PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Differential difference inequalities related to parabolic functional differential equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Initial boundary value problems for nonlinear parabolic functional differential equations are transformed by discretization in space variables into systems of ordinary functional differential equations. A comparison theorem for differential difference inequalities is proved. Sufficient conditions for the convergence of the method of lines is given. Nonlinear estimates of the Perron type for given operators with respect to functional variables are used. Results obtained in the paper can be applied to differential integral problems and to equations with deviated variables.
Rocznik
Strony
95--115
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
Bibliografia
  • [1] D. Bahuguna, J. Dabas, Existence and uniqueness of a solution to a partial integro-differential equation by the method of lines, Electron. J. Qual. Theory Diff. Equ. 4 (2008), 1–12.
  • [2] P. Brandi, Z. Kamont, A. Salvadori, Approximate solutions of mixed problems for first order partial differential functional equations, Atti Sem. Mat. Fis. Univ. Modena 39 (1992), 277–302.
  • [3] W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Spring-Verlag, Berlin, 2003.
  • [4] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1999.
  • [5] Z. Kamont, The method of lines for parabolic differential functional equations with initial boundary conditions of the Dirichlet type, An. st. Univ. “Al I. Cuza” Iasi, Mat. 36 (1990), 215–224.
  • [6] Z. Kamont, On the line method approximations to the Cauchy problem for parabolic differential-functional equations, Stud. Sci. Math. Hung. 27 (1992), 313–330.
  • [7] Z. Kamont, K. Kropielnicka, Differential difference inequalities related to hyperbolic functional differential systems and applications, Math. Inequal. and Appl. 8 (2005), 655–674.
  • [8] Z. Kamont, H. Leszczynski, Stability of difference equations generated by parabolic differential-functional problems, Rend. Mat. Appl. (7) 16 (1996) 2, 265–287.
  • [9] Z. Kamont, S. Zacharek, The lines method for parabolic differential equations with initial boundary conditions of the Dirichlet type, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 249–262.
  • [10] Z. Kamont, S. Zacharek, Line method approximations to the initial-boundary value problem of Neumann type for parabolic differential-functional equations, Ann. Soc. Math. Polon., Comm. Math. 30 (1991), 317–330.
  • [11] J.P. Kauthen, The method of lines for parabolic partial integral differential equations, Journ. Integral. Equat. 4 (1992), 69–81.
  • [12] L. Sapa, A finite difference method for quasi linear and nonlinear differential functional parabolic equations with Dirichlet’s condition, Ann. Polon. Math. 93 (2008) 2, 113–133.
  • [13] W.E. Schiesser, The Numerical Method of Lines, Academic Press, Inc., San Diego, 1991.
  • [14] K. Schmitt, R.C. Thompson, W. Walter, Existence of solutions of a nonlinear boundary value problem via the method of lines, Nonlinear Anal. 2 (1978), 519–535.
  • [15] A. Vande Wouwer, Ph. Saucez, W.E. Schiesser, Adaptative Method of Lines, Chapman & Hall/CRC, Boca Raton, 2001.
  • [16] W. Walter, Differential and Integral inequalities, Springer-Verlag, Berlin, 1970.
  • [17] B. Zubik–Kowal, The method of lines for parabolic differential-functional equations, IMA Journal of Numerical Analysis, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0002-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.