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ON CHROMATIC EQUIVALENCE

OF A PAIR OF K4-HOMEOMORPHS

Abstract. Let P (G,λ) be the chromatic polynomial of a graph G. Two graphs G and
H are said to be chromatically euqivalent, denoted G ∼ H , if P (G, λ) = P (H,λ). We
write [G] = {H |H ∼ G}. If [G] = {G}, then G is said to be chromatically unique. In this
paper, we discuss a chromatically equivalent pair of graphs in one family of K4-homeomorphs,
K4(1, 2, 8, d, e, f). The obtained result can be extended in the study of chromatic equivalence
classes of K4(1, 2, 8, d, e, f) and chromatic uniqueness of K4-homeomorphs with girth 11.
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1. INTRODUCTION

All graphs considered here are simple graphs. For such a graph G, let P (G, λ) (or
simply P (G)) denote the chromatic polynomial of G. Two graphs G and H are
chromatically equivalent (or simply χ-equivalent), denoted by G ∼ H , if P (G, λ) =
P (H, λ) (or simply P (G) = P (H). A graph G is chromatically unique (or simply
χ-unique) if for any graph H such that H ∼ G, we have H ∼= G, i.e, H is isomorphic
to G. A K4-homeomorph is a subdivision of the complete graph K4. Such a homeo-
morph is denoted by K4(a, b, c, d, e, f) if the six edges of K4 are replaced by the
six paths of length a, b, c, d, e, f , respectively, as shown in Figure 1. So far, the
chromaticity of K4-homeomorphs with girth g, where 3 ≤ g ≤ 9 has been studied
by many authors (see [5, 9–11, 18]). In 2004, Peng in [9] published her work on
the chromaticity of K4-homeomorphs with girth six by considering her result on the
chromatic equivalence pair K4(1, 2, 3, d, e, f) and K4(1, 2, 3, d′, e′, f ′). Dong et. al
in [6] summarized the above result. In 2008, Peng [11] investigated the chromatic
uniqueness of K4(1, 3, 3, d, e, f) with exactly one path of length one and with girth
seven. She accomplished this, first by establishing the chromatic equivalence pair
of K4(1, 3, 3, d, e, f) and K4(1, 3, 3, d′, e′, f ′) in [12]. She then solved the chromatic
equivalence of such families of graphs (see [12–14]) and finally, in [11], she provided the
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Fig. 1. K4(a, b, c, d, e, f)

necessary and sufficient condition for this type of K4-homeomorph to be chromatically
unique. S. Catada-Ghimire et al. in [1] investigated the chromaticity of one family
of K4-homeomorph with girth 10. For the purpose of completing their on going
research on K4-homeomorphs with the said girth, they published their results on
three chromatic equivalence pairs of K4-homeomorphs in [2, 3] and [4] which are
summarised as follows:

Let G = K4(1, b, c, d, e, f) and H = K4(1, b, c, d′, e′, f ′) be non-isomorphic but
chromatically equivalent. Then {G, H} is one of the following pairs:

when b = b′ = 2 and c = c′ = 7

{K4(1, 2, 7, i, i + 8, i + 1), K4(1, 2, 7, i + 2, i, i + 7)},

{K4(1, 2, 7, i, i + 1, i + 8), K4(1, 2, 7, i + 7, i, i + 2)},

{K4(1, 2, 7, i, i + 1, i + 3), K4(1, 2, 7, i + 2, i + 2, i)},

when b = b′ = 3 and c = c′ = 6

{K4(1, 3, 6, i, i + 1, i + 4), K4(1, 3, 6, i + 2, i + 3, i)},

{K4(1, 3, 6, i, i + 7, i + 1), K4(1, 3, 6, i + 2, i, i + 6)},

when b = b′ = 4 and c = c′ = 5

{K4(1, 4, 5, i, i + 6, i + 1), K4(1, 4, 5, i + 2, i, i + 5)},

{K4(1, 4, 5, i, i + 1, i + 5), K4(1, 4, 5, i + 2, i + 4, i)}.

Our main aim is to provide a result which can be extended in the study of the
chromatic equivalence of K4(1, 2, 8, d, e, f) (as shown in Fig. 2). Such results are an
indispensable tool in the study of the chromatic uniqueness of K4-homeomorphs with
girth 11.
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Fig. 2. K4(1, 2, 8, d, e, f)

2. PRELIMINARY RESULT

In this section, we give the following known result used in the sequel.

Lemma 2.1. Assume that G and H are χ-equivalent. Then:

(1) |V (G)| = |V (H)|, |E(G)| = |E(H)| (see [7]).
(2) G and H have the same girth and same number of cycles with length equal to

their girth (see [15]).
(3) If G is a K4-homeomorph, then H must itself be a K4-homeomorph (see [16]).
(4) Let G = K4(a, b, c, d, e, f) and H = K4(a

′, b′, c′, d′, e′, f ′), then:

(i) min {a, b, c, d, e, f} = min {a′, b′, c′, d′, e′, f ′} and the number of times that

this minimum occurs in the list {a, b, c, d, e, f} is equal to the number of times

that this minimum occurs in the list {a′, b′, c′, d′, e′, f ′} (see [17]);
(ii) if {a, b, c, d, e, f} = {a′, b′, c′, d′, e′, f ′} as multisets, then H ∼= G (see [18]).

3. MAIN RESULT

Lemma 3.1. Let G ∼= K4(1, 2, 8, d, e, f) and H ∼= K4(1, 2, 8, d′, e′, f ′), then:

(1) P (G) = (−1)x−1[s/(s − 1)2][−sx−1 − s9 − s8 − s3 − s2 + 2s + 2 + R(G)], where

R(G) = −sd− se − sf − se+1− sf+1 + sf+2 + se+3 + se+8 + sf+9 + sd+10 + sd+e+f ,

s = 1 − λ, x is the number of edges of G.

(2) If P (G) = P (H), then R(G) = R(H).

Proof. (1) Let s = 1 − λ. From [17], the chromatic polynomial of K4-homeomorphs
K4(a, b, c, d, e, f) is as follows:
P (K4(a, b, c, d, e, f) = (−1)x−1[s/(s − 1)2][(s2 + 3s + 2) − (s + 1)(sa + sb + sc + sd +
+se + sf ) + (sa+d + sb+f + sc+e + sa+b+e + sb+d+c + sa+c+f + sd+e+f − sx−1)].

So when a = 1, b = 2 and c = 8, we have
P (K4(1, 2, 8, d, e, f) = (−1)x−1[s/(s−1)2][(s2+3s+2)−(s+1)(s+s2+s8+sd+se+sf)+



126 S. Catada-Ghimire, H. Roslan, Y.H. Peng

+(sd+1 + sf+2 + se+3 + se+8 + sd+10 + sf+9 + sd+e+f − sx−1)] =
= (−1)x−1[s/(s−1)2][−sx−1− s9 − s8− s3 − s2 +2s+2− sd − se − sf − se+1 − sf+1+
+sf+2 + se+3 + se+8 + sf+9 + sd+10 + sd+e+f ] =
= (−1)x−1[s/(s − 1)2][−sx−1 − s9 − s8 − s3 − s2 + 2s + 2 + R(G)], where

R(G) = −sd − se − sf − se+1 − sf+1 + sf+2 + se+3 + se+7 + sf+9 + sd+10 + sd+e+f

as required.
(2) If P (G) = P (H), then we can easily see that R(G) = R(H).

Theorem 3.2. Let K4-homeomorphs K4(1, 2, 8, d, e, f) and K4(1, 2, 8, d′, e′, f ′) be

chromatically equivalent, then we have

K4(1, 2, 8, i, i + 9, i + 1) ∼ K4(1, 2, 8, i + 2, i, i + 8),

K4(1, 2, 8, i, i + 1, i + 9) ∼ K4(1, 2, 8, i + 8, i, i + 2),

K4(1, 2, 8, i, i + 1, i + 3) ∼ K4(1, 2, 8, i + 2, i + 2, i),

where i ≥ 1.

Proof. Let G ∼= K4(1, 2, 8, d, e, f) and H ∼= K4(1, 2, 8, d′, e′, f ′). We now solve for the
equation R(G) = R(H) to find G and H which are not isomorphic. From Lemma 3.1,
we have

R(G) = −sd − se − sf − se+1 − sf+1 + sf+2 + se+3 + se+8 + sf+9 + sd+10 + sd+e+f ,
R(H) = −sd′

− se′

− sf ′

− se′
+1 − sf ′

+1 + sf ′
+2 + se′

+3 + se′
+8 + sf ′

+9 + sd′
+10 +

sd′
+e′

+f ′

.
Let the lowest remaining power and the highest remaining power be denoted by

l.r.p. and h.r.p., respectively. From Lemma 2.1 (1), d + e + f = d′ + e′ + f ′. We
obtain the following after simplification: (Note that our assumption in the following
steps of the proof is Rj(G) = Rj(H), where 1 ≤ j ≤ 18.)

R1(G) = −sd − se − sf − se+1 − sf+1 + sf+2 + se+3 + se+8 + sf+9 + sd+10,
R1(H) = −sd′

− se′

− sf ′

− se′
+1 − sf ′

+1 + sf ′
+2 + se′

+3 + se′
+8 + sf ′

+9 + sd′
+10.

Let us consider the h.r.p. in R1(G) and the h.r.p. in R1(H). We have max
{e + 8, f + 9, d + 10} = max {e′ + 8, f ′ + 9, d′ + 10}. Without loss of generality, we
will consider only the following six cases.
Case 1. If max {e+8, f +9, d+10} = e+8 and max {e′ +8, f ′ +9, d′ +10} = e′ +8,
then e = e′. Thus, we can cancel the following pairs of terms in the equations R1(G)
and R1(H): −se with −se′

, −se+1 with −se′
+1, se+3 with se′

+3 and se+8 with se′
+8.

Therefore, the l.r.p. in R1(G) is d or f and the l.r.p. in R1(H) is d′ or f ′. So, d = f ′

or d = d′ or f = f ′ or f = d′. We have e = e′ and d + e + f = d′ + e′ + f ′. So, we
know that {d, e, f} = {d′, e′, f ′} as multisets. From Lemma 2.1 (4(ii)), G ∼= H .
Case 2. If max {e+8, f +9, d+10} = f +9 and max {e′ +8, f ′ +9, d′ +10} = f ′ +9,
then f = f ′. We can deal with this case in the same way as case 1, thus, G ∼= H .
Case 3. If max {e+8, f +9, d+10} = d+10 and max {e′+8, f ′+9, d′+10} = d′+10,
then we can deal with this case in the same way as case 1. So, we have G ∼= H .
Case 4. If max {e+8, f +9, d+10} = e+8 and max {e′ +8, f ′ +9, d′ +10} = f ′ +9,
then e + 8 = f ′ + 9, that is

f ′ = e − 1 (3.1)
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from d + e + f = d′ + e′ + f ′, we have

d + f = d′ + e′ − 1. (3.2)

Consider the l.r.p. in R1(G) and the l.r.p. in R1(H). From Lemma 2.1(4(i)), min
{d, e, f} = min {d′, e′, f ′}. Without loss of generality, let min {d, e, f} = d. The
following subcases need to be considered.
Subcase 4.1. If min {d, e, f} = d and min {d′, e′, f ′} = d′, then d = d′. Thus, we can
consider this case the same way as case 1. So, G ∼= H .
Subcase 4.2. If min {d, e, f} = d and min {d′, e′, f ′} = e′, then d = e′. From Eq.
(3.2), we have d′ = f + 1. Note that f ′ = e− 1 (Eq. (3.1)). We can write R1(G) and
R1(H) as follows:

R2(G) = −sd − se − sf − se+1 − sf+1 + sf+2 + se+3 + se+8 + sf+9 + sd+10

R2(H) = −sf+1 − sd − se−1 − sd+1 − se + se+1 + sd+3 + sd+8 + se+8 + sf+11.
After simplifying R2(G) and R2(G), we have
R3(G) = −sf − se+1 + sf+2 + se+3 + sf+9 + sd+10

R3(H) = −se−1 − sd+1 + se+1 + sd+3 + sd+8 + sf+11.
Consider the term −sd+1 in R3(H). Since the min d, e, f = d, −sd+1 cannot be

cancelled by any of the positive terms in R3(H). Thus, −sd+1 must be equal to −sf

or −se+1 in R3(G). Note that max e + 8, f + 9, d + 10 = e + 8, so e + 8 ≥ d + 10,
that is, e + 1 ≥ d + 3 > d + 1. Thus, −se+1 6= −sd+1.

If −sd+1 = −sf , then d + 1 = f . Thus, R3(G) and R3(H) can be written as
follows:

R4(G) = −sd+1 − se+1 + sd+3 + se+3 + sd+10 + sd+10

R4(H) = −se−1 − sd+1 + se+1 + sd+3 + sd+8 + sd+12.
After simplifying R4(G) and R4(H), we have
R5(G) = −se+1 + se+3 + sd+10 + sd+10

R5(H) = −se−1 + se+1 + sd+8 + sd+12.
Thus, we have
−se+1 + se+3 + sd+10 + sd+10 = −se−1 + se+1 + sd+8 + sd+12.
Therefore, we have e = d + 9. At this point, we acquire the following equations:

e = d + 9, f ′ = e − 1 = d + 8, d′ = f + 1 = d + 2, e′ = d. Let d = i. Therefore,
we obtain the solution, where G is isomorphic to K4(1, 2, 8, i, i + 9, i + 1) and H is
isomorphic to K4(1, 2, 8, i + 2, i, i + 8).
Subcase 4.3. If min {d, e, f} = d and min {d′, e′, f ′} = f ′, then d = f ′. Note that
max {e′ + 8, f ′ + 9, d′ + 10} = f ′ + 9. So, f ′ + 9 ≥ d′ + 10. This contradicts min
{d′, e′, f ′} = f ′.
Case 5. If max {e+8, f +9, d+10} = f +9 and max {e′+8, f ′+9, d′+10} = d′ +10,
then f + 9 = d′ + 10, that is,

d′ = f − 1 (3.3)

from d + e + f = d′ + e′ + f ′, we have

e + d + 1 = e′ + f ′. (3.4)

Consider the l.r.p. in R1(G) and the l.r.p. in R1(H), where min {d, e, f} = min
{d′, e′, f ′}. Without loss of generality, let min {d, e, f} = d. The following subcases
need to be considered.
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Subcase 5.1. If min {d, e, f} = d and min {d′, e′, f ′} = d′, then we deal with this case
the same way with case 1. So, we get G ∼= H .
Subcase 5.2. If min {d, e, f} = d and min {d′, e′, f ′} = e′ , then d = e′. From Eq.
(3.4), we have f ′ = e + 1. Thus, we can write R1(G) and R1(H) as follows:

R6(G) = −sd − se − sf − se+1 − sf+1 + sf+2 + se+3 + se+8 + sf+9 + sd+10,
R6(H) = −sf−1 − sd − se+1 − sd+1 − se+2 + se+3 + sd+3 + sd+8 + se+10 + sf+9 .
After simplifying R6(G) and R6(H), we have
R7(G) = −se − sf − sf+1 + sf+2 + se+8 + sd+10,
R7(H) = −sf−1 − sd+1 − se+2 + sd+3 + sd+8 + se+10.
Consider the term −sd+1 in R7(H). Since max {e + 8, f + 9, d + 10} = f + 9, we

have f + 9 ≥ d + 10, that is, f + 1 ≥ d + 2 > d + 1. So, f + 1 6= d + 1. Thus, −sd+1

in R7(H) must be equal to −se or −sf in R7(G). If −sd+1 = −sf , then d + 1 = f .
From Eq. (3.3), we have d = d′ and

R8(G) = −se − sd+1 − sd+2 + sd+3 + se+8 + sd+10,
R8(H) = −sd − sd+1 − se+2 + sd+3 + sd+8 + se+10 .
It is easy to see that d = e. Note that d = e′, so e = e′. From d+e+f = d′+e′+f ′,

we have f = f ′. Thus, G ∼= H .
If −sd+1 = −se, then d + 1 = e and
R9(G) = −sd+1 − sf − sf+1 + sf+2 + sd+9 + sd+10,
R9(H) = −sf−1 − sd+1 − sd+3 + sd+3 + sd+8 + sd+11.
After simplifying, we have
−sf − sf+1 + sf+2 + sd+9 + sd+10 = −sf−1 + sd+8 + sd+11

Thus, we have f = d+9. We also have the equations e = d+1, e′ = d, f ′ = e+1 =
d + 2 and d′ = f − 1 = d + 8. Let d = i, then f = i + 9, e = i + 1, e′ = i, f ′ = i + 2
and d′ = i + 8. Thus, we obtain the solution, where G ∼= K4(1, 2, 8, i, i+ 1, i + 9) and
H ∼= K4(1, 2, 8, i + 8, i, i + 2).
Subcase 5.3. If min {d, e, f} = d and min {d′, e′, f ′} = f ′, then d = f ′. From Eq.
(3.4), e′ = e + 1. Note that Eq. (3.3) is f = d′ + 1. We can write R1(G) and R1(H)
as follows:

R10(G) = −sd − se − sf − se+1 − sf+1 + sf+2 + se+3 + se+8 + sf+9 + sd+10,
R10(H) = −sf−1 − se+1 − sd − se+2 − sd+1 + sd+2 + se+4 + se+9 + sd+9 + sf+9.

After simplifying R10(G) and R10(H), we have
R11(G) = −se − sf − sf+1 + sf+2 + se+3 + se+8 + sd+10,
R11(H) = −sf−1 − se+2 − sd+1 + sd+2 + se+4 + se+9 + sd+9 .

For the same reasons stated in subcase 5.2, −sd+1 must be equal to −se or −sf in
R11(G). If −sd+1 = −se, then d+1 = e. We can write R11(G) and R11(H) as follows:

R12(G) = −sd+1 − sf − sf+1 + sf+2 + sd+4 + sd+9 + sd+10,
R12(H) = −sf−1 − sd+3 − sd+1 + sd+2 + sd+5 + sd+10 + sd+9 .
After simplifying, we have
−sf − sf+1 + sf+2 + sd+4 = −sf−1 − sd+3 + sd+2 + sd+5.
So, we get f = d + 3. We also have f ′ = d, e = d + 1, e′ = e + 1 = d + 2,

d′ = f − 1 = d + 2. Let d = i, then e = i + 1, f = i + 3, d′ = i + 2, e′ = i + 2,
f ′ = i. Therefore, we obtain the solution, where G ∼= K4(1, 2, 8, i, i + 1, i + 3) and
H ∼= K4(1, 2, 8, i + 2, i + 2, i).
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Case 6. If max {e+8, f +9, d+10} = e+8 and max {e′ +8, f ′+9, d′ +10} = d′ +10,
then e + 8 = d′ + 10, that is,

d′ = e − 2 (3.5)

from d + e + f = d′ + e′ + f ′ , we have

d + f + 2 = e′ + f ′. (3.6)

Consider the l.r.p. in R1(G) and the l.r.p. in R1(H). We have min {d, e, f} = min
{d′, e′, f ′}. Without loss of generality, let min {d, e, f} = d. The following subcases
need to be considered.
Subcase 6.1. If min {d, e, f} = d and min {d′, e′, f ′} = d′, then d = d′ and we can
deal with this case the same way as Case 1. Thus, we get G ∼= H .
Subcase 6.2. If min {d, e, f} = d and min {d′, e′, f ′} = e′, then d = e′. From Eq.
(3.6), we have f ′ = f + 2. Thus, we can write R1(G) and R1(H) as follows:

R13(G) = −sd − se − sf − se+1 − sf+1 + sf+2 + se+3 + se+8 + sf+9 + sd+10,
R13(H) = −se−2 − sd − sf+2 − sd+1 − sf+3 + sf+4 + sd+3 + sd+8 + sf+11 + se+8.

After simplifying R13(G) and R13(H), we have
R14(G) = −se − sf − se+1 − sf+1 + sf+2 + se+3 + sf+9 + sd+10,
R14(H) = −se−2 − sf+2 − sd+1 − sf+3 + sf+4 + sd+3 + sd+8 + sf+11 .

Consider the term −sd+1 in R14(H). Since min {d, e, f} = d, −sd+1 cannot cancel
any negative term in R14(H). From max {e + 8, f + 9, d + 10} = e + 8, we have
e + 8 ≥ d + 10, that is e + 1 ≥ d + 3 > d + 1. So, −sd+1 6= −se+1. Moreover,
e ≥ d + 2 > d + 1, thus, e 6= d + 1, that is −se 6= −sd+1. So, −sd+1 must be equal to
−sf or −sf+1 in R14(G).
If −sd+1 = −sf+1 , then d = f . So, we have

R15(G) = −se − sd − se+1 − sd+1 + sd+2 + se+3 + sd+9 + sd+10,
R15(H) = −se−2 − sd+2 − sd+1 − sd+3 + sd+4 + sd+3 + sd+8 + sd+11.

After simplifying, consider the h.r.p. in R15(G) and the h.r.p. in R15(H). We have
se+3 = sd+11, that is e + 3 = d + 11. This contradicts R15(G) = R15(H) since −se

cannot be cancelled by +sd+8 in R15(H).
If −sd+1 = −sf , then d + 1 = f . Thus, we have

R16(G) = −se − sd+1 − se+1 − sd+2 + sd+3 + se+3 + sd+10 + sd+10,
R16(H) = −se−2 − sd+3 − sd+1 − sd+4 + sd+5 + sd+3 + sd+8 + sd+12.

After simplifying, consider the h.r.p. in R16(G) and h.r.p. in R16(H). We have
se+3 = sd+12. The term sd+8 in R16(H) cannot be cancelled since there is no term
equal to it. This contradicts R16(G) = R16(H).
Subcase 6.3. If min {d, e, f} = d and min {d′, e′, f ′} = f ′, then d = f ′. From Eq.
(3.6), e′ = f + 2 and note that from Eq. (3.5), d′ = e − 2. Thus, we have

R17(G) = −sd − se − sf − se+1 − sf+1 + sf+2 + se+3 + se+8 + sf+9 + sd+10,
R17(H) = −se−2 − sf+2 − sd − sf+3 − sd+1 + sd+2 + sf+5 + sf+10 + sd+9 + se+8.

After simplifying, consider the term −sd+1 in R17(H). For the same reasons stated
in subcase 4.2, −sd+1 can only be equal to −sf or −sf+1 in R17(G).
If −sd+1 = −sf , then d + 1 = f . So, we have

R18(G) = −se − sd+1 − se+1 − sd+2 + sd+3 + se+3 + sd+10 + sd+10,
R18(H) = −se−2 − sd+3 − sd+4 − sd+1 + sd+2 + sd+6 + sd+11 + sd+9.
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After simplifying, consider the h.r.p. in R18(G) and the h.r.p. in R18(H). We have
se+3 = sd+11. So, e + 3 = d + 11, thus e = d + 8. There is no term sd+8 which is
equal to the term se in R18(G). This contradicts R18(G) = R18(H).
If −sd+1 = −sf+1, then d + 1 = f + 1, that is d = f = f ′. This case is the same as
case 1. So, we get the same result G ∼= H . At this point, we have solved the equation
R(G) = R(H) and the solution is as follows:

K4(1, 2, 8, i + 9, i, i + 1) ∼ K4(1, 2, 8, i + 2, i, i + 8),

K4(1, 2, 8, i, i + 1, i + 9) ∼ K4(1, 2, 8, i + 8, i, i + 2),

K4(1, 2, 8, i, i + 1, i + 3) ∼ K4(1, 2, 8, i + 2, i + 2, i),

where i ≥ 1. The proof is now complete.
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