

λ
(α,β)
k = k(k + α+ β + 1). (2.1)

Write ‖v‖α,β = (
∫

Λ
|v(x)|2χ(α,β)(x) dx)1/2. We will work in the Jacobi-weighted

Sobolev space, introduced in [6],

Hr
χ(α,β),A(Λ) =

{
v : v is measurable and ‖v‖r,χ(α,β),A <∞

}
, r ∈ N,

equipped with the norm and semi-norm, respectively,

‖v‖r,χ(α,β),A =

(
r∑

k=0

|v|2k,α,β

)1/2

, |v|k,α,β = ‖∂kxv‖α+k,β+k, 0 ≤ k ≤ r.

For t0 ≥ 0, our domains are

E = (0,∞)× [−1, 1], E0 = [−t0, 0]× [−1, 1], E∗ = E0 ∪ E.

Let

Xr
α,β = {w : E → R : w(t, ·) ∈ Hr

χ(α,β),A(Λ) and w(·, x) ∈ C(0,∞), (t, x) ∈ E},

where C(0,∞) is the space of all continuous functions defined on (0,∞). For w ∈ Xr
α,β

we define
|w|α,β;[t] = sup

−t0≤s≤t
‖w(s, ·)‖α,β .

Let f : E → R, G : E ×Xr
α,β→ R and ϕ : E0 ∪ ∂0E → R. be given functions. We

require that f > 0 on E. We consider a problem consisting of a functional differential
equation

∂tz(t, x) + f(t, x)∂xz(t, x) = G(t, x, z) (2.2)
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and an initial-boundary condition

z(t, x) = ϕ(t, x) on E0, z(t,−1) = ϕ(t,−1), t > 0. (2.3)

Put
E∗t = [−t0, t]× [−1, 1], t ≥ 0.

We will assume the Volterra condition on G, that is, we require that for each (t, x) ∈ E
there is a set E[t, x] such that:
(i) E[t, x] ⊂ E∗t ,
(ii) if z, z̄ ∈ Xr

α,β and z(s, y) = z̄(s, y) for (s, y) ∈ E[t, x] then G(t, x, z) = G(t, x, z̄).
Note that the Volterra condition means that the value of G at every point (t, x, z)

depends on (t, x) and on the restriction of z to the set E[t, x] only.

3. FORWARD EULER PSEUDOSPECTRAL SCHEME

Let x(α,β)
G,N,j , x

(α,β)
R,N,j and x

(α,β)
L,N,j , 0 ≤ j ≤ N , be the zeros of polynomials P (α,β)

N+1 (x),

(1+x)P (α,β+1)
N (x), (1−x2)∂xP

(α,β)
N (x), respectively. They are arranged in decreasing

order. Denote by ω(α,β)
Z,N,j , 0 ≤ j ≤ N , the corresponding Christoffel numbers such that∫

Λ

p(x)χ(α,β)(x) dx =
N∑
j=0

p(x(α,β)
Z,N,j)ω

(α,β)
Z,N,j for each p ∈ π2N+kZ , (3.1)

where πN denotes the class of all polynomials of degree at most N , and integers kZ
are: 1, 0 and −1 for Z = G, R and L, respectively. The following relations are useful
(see [5])

x
(α,β)
R,N,j = x

(α,β+1)
G,N−1,j , (1 + x

(α,β)
R,N,j) ω

(α,β)
R,N,j = ω

(α,β+1)
G,N−1,j , 0 ≤ j ≤ N − 1,

x
(α,β)
L,N,j = x

(α+1,β+1)
G,N−2,j−1, (1− (x(α,β)

L,N,j)
2) ω(α,β)

L,N,j = ω
(α+1,β+1)
G,N−2,j−1, 1 ≤ j ≤ N − 1.

(3.2)

For fixed N ∈ N, we consider the spatial mesh {xj}Nj=1 on Λ,

xj = x
(α,β)
L,N+1,j , 1 ≤ j ≤ N. (3.3)

This mesh generates a family of Jacobi pseudospectral methods. We discretize the
time variable in the usual way, putting tm = mτ , m ∈ Z, where τ > 0 is the time
step. For fixed τ , it is convenient to choose −m0 ∈ Z such that m0 = bt0τ−1c,
that is, t−m0−1 < −t0 ≤ t−m0 . Following closely [4], we consider the pseudospectral
collocation scheme for (2.2),

vm+1
N (xj) = vmN (xj)− τf(tm, xj)∂xvN (xj) + τG(tm, xj , T vN ), 1 ≤ j ≤ N, (3.4)

augmented with the homogeneous boundary condition

vmN (−1) = 0, −m0 ≤ m, (3.5)
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and with the initial condition

vmN (xj) = ϕ(tm, xj), −m0 ≤ m ≤ 0, 1 ≤ j ≤ N. (3.6)

Formulae (3.4)–(3.6) uniquely determine the sequence {vmN }m≥−m0 of vN ∈ πN . Due
to the functional dependence of G, a certain interpolation operator T is needed, which
would map a sequence {vmN }m≥−m0 of polynomials onto a member of C(D,R). The
simplest such operator is given by

(TvN )(t, x) =

{
vmN (x) + θ[vm+1

N (x)− vmN (x)], for t = tm + θτ, θ ∈ (0, 1],
v−m0
N (x) for t ≤ t−m0 ,

(3.7)
where (t, x) ∈ E∗.

The scheme (3.4)–(3.6) is obtained from (2.2),(2.3) by using forward Euler time
differencing, and pseudospectral spatial differencing. We first consider only the prob-
lems with ϕ(·,−1) ≡ 0, for the sake of the stability proof, which is then carried over
onto inhomogeneous problems.

4. STABILITY

Let {ωj}Nj=1 be discrete positive weights, and let us write

〈f, g〉ω =
N∑
j=1

ωjf(xj)g(xj), ‖f‖ω = 〈f, f〉1/2ω .

We will prove a priori estimates of ‖vmN ‖ω in terms of estimates of the initial data
‖ϕ(tm, ·)‖ω,m ≤ 0, and inhomogeneous data ‖G(tm, ·, vN )‖ω. Out of the four variants
of discrete weights, presented in [4], we consider only the last one, namely:

ωj = (1− xj)ω(α,β)
L,N+1,j , 1 ≤ j ≤ N, (4.1)

where xj are given by (3.3), and α, β ∈ (−1, 0).

Assumption H[f ]. The functions f : E → (0,∞), G : E × Xr
α+1,β → R, are such

that:

1) there are positive constants b, B such that b−1 < f(t, x) < B on E,
2) there is L ≥ 0 such that for (t, x), (t̄, x) ∈ E,

|f(t, x)− f(t̄, x)| ≤ L |t− t̄|.

Theorem 4.1. Consider the pseudospectral scheme (3.4)–(3.6), collocated at points
xj given by (3.3). If the CFL condition:

η0 − τB
(
λN−1(α+ 1, β) + 2 max

1≤j≤N

1
1 + xj

)
≥ 0 (4.2)
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holds, where

η0 ≡ η0(α, β) =

{
−β, α+ β + 1 ≥ 0,
1 + α, α+ β + 1 ≤ 0,

α, β ∈ (−1, 0),

and if the Assumption H[f ] is satisfied, then the following estimates hold:

‖vmN ‖ω ≤ C exp(atm)‖v0
N‖ω+τC exp(atm)

m∑
n=1

exp(−atn)‖G(tn−1, ·, T vN )‖ω, m>0,

(4.3)
where the discrete weights ωj are given by (4.1) and a = 1

2bL.

Proof. We first modify the above discrete weights, so that they depend also on m:

ωmj =
1− xj
f(tm, xj)

ω
(α,β)
L,N+1,j .

The norm induced by these weights, ‖ · ‖ωm , is equivalent to the norm ‖ · ‖ω:

‖v‖ωm ≤ b1/2‖v‖ω and ‖v‖ω ≤ B1/2‖v‖ωm ,

in view of Assumption H[f ]. Then we have

‖vmN − τf(tm, ·)∂xvmN ‖2ωm ≤
[
1− 2τ

(
η0 − τB

(
λN−1 + 2 max

1≤j≤N

1
1 + xj

))]
‖vmN ‖2ωm .

We omit the proof of this estimate, which is almost identical to the corresponding
part of the proof of Theorem 6.2 in [4]. Due to the CFL condition (4.2), it follows

‖vmN − τf(tm, ·)∂xvmN ‖ωm ≤ ‖vmN ‖ωm .

Now, let us express the norm ‖ · ‖ωm+1 in terms of the norm ‖ · ‖ωm :

‖w‖2ωm+1 =
N∑
j=1

w2(xj)
1− xj

f(tm+1, xj)
ω

(α,β)
L,N+1,j ≤

≤ max
1≤j≤N

f(tm, xj)
f(tm+1, xj)

N∑
j=1

w2(xj)
1− xj
f(tm, xj)

ω
(α,β)
L,N+1,j ≤

≤
(

1 + b max
1≤j≤N

|f(tm, xj)− f(tm+1, xj)|
)
‖w‖2ωm ≤ (1 + bLτ)‖w‖2ωm .

Thus
‖w‖ωm+1 ≤ (1 + aτ)‖w‖ωm .

Since taking the norm ‖ · ‖ωm on both sides of (3.4) gives

‖vm+1
N ‖ωm = ‖vmN − τf(tm, ·)∂xvmN + τG(tm, ·, T vN )‖ωm ≤

≤ ‖vmN − τf(tm, ·)∂xvmN ‖ωm + τ‖G(tm, ·, T vN )‖ωm ,
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we get from the above estimates

‖vm+1
N ‖ωm+1 ≤ (1 + aτ)‖vm+1

N ‖ωm ≤ (1 + aτ)‖vmN ‖ωm + τ(1 + aτ)‖G(tm, ·, T vN )‖ωm .

Recurrent application of this inequality produces

‖vmN ‖ωm ≤ (1 + aτ)m‖v0
N‖ω0 + τ

m−1∑
n=0

(1 + aτ)m−n−1‖G(tn, ·, T vN )‖ωn ,

which, in view of the equivalence of ‖·‖ωm and ‖·‖ω, gives (4.3) with C = B1/2b1/2.

Remark 4.2. The expression in parentheses in the CFL condition (4.2) may be
written in terms of N . Assume that α, β ∈ (−1, 0). Then the formula (2.1) gives
λN−1(α+1, β) < N2−1. Moreover, using a result on the distribution of Jacobi-Gauss
nodes ([6], Lemma 4.1, (ii)), we may write (1 + xj)−1 ≤ k(N + 3

2 )2, where k ≤
96p

12π2pq−π4q2 < 1, p = (α+ β + 3)2, q = (β + 2)2.

We introduce now an inhomogeneous boundary condition

vmN (−1) = ϕ(tm,−1), m ≥ −m0. (4.4)

Theorem 4.3. Consider the scheme (3.4), (3.6), (4.4). If all the conditions of the
preceding theorem are satisfied, then there is C1 > 0 such that

‖vmN ‖ω ≤ C exp(atm)‖v0
N‖ω + τC exp(atm)

m∑
n=1

exp(−atn)‖G(tn−1, ·, T vN )‖ω+

+ τC1 exp(atm)N
m∑
n=1

exp(−atn)|ϕ(tn−1,−1)|,

(4.5)

with weights ωj given by (4.1).

Proof. We use the substitution formula introduced in [3],

V mN (x) = vmN (x)−
∂xP

(α,β)
N+1 (x)

∂xP
(α,β)
N+1 (−1)

ϕ(tm,−1).

Since vmN (xj) = V mN (xj), 1 ≤ j ≤ N , m ≥ −m0, the πN -polynomial VN satisfies
(3.4)–(3.6) with G(t, x, w) replaced in (3.4) by

G(t, x, w) + f(t, x)
∂2
xP

(α,β)
N+1 (x)

∂xP
(α,β)
N+1 (−1)

ϕ(t,−1).

The norm ‖ · ‖ω of the above fraction may be estimated by c(α, β) ·N , where c(α, β)
depends only on α, β, see [4], Lemma 4.2. Hence (4.5) follows with C1 = c(α, β)B.
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5. APPROXIMATION AND CONVERGENCE

Thanks to the exactness of the Gauss-Lobatto quadrature, and to the positiveness of
quadrature weights, we have for p ∈ πN

‖p‖2ω =
N∑
j=1

(1− x(α,β)
L,N+1,j)ω

(α,β)
L,N+1,j p

2(x(α,β)
L,N+1,j) ≤

≤
N+1∑
j=0

(1− x(α,β)
L,N+1,j)ω

(α,β)
L,N+1,j p

2(x(α,β)
L,N+1,j) = ‖p‖2α+1,β .

On the other hand, let us note that relations (3.2) give ωj = ω
(α+1,β)
R,N,j−1 and xj =

x
(α+1,β)
R,N,j−1, 1 ≤ j ≤ N , so that the exactness of the Gauss-Radau quadrature implies
‖p‖ω = ‖p‖α+1,β for p ∈ πN satisfying p(−1) = 0. For p ∈ πN let us put p̃(x) =
p(x)− p(−1). Then p̃(−1) = 0 and hence ‖p̃‖ω = ‖p̃‖α+1,β . Consequently,

‖p‖α+1,β ≤ ‖p̃‖α+1,β + k|p(−1)| = ‖p̃‖ω + k|p(−1)| ≤
≤ ‖p‖ω + ‖p(−1)‖ω + k|p(−1)| ≤ ‖p‖ω + 2k|p(−1)|,

where k = ‖1‖α+1,β .
We cite below two approximation results (Theorems 4.6 and 4.7) of [6], in some-

what simplified versions. As the main simplification, we will understand by c(α, β)
merely a constant depending only on α, β, while in [6], the c(α, β) is given explicitly
every time.

Theorem 5.1. For any w ∈ Hr
χ(α,β),A

(Λ), r ≥ 1, we have

‖IR,N,α,βw − w‖α,β ≤ c(α, β)(N(N + α+ β))−r/2|w|r,α,β . (5.1)

Theorem 5.2. If one of the following conditions hold:

α = β ≥ −1
2

or α ≥ β + 1, β ≥ 0 or
1
2
≤ α ≤ β + 1, (5.2)

then for any w such that ∂xw ∈ Hr
χ(α,β),A

(Λ), r ≥ 0, we have

|IR,N,α,βw − w|1,α,β ≤ c(α, β)(N(N + α+ β))(1−r)/2|∂xw|r,α,β , (5.3)

‖IR,N,α,βw − w‖α,β ≤ c(α, β)(N(N + α+ β))(1−r)/2|∂xw|r,α,β . (5.4)

Suppose that conditions of Theorem 5.2 are satisfied and r ≥ 1. Then, from the
triangle inequality joining (5.3), and (5.1) with ∂xw instead of w, we get the following

Corollary 5.3. If (5.2) holds, then for any w such that ∂xw ∈ Hr
χ(α,β),A

(Λ), r ≥ 1,
we have

‖∂xIR,N,α,βw − IR,N,α,β∂xw‖α,β ≤ c(α, β)(N(N + α+ β))(1−r)/2|∂xw|r,α,β . (5.5)
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Assumption H[G]. Suppose that G satisfies one of the following conditions with
L ≥ 0.

(i) |G(t, x, w)−G(t, x, w̄)| ≤ L‖w − w̄‖α+1,β;[t], (t, x) ∈ E, w, w̄ ∈ X0
α+1,β ,

or, for all N ∈ N,

(ii) ‖G(t, ·, w)−G(t, ·, w̄)‖ω ≤ L sup
−t0≤s≤t

‖(w − w̄)(s, ·)‖ω, (t, x) ∈ E, w, w̄ ∈ X0
α+1,β .

The following types of functional dependence are admissible by the Assumption
H[G].

Example 5.4. Let γ : (0,∞)→ (0,∞) be such that γ(t) ≤ t and let g : E × R→ R
satisfy the Lipschitz condition |g(t, x, p) − g(t, x, p̄)| ≤ L|p − p̄| on E × R for some
L ≥ 0. Then G given by

G(t, x, w) = g(t, x, w(γ(t), x))

satisfies the condition (ii) of Assumption H[G].

Example 5.5. Let γ, g be as in Example 5.4. Then G given by

G(t, x, w) = g(t, x, ‖w(γ(t), ·)‖α+1,β)

satisfies the condition (i) of Assumption H[G].

Theorem 5.6. Let − 1
2 ≤ α ≤ β < 0. Suppose that the Assumption H[G] and

all conditions of the Theorem 4.3 are satisfied and let u ∈ X0
α+1,β be the unique

solution of (2.2), (2.3), such that ∂xu ∈ Xr
α+1,β, where r ≥ 2, and, for some A ≥ 0,

|∂tu(t, x)| ≤ 2A on E. Moreover, let {vmN }m≥−m0 be the solution of the scheme (3.4),
(3.6), (4.4) with ϕ̄ instead of ϕ, and assume that

∂xϕ(t, ·) , ∂xϕ̄(t, ·) ∈ Hr
χ(α+1,β),A(Λ), t ∈ [−t0, 0] (5.6)

and
sup
−t0≤t

|(ϕ̄− ϕ)(t,−1)| ≤ ψ(τ,N).

Then there is C ≥ 0 (independent of τ , N) such that, for m ≥ 0,

‖(vmN − u)(tm, ·)‖α+1,β ≤ C exp(ātm)×

×
(∣∣(ϕ− ϕ̄)(t, ·)

∣∣
α+1,β; [0]

+ (N(N + α+ β + 1))(1−r)/2 + τ +Nψ(τ,N)
)
, (5.7)

where ā = a+ (1 + aτ)CLmax{1, k}, a = 1
2bL.

Proof. The exact solution u fulfils the equation

u(tm+1, xj) = u(tm, xj) + τ∂xu(tm, xj)f(tm, xj) + τG(tm, xj , u) + τΓmj (τ), (5.8)
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where |Γmj (τ)| ≤ Aτ . Consider the interpolation operator IN , mapping functions
defined on Λ, onto πN , given by:

INw(xj) = w(xj), 1 ≤ j ≤ N, and INw(−1) = w(−1).

The operator IN is in fact a Gauss-Radau interpolation operator, since, as we have
already stated, xj = x

(α+1,β)
R,N,j−1, 1 ≤ j ≤ N and −1 = x

(α+1,β)
R,N,N . Put εN = vN − INu

and ym = max−m0≤n≤m ‖εnN‖ωn . Then we have

y0 = max
−m0≤n≤0

‖IN (ϕ̄− ϕ)(tn, ·)‖ωn .

Moreover, using (5.4), we can derive

b−1/2‖INw‖ωn ≤ ‖INw‖ω ≤ ‖INw‖α+1,β ≤ ‖INw − w‖α+1,β + ‖w‖α+1,β ≤
≤ C0(N(N + α+ β + 1))(1−r)/2 + ‖w‖α+1,β

with some C0 ≥ 0, provided that ∂xw ∈ Hr
χ(α+1,β),A

(Λ). Substituting w = ϕ̄−ϕ, and
taking into account condition (5.6), we get

y0 ≤ b1/2C0 (N(N + α+ β + 1))(1−r)/2 + b1/2
∣∣ϕ̄− ϕ∣∣

α+1,β; [0]
. (5.9)

The point of the proof is to construct an appropriate difference inequality for ym,
m ≥ 0. Gaining a relevant estimate of εN is sufficient here, since, by the triangle
inequality,

‖(vN − u)(t, ·)‖α+1,β ≤ ‖εN (t, ·)‖α+1,β + ‖(INu− u)(t, ·)‖α+1,β ,

and the latter term is appropriately bounded due to (5.4).
Subtracting by sides (3.4) and (5.8), we get

εm+1
N (xj) = εmN (xj)+τf(tm, xj)∂xεmN (xj)+τG̃(tm, xj , u, vN ), 1 ≤ j ≤ N, (5.10)

and
εmN (−1) = (ϕ̄− ϕ)(tm,−1),

and
εmN (xj) = (ϕ̄− ϕ)(tm, xj), −t0 ≤ tm ≤ 0, 1 ≤ j ≤ N,

where

G̃(tm, xj , u, vN ) = ∂x(u− INu)(xj)f(tm, xj) +G(tm, xj , T vN )−G(tm, xj , u)−Γmj (τ).

Proceeding as in the proof of Theorem 4.3, we obtain, for m ≥ 0,

‖εm+1
N ‖ωm+1 ≤ (1+aτ)‖εmN‖ωm+τ(1+aτ)

(
‖G̃(tm, ·, u, vN )‖ωm+C1N |(ϕ̄−ϕ)(tm,−1)|

)
(5.11)
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with some C1 ≥ 0. Let us now estimate the norm of G̃. Due to Assumption H[f ], we
have

‖G̃(tm, · , u, vN )‖ω ≤ B‖∂x(u− INu)‖ω + ‖G(tm, ·, T vN )−G(tm, ·, u)‖ω + kAτ.

By Corollary 5.3, there is C2 ≥ 0 such that

‖∂xu− ∂xINu‖ω = ‖IN∂xu− ∂xINu‖ω ≤ ‖IN∂xu− ∂xINu‖α+1,β ≤
≤ C2(N(N + α+ β + 1))(1−r)/2.

For abbreviation, let L∗ stand for max{L, kL}. Thanks to Assumption H[G], we are
able to majorize the term ‖G(tm, ·, T vN )−G(tm, ·, u)‖ω either by

L∗‖TvN − u‖α+1,β;[tm],

or by

L∗ sup
−t0≤s≤tm

‖(TvN − u)(s, ·)‖ω.

We write TvN −u as TεN +T (INu−u) + (Tu−u) and apply the triangle inequality.
Suppose that the condition (i) from this Assumption holds true. Then, from the

definition of operator T follows

‖TεN‖α+1,β;[tm] = sup
−t0≤s≤tm

‖TεN (s, ·)‖α+1,β ≤

≤ max
−m0≤n≤m

‖εnN‖α+1,β ≤ B1/2ym + 2B1/2kψ(τ,N).

By the same token, and by use of (5.4), there is C3 ≥ 0 such that

‖T (INu− u)‖α+1,β;[tm] ≤ C3(N(N + α+ β + 1))(1−r)/2.

Finally,
‖Tu− u‖α+1,β;[tm] ≤ kAτ.

Suppose now that (ii) holds. If this is the case, we need to estimate the quantities
‖εnN‖ω, but these are upper bounded by ‖εnN‖α+1,β , since εnN ∈ πN . The ω-norm
of (INu − u)(s, ·) is equal to zero, and ‖(Tu − u)(s, ·)‖ω has the same estimate as
‖(Tu− u)(s, ·)‖α+1,β .

Taking both variants of Assumption H[G] into account, we find that

‖G(tm, ·, T vN )−G(tm, ·, u)‖ω ≤

≤ L∗
(
B1/2ym + 2B1/2kψ(τ,N) + C3(N(N + α+ β + 1))(1−r)/2 + kAτ

)
.

With the notation ξα,β(τ,N) = (N(N +α+ β + 1))(1−r)/2 + τ +Nψ(τ,N), it is easy
to see that there exists a constant C4 ≥ 0 such that

‖G̃(tm, ·, u, vN )‖ωm ≤ b1/2‖G̃(tm, ·, u, vN )‖ω ≤ CL∗ym + C4ξα,β(τ,N),
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where C = B1/2b1/2. Hence, and by (5.11),

‖εm+1
N ‖ωm+1 ≤

(
1 + τ [a+ (1 + aτ)CL∗]

)
ym + τ(1 + aτ)C4ξα,β(τ,N), m ≥ 0.

Consequently,

ym+1 ≤ (1 + āτ) ym + τ(1 + āτ)C4ξα,β(τ,N), m ≥ 0,

where ā = a + (1 + aτ)CL∗, which is the recurrent inequality we have searched for.
Solving this inequality and using (5.9), we obtain

‖εmN‖α+1,β ≤ ‖εmN‖ω + 2kψ(τ,N) ≤
≤ B1/2‖εmN‖ωm + 2kψ(τ,N) =

= B1/2ym + 2kψ(τ,N) ≤

≤ B1/2 exp(ātm)
(
y0 +

C4

ā
ξα,β(τ,N)

)
+ 2kψ(τ,N) ≤

≤ B1/2 exp(ātm)
(
b1/2

∣∣ϕ̄− ϕ∣∣
α+1,β; [0]

+ (b1/2C0 + C4ā
−1)ξα,β(τ,N)

)
+

+ 2kψ(τ,N),

and the assertion (5.7) follows.

6. NUMERICAL EXAMPLES

Take α = β = − 1
2 . Then simply xj = cos πj

N+1 and ‖w‖ω = π
N+1

∑N
j=1(1−xj)w2(xj).

Consider the problem (2.2), (2.3) with t0 = 0, f(t, x) = 1 + t + x2, G(t, x, z) =
z(t, x)[x2 − 2 + 2tx(1 + t+ x2)] + ρ(z( t2 , x)), ϕ ≡ 1, where

ρ(y) =

{
y2, |y| ≤ 2,
4, otherwise.

We have tested the pseudospectral method for this problem against the known solution
u(t, x) = exp(t(x2 − 1)). The errors were measured at the cut T = 0.25. We denote
‖vN − u‖ = ‖(vN − u)(T, ·)‖ in the Tables below. From Table 1 it can be seen that
the term with magnitude N1−r (see convergence theorem) is practically negligible for
N ≥ 8, since there is no gain in accuracy, when augmenting N to 16 and farther.

Hence the idea of fixing N = 8, during the second series of experiments, and using
τ to control the accuracy. We aimed to compare the pseudospectral method and the
Euler finite difference scheme. The classical method has accuracy O(τ + N−1), so
instead of running it with the same number N of spatial nodes, we found it more
interesting to measure the time needed to obtain results not worse than that of the
pseudospectral method. Logs of this “accuracy vs. time” test are gathered in the
Table 2.
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Due to the classical CFL condition, we have been always choosing τ , N so that
τN = 4/5, in the finite difference scheme. The ‖ · ‖ω norm of the error in the classical
case is defined by ‖zτ,N − u‖2ω =

∑N−1
j=1 χ(1/2,−1/2)(xj)(zτ,N − u)2(xj), where zτ,N

is the solution of the Euler finite difference scheme, on the mesh with spatial nodes
xj = −1+2jN−1, j = 0, . . . , N−1. The maximum norm ‖·‖0 is defined as the maximal
absolute value in either case. It can be seen from the Table 2 that the classical finite
difference scheme is faster only when quite low accuracy (> 2−14 ≈ 10−4) is needed.
Moreover, the data storage, required by the Euler scheme for this specific problem,
grows locally faster (with respect to accuracy ε, like ε−2 vs. ε−1) than this required
by the collocation scheme. To make the error smaller than 2−21 using the first one,
one should expect, looking at the right half of the Table 2, to have to store about 234

of real numbers. Thus, restricting ourselves to sequential (not parallel) computing,
we have skipped the last two experiments with the finite difference scheme.

Let us take now the integral-differential problem (2.2), (2.3) with f as in the
previous example, G(t, x, w) = (1 − x2)7/4 ·

[
(1 − x2) − 11

2 tx(1 + x2 + I(t, w))
]
and

ϕ ≡ 0, where I2(t, w) =
∫

Λ
w2(t/2, x)χ(1/2,−1/2)(x) dx. We have tested the pseu-

dospectral method against the known solution u = t(1 − x2)11/4 and obtained the
results, gathered in the Table 3.

Table 1. Error of pseudospectral method for τ = 2−14

N ‖vN − u‖ω
2 2.929 222 · 10−3

4 9.113 179 · 10−5

8 5.102 305 · 10−6

16 5.102 451 · 10−6

32 5.102 455 · 10−6

Table 2. Comparison of time costs for prescribed accuracy (the − log2 of errors is taken)

Pseudospectral collocation (N = 8) Euler FDM (N=5·2k, τN = 4
5 )

− log2τ ‖vN − u‖ω ‖vN − u‖0 time [s] k ‖zτ,N − u‖ω ‖zτ,N − u‖0 time [s]

6 9.563 177 9.360 599 0.25 4 9.741 110 8.456 797 0.002
10 13.579 380 13.370 646 0.25 8 13.660 191 13.322 350 0.08
14 17.580 419 17.372 826 0.26 12 17.655 178 17.314 159 17.11
18 21.577 699 21.397 366 0.50 – – – –
22 25.003 930 25.183 749 4.19 – – – –
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Table 3. Error of the pseudospectral method for the differential-integral problem

− log2 τ N ‖vN − u‖ω
5 8 1.522 379 · 10−4

7 16 3.183 423 · 10−6

9 32 7.629 330 · 10−8

11 64 1.765 044 · 10−9

13 128 4.003 189 · 10−11

15 256 8.967 462 · 10−13
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