http://dx.doi.org/10.7494/OpMath.2010.30.2.123

S. Catada-Ghimire, H. Roslan, Y.H. Peng

ON CHROMATIC EQUIVALENCE OF A PAIR OF K₄-HOMEOMORPHS

Abstract. Let $P(G, \lambda)$ be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. We write $[G] = \{H|H \sim G\}$. If $[G] = \{G\}$, then G is said to be chromatically unique. In this paper, we discuss a chromatically equivalent pair of graphs in one family of K_4 -homeomorphs, $K_4(1, 2, 8, d, e, f)$. The obtained result can be extended in the study of chromatic equivalence classes of $K_4(1, 2, 8, d, e, f)$ and chromatic uniqueness of K_4 -homeomorphs with girth 11.

Keywords: chromatic polynomial, chromatic equivalence, K_4 -homeomorphs.

Mathematics Subject Classification: 05C15.

1. INTRODUCTION

All graphs considered here are simple graphs. For such a graph G, let $P(G, \lambda)$ (or simply P(G) denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ -equivalent), denoted by $G \sim H$, if $P(G, \lambda) =$ $P(H,\lambda)$ (or simply P(G) = P(H)). A graph G is chromatically unique (or simply χ -unique) if for any graph H such that $H \sim G$, we have $H \cong G$, i.e., H is isomorphic to G. A K_4 -homeomorph is a subdivision of the complete graph K_4 . Such a homeomorph is denoted by $K_4(a, b, c, d, e, f)$ if the six edges of K_4 are replaced by the six paths of length a, b, c, d, e, f, respectively, as shown in Figure 1. So far, the chromaticity of K_4 -homeomorphs with girth g, where $3 \leq g \leq 9$ has been studied by many authors (see [5, 9–11, 18]). In 2004, Peng in [9] published her work on the chromaticity of K_4 -homeomorphs with girth six by considering her result on the chromatic equivalence pair $K_4(1,2,3,d,e,f)$ and $K_4(1,2,3,d',e',f')$. Dong et. al in [6] summarized the above result. In 2008, Peng [11] investigated the chromatic uniqueness of $K_4(1,3,3,d,e,f)$ with exactly one path of length one and with girth seven. She accomplished this, first by establishing the chromatic equivalence pair of $K_4(1,3,3,d,e,f)$ and $K_4(1,3,3,d',e',f')$ in [12]. She then solved the chromatic equivalence of such families of graphs (see [12-14]) and finally, in [11], she provided the

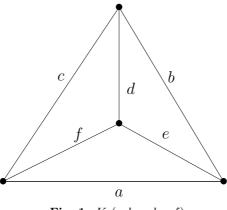


Fig. 1. $K_4(a, b, c, d, e, f)$

necessary and sufficient condition for this type of K_4 -homeomorph to be chromatically unique. S. Catada-Ghimire et al. in [1] investigated the chromaticity of one family of K_4 -homeomorph with girth 10. For the purpose of completing their on going research on K_4 -homeomorphs with the said girth, they published their results on three chromatic equivalence pairs of K_4 -homeomorphs in [2, 3] and [4] which are summarised as follows:

Let $G = K_4(1, b, c, d, e, f)$ and $H = K_4(1, b, c, d', e', f')$ be non-isomorphic but chromatically equivalent. Then $\{G, H\}$ is one of the following pairs:

when b = b' = 2 and c = c' = 7

$$\{ K_4(1,2,7,i,i+8,i+1), K_4(1,2,7,i+2,i,i+7) \}, \\ \{ K_4(1,2,7,i,i+1,i+8), K_4(1,2,7,i+7,i,i+2) \}, \\ \{ K_4(1,2,7,i,i+1,i+3), K_4(1,2,7,i+2,i+2,i) \},$$

when b = b' = 3 and c = c' = 6

$$\{ K_4(1,3,6,i,i+1,i+4), K_4(1,3,6,i+2,i+3,i) \}, \{ K_4(1,3,6,i,i+7,i+1), K_4(1,3,6,i+2,i,i+6) \},$$

when b = b' = 4 and c = c' = 5

$$\{K_4(1,4,5,i,i+6,i+1), K_4(1,4,5,i+2,i,i+5)\}, \\ \{K_4(1,4,5,i,i+1,i+5), K_4(1,4,5,i+2,i+4,i)\}.$$

Our main aim is to provide a result which can be extended in the study of the chromatic equivalence of $K_4(1, 2, 8, d, e, f)$ (as shown in Fig. 2). Such results are an indispensable tool in the study of the chromatic uniqueness of K_4 -homeomorphs with girth 11.

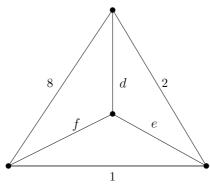


Fig. 2. $K_4(1, 2, 8, d, e, f)$

2. PRELIMINARY RESULT

In this section, we give the following known result used in the sequel.

Lemma 2.1. Assume that G and H are χ -equivalent. Then:

- (1) |V(G)| = |V(H)|, |E(G)| = |E(H)| (see [7]).
- (2) G and H have the same girth and same number of cycles with length equal to their girth (see [15]).
- (3) If G is a K_4 -homeomorph, then H must itself be a K_4 -homeomorph (see [16]).
- (4) Let $G = K_4(a, b, c, d, e, f)$ and $H = K_4(a', b', c', d', e', f')$, then:
 - (i) min {a,b,c,d,e,f} = min {a',b',c',d',e',f'} and the number of times that this minimum occurs in the list {a,b,c,d,e,f} is equal to the number of times that this minimum occurs in the list {a',b',c',d',e',f'} (see [17]);
 - (ii) if $\{a, b, c, d, e, f\} = \{a', b', c', d', e', f'\}$ as multisets, then $H \cong G$ (see [18]).

3. MAIN RESULT

Lemma 3.1. Let $G \cong K_4(1, 2, 8, d, e, f)$ and $H \cong K_4(1, 2, 8, d', e', f')$, then:

- (1) $P(G) = (-1)^{x-1} [s/(s-1)^2] [-s^{x-1} s^9 s^8 s^3 s^2 + 2s + 2 + R(G)]$, where $R(G) = -s^d s^e s^f s^{e+1} s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10} + s^{d+e+f}$, $s = 1 \lambda$, x is the number of edges of G.
- (2) If P(G) = P(H), then R(G) = R(H).

 $+(s^{d+1}+s^{f+2}+s^{e+3}+s^{e+8}+s^{d+10}+s^{f+9}+s^{d+e+f}-s^{x-1})] =$ $= (-1)^{x-1}[s/(s-1)^2][-s^{x-1}-s^9-s^8-s^3-s^2+2s+2-s^d-s^e-s^f-s^{e+1}-s^{f+1}+s^$ $+s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10} + s^{d+e+f}] =$ $= (-1)^{x-1} [s/(s-1)^2] [-s^{x-1} - s^9 - s^8 - s^3 - s^2 + 2s + 2 + R(G)],$ where $R(G) = -s^d - s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+7} + s^{f+9} + s^{d+10} + s^{d+e+f} + s^{f+10} +$ as required.

(2) If P(G) = P(H), then we can easily see that R(G) = R(H).

Theorem 3.2. Let K_4 -homeomorphs $K_4(1, 2, 8, d, e, f)$ and $K_4(1, 2, 8, d', e', f')$ be chromatically equivalent, then we have

$$\begin{split} & K_4(1,2,8,i,i+9,i+1) \sim K_4(1,2,8,i+2,i,i+8), \\ & K_4(1,2,8,i,i+1,i+9) \sim K_4(1,2,8,i+8,i,i+2), \\ & K_4(1,2,8,i,i+1,i+3) \sim K_4(1,2,8,i+2,i+2,i), \end{split}$$

where i > 1.

Proof. Let $G \cong K_4(1,2,8,d,e,f)$ and $H \cong K_4(1,2,8,d',e',f')$. We now solve for the equation R(G) = R(H) to find G and H which are not isomorphic. From Lemma 3.1, we have

 $\begin{array}{l} R(G) = -s^d - s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10} + s^{d+e+f}, \\ R(H) = -s^{d'} - s^{e'} - s^{f'} - s^{e'+1} - s^{f'+1} + s^{f'+2} + s^{e'+3} + s^{e'+8} + s^{f'+9} + s^{d'+10} + s^{d$ d'+e'+f'

Let the lowest remaining power and the highest remaining power be denoted by l.r.p. and h.r.p., respectively. From Lemma 2.1 (1), d + e + f = d' + e' + f'. We obtain the following after simplification: (Note that our assumption in the following steps of the proof is $R_j(G) = R_j(H)$, where $1 \le j \le 18$.) $R_1(G) = -s^d - s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10}$, $R_1(H) = -s^{d'} - s^{e'} - s^{f'} - s^{e'+1} - s^{f'+1} + s^{f'+2} + s^{e'+3} + s^{e'+8} + s^{f'+9} + s^{d'+10}$.

Let us consider the h.r.p. in $R_1(G)$ and the h.r.p. in $R_1(H)$. We have max $\{e+8, f+9, d+10\} = \max \{e'+8, f'+9, d'+10\}$. Without loss of generality, we will consider only the following six cases.

Case 1. If max $\{e+8, f+9, d+10\} = e+8$ and max $\{e'+8, f'+9, d'+10\} = e'+8$, then e = e'. Thus, we can cancel the following pairs of terms in the equations $R_1(G)$ and $R_1(H)$: $-s^e$ with $-s^{e'}$, $-s^{e+1}$ with $-s^{e'+1}$, s^{e+3} with $s^{e'+3}$ and s^{e+8} with $s^{e'+8}$. Therefore, the l.r.p. in $R_1(G)$ is d or f and the l.r.p. in $R_1(H)$ is d' or f'. So, d = f'or d = d' or f = f' or f = d'. We have e = e' and d + e + f = d' + e' + f'. So, we know that $\{d, e, f\} = \{d', e', f'\}$ as multisets. From Lemma 2.1 (4(ii)), $G \cong H$.

Case 2. If max $\{e+8, f+9, d+10\} = f+9$ and max $\{e'+8, f'+9, d'+10\} = f'+9$, then f = f'. We can deal with this case in the same way as case 1, thus, $G \cong H$.

Case 3. If max $\{e+8, f+9, d+10\} = d+10$ and max $\{e'+8, f'+9, d'+10\} = d'+10$, then we can deal with this case in the same way as case 1. So, we have $G \cong H$.

Case 4. If max $\{e+8, f+9, d+10\} = e+8$ and max $\{e'+8, f'+9, d'+10\} = f'+9$, then e + 8 = f' + 9, that is

$$f' = e - 1 \tag{3.1}$$

from d + e + f = d' + e' + f', we have

$$d + f = d' + e' - 1. (3.2)$$

Consider the l.r.p. in $R_1(G)$ and the l.r.p. in $R_1(H)$. From Lemma 2.1(4(i)), min $\{d, e, f\} = \min \{d', e', f'\}$. Without loss of generality, let min $\{d, e, f\} = d$. The following subcases need to be considered.

Subcase 4.1. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = d'$, then d = d'. Thus, we can consider this case the same way as case 1. So, $G \cong H$.

Subcase 4.2. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = e'$, then d = e'. From Eq. (3.2), we have d' = f + 1. Note that f' = e - 1 (Eq. (3.1)). We can write $R_1(G)$ and $R_1(H)$ as follows:

$$\begin{aligned} R_2(G) &= -s^d - s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10} \\ R_2(H) &= -s^{f+1} - s^d - s^{e-1} - s^{d+1} - s^e + s^{e+1} + s^{d+3} + s^{d+8} + s^{e+8} + s^{f+11}. \end{aligned}$$

After simplifying $R_2(G)$ and $R_2(G)$, we have
 $R_3(G) &= -s^f - s^{e+1} + s^{f+2} + s^{e+3} + s^{f+9} + s^{d+10} \\ R_3(H) &= -s^{e-1} - s^{d+1} + s^{e+1} + s^{d+3} + s^{d+8} + s^{f+11}. \end{aligned}$

Consider the term $-s^{d+1}$ in $R_3(H)$. Since the min $d, e, f = d, -s^{d+1}$ cannot be cancelled by any of the positive terms in $R_3(H)$. Thus, $-s^{d+1}$ must be equal to $-s^f$ or $-s^{e+1}$ in $R_3(G)$. Note that max e + 8, f + 9, d + 10 = e + 8, so $e + 8 \ge d + 10$, that is, $e + 1 \ge d + 3 > d + 1$. Thus, $-s^{e+1} \ne -s^{d+1}$.

If $-s^{d+1} = -s^f$, then d+1 = f. Thus, $R_3(G)$ and $R_3(H)$ can be written as follows:

$$\begin{split} R_4(G) &= -s^{d+1} - s^{e+1} + s^{d+3} + s^{e+3} + s^{d+10} + s^{d+10} \\ R_4(H) &= -s^{e-1} - s^{d+1} + s^{e+1} + s^{d+3} + s^{d+8} + s^{d+12}. \\ \text{After simplifying } R_4(G) \text{ and } R_4(H), \text{ we have} \\ R_5(G) &= -s^{e+1} + s^{e+3} + s^{d+10} + s^{d+10} \\ R_5(H) &= -s^{e-1} + s^{e+1} + s^{d+8} + s^{d+12}. \\ \text{Thus, we have} \\ -s^{e+1} + s^{e+3} + s^{d+10} + s^{d+10} = -s^{e-1} + s^{e+1} + s^{d+8} + s^{d+12}. \end{split}$$

Therefore, we have e = d + 9. At this point, we acquire the following equations: e = d + 9, f' = e - 1 = d + 8, d' = f + 1 = d + 2, e' = d. Let d = i. Therefore, we obtain the solution, where G is isomorphic to $K_4(1, 2, 8, i, i + 9, i + 1)$ and H is isomorphic to $K_4(1, 2, 8, i + 2, i, i + 8)$.

Subcase 4.3. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = f'$, then d = f'. Note that max $\{e' + 8, f' + 9, d' + 10\} = f' + 9$. So, $f' + 9 \ge d' + 10$. This contradicts min $\{d', e', f'\} = f'$.

Case 5. If max $\{e+8, f+9, d+10\} = f+9$ and max $\{e'+8, f'+9, d'+10\} = d'+10$, then f+9 = d'+10, that is,

$$d' = f - 1 \tag{3.3}$$

from d + e + f = d' + e' + f', we have

$$e + d + 1 = e' + f'. \tag{3.4}$$

Consider the l.r.p. in $R_1(G)$ and the l.r.p. in $R_1(H)$, where min $\{d, e, f\} = \min \{d', e', f'\}$. Without loss of generality, let min $\{d, e, f\} = d$. The following subcases need to be considered.

Subcase 5.1. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = d'$, then we deal with this case the same way with case 1. So, we get $G \cong H$. Subcase 5.2. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = e'$, then d = e'. From Eq. (3.4), we have f' = e + 1. Thus, we can write $R_1(G)$ and $R_1(H)$ as follows: $R_6(G) = -s^d - s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10},$ $R_6(H) = -s^{f-1} - s^d - s^{e+1} - s^{d+1} - s^{e+2} + s^{e+3} + s^{d+3} + s^{d+8} + s^{e+10} + s^{f+9} \ .$ After simplifying $R_6(G)$ and $R_6(H)$, we have $\begin{aligned} R_7(G) &= -s^e - s^f - s^{f+1} + s^{f+2} + s^{e+8} + s^{d+10}, \\ R_7(H) &= -s^{f-1} - s^{d+1} - s^{e+2} + s^{d+3} + s^{d+8} + s^{e+10}. \end{aligned}$ Consider the term $-s^{d+1}$ in $R_7(H)$. Since max $\{e+8, f+9, d+10\} = f+9$, we have $f + 9 \ge d + 10$, that is, $f + 1 \ge d + 2 > d + 1$. So, $f + 1 \ne d + 1$. Thus, $-s^{d+1}$ in $R_7(H)$ must be equal to $-s^e$ or $-s^f$ in $R_7(G)$. If $-s^{d+1} = -s^f$, then d+1 = f. From Eq. (3.3), we have d = d' and $R_8(G) = -s^e - s^{d+1} - s^{d+2} + s^{d+3} + s^{e+8} + s^{d+10}.$ $R_8(H) = -s^d - s^{d+1} - s^{e+2} + s^{d+3} + s^{d+8} + s^{e+10}$. It is easy to see that d = e. Note that d = e', so e = e'. From d + e + f = d' + e' + f', we have f = f'. Thus, $G \cong H$. If $-s^{d+1} = -s^e$, then d+1 = e and $R_9(G) = -s^{d+1} - s^f - s^{f+1} + s^{f+2} + s^{d+9} + s^{d+10}$ $R_9(H) = -s^{f-1} - s^{d+1} - s^{d+3} + s^{d+3} + s^{d+8} + s^{d+11}.$ After simplifying, we have $-s^{f} - s^{f+1} + s^{f+2} + s^{d+9} + s^{d+10} = -s^{f-1} + s^{d+8} + s^{d+11}$ Thus, we have f = d+9. We also have the equations e = d+1, e' = d, f' = e+1 = dd+2 and d' = f - 1 = d + 8. Let d = i, then f = i + 9, e = i + 1, e' = i, f' = i + 2and d' = i + 8. Thus, we obtain the solution, where $G \cong K_4(1, 2, 8, i, i + 1, i + 9)$ and $H \cong K_4(1, 2, 8, i+8, i, i+2).$ Subcase 5.3. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = f'$, then d = f'. From Eq. (3.4), e' = e + 1. Note that Eq. (3.3) is f = d' + 1. We can write $R_1(G)$ and $R_1(H)$ as follows: $R_{10}(G) = -s^d - s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10}.$ $R_{10}(H) = -s^{f-1} - s^{e+1} - s^d - s^{e+2} - s^{d+1} + s^{d+2} + s^{e+4} + s^{e+9} + s^{d+9} + s^{f+9}.$ After simplifying $R_{10}(G)$ and $R_{10}(H)$, we have $R_{11}(G) = -s^{e} - s^{f} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{d+10}$ $R_{11}(H) = -s^{f-1} - s^{e+2} - s^{d+1} + s^{d+2} + s^{e+4} + s^{e+9} + s^{d+9} .$ For the same reasons stated in subcase 5.2, $-s^{d+1}$ must be equal to $-s^e$ or $-s^f$ in $R_{11}(G)$. If $-s^{d+1} = -s^e$, then d+1 = e. We can write $R_{11}(G)$ and $R_{11}(H)$ as follows: $R_{12}(G) = -s^{d+1} - s^f - s^{f+1} + s^{f+2} + s^{d+4} + s^{d+9} + s^{d+10}$ $R_{12}(H) = -s^{f-1} - s^{d+3} - s^{d+1} + s^{d+2} + s^{d+5} + s^{d+10} + s^{d+9}$ After simplifying, we have

 $-s^{f} - s^{f+1} + s^{f+2} + s^{d+4} = -s^{f-1} - s^{d+3} + s^{d+2} + s^{d+5}.$

So, we get f = d + 3. We also have f' = d, e = d + 1, e' = e + 1 = d + 2, d' = f - 1 = d + 2. Let d = i, then e = i + 1, f = i + 3, d' = i + 2, e' = i + 2, f' = i. Therefore, we obtain the solution, where $G \cong K_4(1, 2, 8, i, i + 1, i + 3)$ and $H \cong K_4(1, 2, 8, i + 2, i + 2, i)$.

Case 6. If max $\{e+8, f+9, d+10\} = e+8$ and max $\{e'+8, f'+9, d'+10\} = d'+10$, then e + 8 = d' + 10, that is, d

$$e' = e - 2 \tag{3.5}$$

from d + e + f = d' + e' + f', we have

$$d + f + 2 = e' + f'. ag{3.6}$$

Consider the l.r.p. in $R_1(G)$ and the l.r.p. in $R_1(H)$. We have min $\{d, e, f\} = \min$ $\{d', e', f'\}$. Without loss of generality, let min $\{d, e, f\} = d$. The following subcases need to be considered.

Subcase 6.1. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = d'$, then d = d' and we can deal with this case the same way as Case 1. Thus, we get $G \cong H$.

Subcase 6.2. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = e'$, then d = e'. From Eq. $\begin{array}{l} (3.6), \text{ we have } f' = f + 2. \text{ Thus, we can write } R_1(G) \text{ and } R_1(H) \text{ as follows:} \\ R_{13}(G) = -s^d - s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10}, \\ R_{13}(H) = -s^{e-2} - s^d - s^{f+2} - s^{d+1} - s^{f+3} + s^{f+4} + s^{d+3} + s^{d+8} + s^{f+11} + s^{e+8}. \end{array}$

After simplifying $R_{13}(G)$ and $R_{13}(H)$, we have

 $\begin{aligned} R_{14}(G) &= -s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{f+9} + s^{d+10}, \\ R_{14}(H) &= -s^{e-2} - s^{f+2} - s^{d+1} - s^{f+3} + s^{f+4} + s^{d+3} + s^{d+8} + s^{f+11}. \end{aligned}$

Consider the term $-s^{d+1}$ in $R_{14}(H)$. Since min $\{d, e, f\} = d, -s^{d+1}$ cannot cancel any negative term in $R_{14}(H)$. From max $\{e + 8, f + 9, d + 10\} = e + 8$, we have $e + 8 \ge d + 10$, that is $e + 1 \ge d + 3 > d + 1$. So, $-s^{d+1} \ne -s^{e+1}$. Moreover, $e \ge d + 2 > d + 1$, thus, $e \ne d + 1$, that is $-s^e \ne -s^{d+1}$. So, $-s^{d+1}$ must be equal to $-\overline{s^f}$ or $-s^{f+1}$ in $R_{14}(G).$ If $-s^{d+1}=-s^{f+1}$, then d=f. So, we have

 $R_{15}(G) = -s^e - s^d - s^{e+1} - s^{d+1} + s^{d+2} + s^{e+3} + s^{d+9} + s^{d+10},$

 $R_{15}(H) = -s^{e-2} - s^{d+2} - s^{d+1} - s^{d+3} + s^{d+4} + s^{d+3} + s^{d+8} + s^{d+11}.$

After simplifying, consider the h.r.p. in $R_{15}(G)$ and the h.r.p. in $R_{15}(H)$. We have $s^{e+3} = s^{d+11}$, that is e+3 = d+11. This contradicts $R_{15}(G) = R_{15}(H)$ since $-s^{e}$ cannot be cancelled by $+s^{d+8}$ in $R_{15}(H)$.

If $-s^{d+1} = -s^f$, then d+1 = f. Thus, we have $R_{16}(G) = -s^e - s^{d+1} - s^{e+1} - s^{d+2} + s^{d+3} + s^{e+3} + s^{d+10} + s^{d+10},$ $R_{16}(H) = -s^{e-2} - s^{d+3} - s^{d+1} - s^{d+4} + s^{d+5} + s^{d+3} + s^{d+8} + s^{d+12}.$

After simplifying, consider the h.r.p. in $R_{16}(G)$ and h.r.p. in $R_{16}(H)$. We have $s^{e+3} = s^{d+12}$. The term s^{d+8} in $R_{16}(H)$ cannot be cancelled since there is no term equal to it. This contradicts $R_{16}(G) = R_{16}(H)$.

Subcase 6.3. If min $\{d, e, f\} = d$ and min $\{d', e', f'\} = f'$, then d = f'. From Eq. $\begin{array}{l} (3.6), \ e' = f + 2 \ \text{and note that from Eq. } (3.5), \ d' = e - 2. \ \text{Thus, we have} \\ R_{17}(G) = -s^d - s^e - s^f - s^{e+1} - s^{f+1} + s^{f+2} + s^{e+3} + s^{e+8} + s^{f+9} + s^{d+10}, \\ R_{17}(H) = -s^{e-2} - s^{f+2} - s^d - s^{f+3} - s^{d+1} + s^{d+2} + s^{f+5} + s^{f+10} + s^{d+9} + s^{e+8}. \end{array}$

After simplifying, consider the term $-s^{d+1}$ in $R_{17}(H)$. For the same reasons stated in subcase 4.2, $-s^{d+1}$ can only be equal to $-s^f$ or $-s^{f+1}$ in $R_{17}(G)$.

If $-s^{d+1} = -s^f$, then d+1 = f. So, we have

 $R_{18}(G) = -s^e - s^{d+1} - s^{e+1} - s^{d+2} + s^{d+3} + s^{e+3} + s^{d+10} + s^{d+10}$ $R_{18}(H) = -s^{e-2} - s^{d+3} - s^{d+4} - s^{d+1} + s^{d+2} + s^{d+6} + s^{d+11} + s^{d+9}$ After simplifying, consider the h.r.p. in $R_{18}(G)$ and the h.r.p. in $R_{18}(H)$. We have $s^{e+3} = s^{d+11}$. So, e+3 = d+11, thus e = d+8. There is no term s^{d+8} which is equal to the term s^e in $R_{18}(G)$. This contradicts $R_{18}(G) = R_{18}(H)$.

If $-s^{d+1} = -s^{f+1}$, then d+1 = f+1, that is d = f = f'. This case is the same as case 1. So, we get the same result $G \cong H$. At this point, we have solved the equation R(G) = R(H) and the solution is as follows:

$$\begin{split} &K_4(1,2,8,i+9,i,i+1) \sim K_4(1,2,8,i+2,i,i+8), \\ &K_4(1,2,8,i,i+1,i+9) \sim K_4(1,2,8,i+8,i,i+2), \\ &K_4(1,2,8,i,i+1,i+3) \sim K_4(1,2,8,i+2,i+2,i), \end{split}$$

where $i \geq 1$. The proof is now complete.

Acknowledgments

The authors would like to extend their sincere thanks to the referees for their constructive and valuable comments.

REFERENCES

- S. Catada-Ghimire, H. Roslan, Y.H. Peng, On chromatic uniqueness of a family of K₄-homeomorphs, Bull. Malays. Math. Sci. Soc. (2) 32 (2009) 3, 327–333.
- [2] S. Catada-Ghimire, H. Roslan, Y.H. Peng, On chromatic equivalence of a family of K₄-homeomorphs, Far-East Journal of Mathematical Sciences **30** (2008) 2, 389–400.
- [3] S. Catada-Ghimire, H. Roslan, Y.H. Peng, On chromatic equivalence of K₄-homeomorphs II, Advances and Application in Discrete Mathematics 3 (2009) 1, 53–66.
- [4] S. Catada-Ghimire, H. Roslan, Y.H. Peng, On chromatic equivalence of K₄-homeomorphs, Southeast Asian Bulletin of Mathematics 33 (2009), 749–757.
- [5] X.E. Chen, K.Z. Ouyang, Chromatic classes of certain 2-connected (n, n + 2)-graphs homeomorphs to K_4 , Discrete Mathematics **172** (1997), 17–29.
- [6] F.M. Dong, K.M. Koh, K.L. Teo, Chromatic polynomials and chromaticity of graphs, World Scientific Publishing Co. Ptd. Ltd., Singapore, 2005, 118–123.
- [7] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graph. Combin. 6 (1990), 259–285.
- [8] W.M. Li, Almost every K₄-homeomorphs is chromatically unique, Ars Combin. 23 (1987), 13–36.
- Y.L. Peng, Some new results on chromatic uniqueness of K₄-homeomorphs, Discrete Mathematics 288 (2004), 177–183.
- [10] Y.L. Peng, Chromaticity of family of K_4 -homeomorphs, personal communication (2006).
- Y.L. Peng, Chromatic uniqueness of a family of K₄-homeomorphs, Discrete Mathematics 308 (2008), 6132–6140.

- [12] Y.L. Peng, On the chromatic equivalence classes of K₄-(1,3,3,δ,ε,η), J. Qinghai Normal Univ. 4 (2003), 1–3 [in Chinese].
- [13] Y.L. Peng, Zengyi, On the chromatic equivalence of two families K₄-homeomorphs, J. Suzhou Sci. Technol. Univ. 4 (2004), 31–34 [in Chinese].
- [14] Y.L. Peng, Chromatic equivalence of a family of K₄-homeomorphs, J. Shanghai Normal Univ. (Natural Sciences) 33 (2004) 4, 9–11 [in Chinese].
- [15] S. Xu, A lemma in studying chromaticity, Ars. Combin. 32 (1991), 315–318.
- [16] C.Y. Chao, L.C. Zhao, Chromatic polynomials of a family of graphs, Ars. Combin. 15 (1983), 111–129.
- [17] E.G. Whitehead Jr., L.C. Zhao, Chromatic uniqueness and equivalence of K_4 -homeomorphs, Journal of Graph Theory **8** (1984), 355–364.
- [18] W.M. Li, Almost every K₄-homeomorphs is chromatically unique, Ars Combin. 23 (1987), 13–36.

S. Catada-Ghimire aspa777@gmail.com

Universiti Sains Malaysia School of Mathematical Sciences 11800 Penang, Malaysia

H. Roslan hroslan@cs.usm.my

Universiti Sains Malaysia School of Mathematical Sciences 11800 Penang, Malaysia

Y.H. Peng yhpeng@fsas.upm.edu.my

Universiti Putra Malaysia Department of Mathematics and Institute for Mathematical Research 43400UPM Serdang, Malaysia

Received: September 24, 2008. Revised: January 8, 2010. Accepted: January 8, 2010.