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DIFFERENTIAL DIFFERENCE INEQUALITIES
RELATED TO PARABOLIC FUNCTIONAL

DIFFERENTIAL EQUATIONS

Abstract. Initial boundary value problems for nonlinear parabolic functional differential
equations are transformed by discretization in space variables into systems of ordinary func-
tional differential equations. A comparison theorem for differential difference inequalities is
proved. Sufficient conditions for the convergence of the method of lines is given. Nonlinear
estimates of the Perron type for given operators with respect to functional variables are
used. Results obtained in the paper can be applied to differential integral problems and to
equations with deviated variables.
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1. INTRODUCTION

We are interested in establishing a method of approximation of solutions to nonlinear
parabolic functional differential equations with solutions of associated systems of ordi-
nary functional differential equations and in the estimation of the difference between
the exact and approximate solutions. We ask under what conditions, solutions of
ordinary functional differential equations tend to a solution of the original problem
when the step-size tends to zero. The system of ordinary functional differential equa-
tions mentioned above are obtained by using a discretization in spatial variables of
partial functional differential equations and are therefore called differential difference
systems. This method of approximation of solutions to parabolic problems is called
a numerical method of lines. The main problem in our investigations is to find a dif-
ferential difference system which satisfies consistency conditions on all sufficiently
regular solutions of the original equations and is stable. An error estimate implying
the convergence of the numerical method of lines is obtained in the paper by using
a comparison result for differential difference inequalities.
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From the extensive literature concerning the numerical method of lines for classical
differential equations we mention the monographs [3,13,15]. The papers [9,11] began
a theory of the method of lines for functional differential equations. Approximate so-
lutions of nonlinear parabolic functional differential equations with initial boundary
conditions of the Dirichlet type were investigated in [5,9,17]. An error estimate imply-
ing the convergence of line methods is obtained in these papers by using differential
inequalities. In [6] the author studies the error due to the discretization in spatial
variables of the Cauchy problem for parabolic equations. It is assumed that approx-
imated solutions satisfy some growth-restricting conditions. In [10] the authors have
established approximation solution theorems for nonlinear parabolic functional differ-
ential equations with initial boundary conditions of the Neumann type. A method of
differential inequalities is used. Therefore, the authors have assumed in [10] that the
right-hand sides of equations are nondecreasing with respect to the functional vari-
able. The papers [2, 7] deal with the numerical method of lines for first order partial
functional differential equations or systems. The method of lines is also treated as
a tool for proving existence theorems for partial differential equations [1, 14,16].

The aim of the paper is to construct a method of lines for nonlinear parabolic
functional differential equations with general initial boundary conditions.

We now formulate our functional differential problems. For any metric spaces X
and Y we denote by C(X,Y ) the class of all continuous functions from X into Y . We
will use vectorial inequalities with the understanding that the same inequalities hold
between their corresponding components.

Write
Q0 = [−b0, 0]× [−b, b], Q = (0, a)× [−b, b],

where a > 0, b0 ∈ R+, R+ = (0,+∞) and b = (b1, . . . , bn), bi > 0 for i = 1, . . . , n.
Suppose that χ : [0, a) → R and ψ∗ = (ψ1, . . . , ψn) : [0, a) × [−b, b] → Rn are given
functions. Write ψ(t, x) = (χ(t), ψ∗(t, x)) for (t, x) ∈ Q. We assume that 0 ≤ χ(t) ≤ t
for t ∈ [0, a) and −b ≤ ψ∗(t, x) ≤ b for (t, x) ∈ Q. For (t, x) ∈ [0, a)× [−b, b] we define

D[t, x] = {(τ, y) ∈ R1+n : τ ≤ 0, (t+ τ, x+ y) ∈ Q0 ∪Q}.

It is clear that
D[t, x] = [−b0 − t, 0]× [−b− x, b− x].

The maximum norm in the space C(D[t, x],R) will be denoted by ‖ · ‖D[t,x]. For
a function z : Q0 ∪Q→ R and for a point (t, x) ∈ [0, a)× [−b, b] we define a function
z(t,x) : D[t, x]→ R as follows

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ D[t, x].

Then z(t,x) is the restriction of z to the set (Q0∪Q)∩([−b0, t]×Rn) and this restriction
is shifted to the set D[t, x]. Write I = [−b0 − a, 0] and B = I × [−2b, 2b]. Then
D[t, x] ⊂ B for (t, x) ∈ [0, a)× [−b, b]. Let Mn×n be the class of all n× n symmetric
matrices with real elements. For x ∈ Rn, U ∈ Mn×n where U = [uij ]i,j=1,...,n we
write

‖x‖ =
n∑
i=1

|xi| , ‖U‖∞ = max
{ n∑
j=1

|uij |
}
.
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Put Ξ = Q × R × C(B,R) × Rn ×Mn×n and suppose that F : Ξ → R is a given
function. We consider the functional differential equation

∂tz(t, x) = F (t, x, z(t, x), zψ(t,x), ∂xz(t, x), ∂xxz(t, x)) (1.1)

where ∂xz = (∂x1z, . . . , ∂xn
z), ∂xxz = [∂xixj

z]i,j=1,...,n.
Now we formulate initial boundary conditions for (1.1). Write

Si = {x ∈ [−b, b] : xi = bi}, Sn+i = {x ∈ [−b, b] : xi = −bi}, i = 1, . . . , n

and

Q+
1 = S1, Q+

i = Si \
i−1⋃
j=1

Sj , Q−i = Sn+i \
n+i−1⋃
j=1

Sj , i = 1, . . . , n.

Set
∂0E

+
i = [0, a)×Q+

i , ∂0E
−
i = [0, a)×Q−i , i− 1, . . . , n

and

∂0E =
n⋃
i=1

(∂0E
+
i ∪ ∂0E

−
i ).

Suppose that β, γ, φ : ∂0E → R, ϕ : E0 → R are given functions. The following
initial boundary conditions are associated with (1.1)

z(t, x) = ϕ(t, x) on Q0, (1.2)

β(t, x)z(t, x) + γ(t, x)∂xi
z(t, x) = φ(t, x) on ∂0E

+
i , i = 1, . . . , n, (1.3)

β(t, x)z(t, x)− γ(t, x)∂xiz(t, x) = φ(t, x) on ∂0E
−
i , i = 1, . . . , n. (1.4)

A function z : Q0 ∪ Q → R will be called a function of class C∗ if z is con-
tinuous on Q0 ∪Q, the partial derivatives ∂tz, ∂xz = (∂x1z, . . . , ∂xn

z), ∂xxz =
[∂xixjz]i,j=1,...,n exist on Q and the functions ∂tz, ∂xz, ∂xxz are continuous and
bounded on Q. We consider solutions of (1.1)–(1.4) of class C∗. We will say that
the function F : Ξ → R satisfies the condition (V ) if for each (t, x, p, w, r, q) ∈
Ξ, w̄ ∈ C(B,R) such that w(τ, y) = w̄(τ, y) for (τ, y) ∈ D[ψ(t, x)] we have
F (t, x, p, w, r, q) = F (t, x, p, w̄, r, q). The condition (V ) for F means that the value of
F at the point (t, x, p, w, r, q) ∈ Ξ depends on (t, x, p, r, q) and on the restriction of w
to the set D[ψ(t, x)] only.

Our focus is the numerical method of lines for problem (1.1)–(1.4). By making
use of a discretization of the spatial variable, we associate with problem (1.1)–(1.4)
a class of Cauchy problems for ordinary functional differential systems. Solutions of
such systems are approximate solutions to (1.1)–(1.4). Then we estimate the difference
between the exact and approximate solutions of the original problem and we prove
that approximate solutions converge to the solutions of (1.1)–(1.4).

The paper is organized as follows. In Section 2 we formulate a numerical method of
lines for (1.1)–(1.4). In the next section we present a comparison result for differential
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difference inequalities. It will be a generalization of a corresponding result from [17].
A convergence result and error estimates are presented in Section 4. It is the main
part of the paper. Numerical examples are given in the last part of the paper.

We will use general ideas for functional differential equations and inequalities
which were introduced in [4].

2. DIFFERENTIAL DIFFERENCE EQUATIONS

Now we formulate the differential difference problem corresponding to (1.1)–(1.4).
For any spaces X and Y we denote by F(X,Y ) the class of all functions defined on
X and taking values in Y . Let N and Z be the sets of natural numbers and integers,
respectively. We define a mesh on [−b, b] in the following way. Let h = (h1, . . . , hn),
hi > 0 for 1 ≤ i ≤ n, stand for the steps of the mesh. For m ∈ Zn, m = (m1, . . . ,mn),
we define nodal points as follows: x(m) = (m1h1, . . . ,mnhn) = (x(m1)

1 , . . . , x
(mn)
n ). Let

us denote by H the set of all h for which there exist (M1, . . . ,Mn) = M ∈ Zn such
that Mihi = bi for i = 1, . . . , n. Write

R1+n
t.h = {(t, x(m)) : t ∈ R,m ∈ Zn}

and
Q0.h = Q0 ∩ R1+n

t.h , Qh = Q ∩ R1+n
t.h , Bh = B ∩ R1+n

t.h ,

Dh[t, x(m)] = D[t, x(m)] ∩ R1+n
t.h .

For a function z : Q0.h ∪ Qh → R and for a point (t, x(m)) ∈ Q0.h ∪ Qh
we write z(m)(t) = z(t, x(m)). Let FC(Q0.h ∪ Qh,R) be a class of all functions
z : Q0.h ∪ Qh → R such that z(·, x(m)) ∈ C([−b0, a),R) for −M ≤ m ≤ M .
In a similar way we define the spaces FC(Bh,R) and FC(Q0.h,R). For functions
z ∈ C(Q0 ∪Q,R), zh ∈ FC(Q0.h ∪Qh,R) we put

‖z‖t = max{|z(τ, y)| : (τ, y) ∈ Q0 ∪Q, τ ≤ t},
‖z‖h.t = max{|z(τ, y)| : (τ, y) ∈ Q0.h ∪Qh, τ ≤ t}

where 0 ≤ t < a. Difference operators for spatial variables are defined in the following
way. Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 at the i−th position. Write J =
{(i, j) : i, j = 1, . . . , n, i 6= j}. Suppose that we have defined the sets J+, J− ⊂ J
such that J+ ∪ J− = J, J+ ∩ J− = ∅. We assume that (i, j) ∈ J+ if (j, i) ∈ J+. In
particular, it may happen that J+ = ∅ or J− = ∅. A relation between the sets J+, J−
and equation (1.1) are given in Section 4.

Given z ∈ FC(Q0.h ∪ Qh,R) and m, −(M − 1) ≤ m ≤ M − 1, where M − 1 =
(M1 − 1, . . . ,Mn − 1). Write

δ+i z
(m)(t) =

1
hi

[z(m+ei)(t)− z(m)(t)], δ−i z
(m)(t) =

1
hi

[z(m)(t)− z(m−ei)(t)],

i = 1, . . . , n, and δz(m)(t) = (δ1z(m)(t), . . . , δnz(m)(t)), where
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δiz
(m)(t) =

1
2

[δ+i z
(m)(t) + δ−i z

(m)(t)], i = 1, . . . , n.

The difference operators δ(2) = [δij ]i,j=1,...,n, are defined in the following way:

δ
(2)
ii z

(m)(t) = δ+i δ
−
i z

(m)(t) for i = 1, . . . , n

and

δ
(2)
ij z

(m)(t) =
1
2
[
δ+i δ

−
j z

(m)(t) + δ−i δ
+
j z

(m)(t)
]

for (i, j) ∈ J−,

δ
(2)
ij z

(m)(t) =
1
2
[
δ+i δ

+
j z

(m)(t) + δ−i δ
−
j z

(m)(t)
]

for (i, j) ∈ J+.

Solutions of differential difference equations are elements of the space FC(Q0.h ∪
∪ Qh,R). Since equation (1.1) contains the functional variable zψ(t,x) which is an
element of the space C(B,R) then we need an interpolating operator Th : FC(Q0.h ∪
Qh,R)→ C(Q0∪Q,R). In the next part of the paper we adopt additional assumptions
on Th. For z ∈ FC(Q0.h ∪ Qh,R) and (t, x(m)) ∈ Qh we write Thzψ(m)(t) instead of
(Thz)ψ(t,x(m)). Set

Fh[z](m)(t) = F (t, x(m), z(m)(t), Thzψ(m)(t), δz
(m)(t), δ(2)z(m)(t))

and

Λ+
h.i[z]

(m)(t) = β(m)(t)z(m)(t) + γ(m)(t)δ−i z
(m)(t),

Λ−h.i[z]
(m)(t) = β(m)(t)z(m)(t)− γ(m)(t)δ+i z

(m)(t)

where i = 1, . . . , n. Given φh : ∂0E → R, ϕh : Q0.h → R. We consider the differential
difference equation

∂tz
(m)(t) = Fh[z](m)(t) (2.1)

with the initial boundary conditions

z(m)(t) = ϕ
(m)
h (t) on Q0.h, (2.2)

and

Λ+
h.i[z]

(m)(t) = φ
(m)
h (t) on ∂0E

+
i , Λ−h.i[z]

(m)(t) = φ
(m)
h (t) on ∂0E

−
i , 1 ≤ i ≤ n. (2.3)

We prove that under natural assumptions on given functions there exists a solution
of (2.1)–(2.3) and solutions of (2.1)–(2.3) approximate solutions of (1.1)–(1.4).

3. DIFFERENTIAL DIFFERENCE INEQUALITIES

We prove a comparison theorem for differential difference inequalities. The theorem
states that a function z : Q0.h ∪Qh → R satisfying the differential difference inequal-
ities can be estimated by a suitable solution of an ordinary functional differential
equation.
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For a function z : Q0.h ∪ Qh → R and for a point (t, x(m)) ∈ [0, a) × [−b, b] we
define a function z[t,x(m)] : D[t, x(m)]→ R as follows

z[t,x(m)](τ, y) = z(t+ τ, x(m) + y), (τ, y) ∈ D[t, x(m)].

Then z[t,x(m)] is the restriction of z to the set (Q0.h ∪ Qh) ∩ ([−b0, t] × Rn) and this
restriction is shifted to the set D[t, x(m)]. Write Xh = Qh × R × FC(Bh,R) and
suppose that

f : Xh →Mn×n, f = [fij ]i,j=1,...,n, g : Xh → Rn, g = (g1, . . . , gn),

are given functions. We will say that f and g satisfy the condition (Vh) if for
each (t, x(m), p, w) ∈ Xh, w̄ ∈ FC(Bh,R) such that w(τ, y) = w̄(τ, y) for (τ, y) ∈
Dh[ψ(m)(t)] we have

f(t, x(m), p, w) = f(t, x(m), p, w̄) and g(t, x(m), p, w) = g(t, x(m), p, w̄).

Write I[t] = [−b0− t, 0] where t ∈ [0, a). Then I[t] ⊂ I for t ∈ [0, a). Suppose that
σ : [0, a)× R+ × C(I,R+)→ R+ is a given function. We will say that σ satisfies the
condition (V0) if for each (t, p, η) ∈ [0, a) × R+ × C(I,R+), η̃ ∈ C(I,R+) such that
η(τ) = η̃(τ) for τ ∈ I[χ(t)] we have σ(t, p, η) = σ(t, p, η̃).

Suppose that (t, x(m)) ∈ Qh and w ∈ FC(Dh[t, x(m)],R). We denote by Uh[w] :
I[t]→ R+ a function given by

Uh[w](τ) = max{|w(τ, y)| : (τ, y) ∈ Dh[t, x(m)]}, τ ∈ I[t].

For z ∈ FC(Q0.h ∪Qh,R) we write Uhzψ(m)(t) instead of Uh[zψ(m)(t)]. Set

G[z](m)(t) =
n∑
i=1

gi(t, x(m), z(m)(t), zψ(m)(t))δiz
(m)(t)+

+
n∑

i,j=1

fij(t, x(m), z(m)(t), zψ(m)(t))δijz
(m)(t).

In this section we consider the differential difference inequalities∣∣∣∂tz(m)(t)−G[z](m)(t)
∣∣∣ ≤ σ(t,

∣∣∣z(m)(t)
∣∣∣ , Uhzψ(m)(t)). (3.1)

We prove that a function satisfying (3.1) can be estimated by a solution of a suitable
ordinary functional differential equation.
Assumption H[σ]. The function σ : [0, a) × R+ × C(I,R+) → R+ satisfies the
condition (V0) and:

1) σ is continuous and σ(t, p, ·) is nondecreasing for every (t, p) ∈ [0, a)× R+,
2) for each η ∈ C([−b0, 0],R+) there exists on I ∪ (0, a) the maximal solution of

the Cauchy problem

ω′(t) = σ(t, ω(t), ωχ(t)), ω(t) = η(t) for t ∈ [−b0, 0]. (3.2)
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Assumption H[β, γ]. The functions β : ∂0E → (0,+∞), γ : ∂0E → R+ are
continuous and bounded and they satisfy the conditions: β(t, x) ≥ 1 and γ(t, x) ≥ 0
for (t, x) ∈ ∂0E.

Let us state now a lemma for the functional differential inequalities.

Lemma 3.1. Suppose that the function σ : [0, a) × R+ × C(I,R+) → R+ satisfies
condition (V0) and:

1) σ(t, p, ·) : C(I,R+)→ R+ is nondecreasing,
2) χ : [0, a)→ R+ and 0 ≤ χ(t) ≤ t for t ∈ [0, a),
3) u, v ∈ C(I ∪ [0, a),R) and u(t) < v(t) for t ∈ [−b0, 0],
4) denote

T+ = {t ∈ (0, a) : u(τ) < v(τ) for τ ∈ [−b0, t) and u(t) = v(t)}

we assume that

D−u(t)− σ(t, u(t), uχ(t)) < D−v(t)− σ(t, v(t), vχ(t)) for t ∈ T+,

where D− is the left-hand lower Dini derivative.

Under these assumptions we have u(t) < v(t) for t ∈ [0, a).

We omit the proof of the lemma.

Theorem 3.2. Suppose that Assumptions H[σ] and H[β, γ] are satisfied and:

1) the functions f : Xh →Mn×n, g : Xh → Rn, satisfy the condition (Vh) and

−1
2
|gi(P )|+ 1

hi
fii(P )−

n∑
j=1
j 6=i

1
hj
|fij(P )| ≥ 0, i = 1, . . . , n, (3.3)

and
fij(P ) ≥ 0 for (i, j) ∈ J+, fij(P ) ≤ 0 for (i, j) ∈ J−, (3.4)

where P = (t, x(m), p, w) ∈ Xh,
2) z ∈ FC(Q0.h ∪Qh,R) and the derivative ∂tz exists on Qh,
3) the initial estimate ∣∣∣z(m)(t)

∣∣∣ ≤ η on Q0.h

and boundary inequalities∣∣∣Λ+
h.i[z]

(m)(t)
∣∣∣ ≤ ω(t, η) on ∂0E

+
i ,

∣∣∣Λ−h.i[z](m)(t)
∣∣∣ ≤ ω(t, η) on ∂0E

−
i ,

i = 1, . . . , n are satisfied where η ∈ R+ and ω(·, η) is the maximal solution of (3.2),
4) denoted

Σ = {(t, x(m)) ∈ Qh \ ∂0E :
∣∣∣z(m)(t)

∣∣∣ > ω(t, η)}

we assume that the differential difference inequality (3.1) is satisfied for
(t, x(m)) ∈ Σ.
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Under these assumptions we have∣∣∣z(m)(t)
∣∣∣ ≤ ω(t, η) for (t, x(m)) ∈ Qh. (3.5)

Proof. Let

w̄(t) = max{
∣∣∣z(m)(τ)

∣∣∣ : −b0 ≤ τ ≤ t, −M ≤ m ≤M}, t ∈ [0, a).

Then w̄ ∈ C([0, a),R+) and estimation (3.5) is equivalent to w̄(t) ≤ ω(t, η), t ∈ [0, a).
Let 0 < ã < a be fixed. For ε > 0 we denote by ω(·, η, ε) the right-hand maximal
solution of the Cauchy problem

ω′(t) = σ(t, ω(t), ωχ(t)) + ε, ω(t) = η + ε for t ∈ [−b0, 0].

There is ε̃ > 0 such that for 0 < ε < ε̃ the function ω(·, η, ε) is defined on [0, ã) and
lim
ε→0

ω(t, η, ε) = ω(t, η) uniformly on (0, ã). We prove that

w̄(t) < ω(t, η, ε) for t ∈ [0, ã). (3.6)

It follows that w̄(t) < ω(t, η, ε) for t ∈ [−b0, 0]. Write

Σε = {t ∈ (0, ã) : w̄(τ) < ω(τ, η, ε) for τ ∈ [0, t) and w̄(t) = ω(t, η, ε)}.

We prove that
D−w̄(t) < σ(t, w̄(t), w̄χ(t)) + ε for t ∈ Σε.

Suppose that t ∈ Σε. There is x(m) ∈ [−b, b] such that w̄(t) =
∣∣z(m)(t)

∣∣. Then
(t, x(m)) ∈ Σ. Thus two possibilities can happen, either (i) w̄(t) = z(t, x(m)) or
(ii) w̄(t) = −z(t, x(m)). Lets consider the first case. We prove that (t, x(m)) /∈ ∂0E.
Suppose that there exists i ∈ {1, . . . , n} such that xi = bi. It follows from assumption
3) that

Λ+
h.i[z]

(m)(t) < ω(t, η, ε)

and consequently
γ(m)(t)δ−i z

(m)(t) < 0. (3.7)

But γ(m)(t) ≥ 0 and δ−i z
(m)(t) ≥ 0 which contradicts (3.7). Hence we have xi 6= bi

for all i ∈ {1, . . . , n}. Analogously we prove that xi 6= −bi. It follows from (3.1) that

D−w̄(t) ≤ ∂tz(m)(t) ≤σ(t, w̄(t), w̄χ(t)) +
n∑
i=1

gi
(
t, x(m), z(m)(t), Thzψ(t,x(m))

)
δiz

(m)(t)+

+
n∑

i,j=1

fij
(
t, x(m), z(m)(t), Thzψ(t,x(m))

)
δ
(2)
ij z

(m)(t).
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Put P̄ = (t, x(m), z(m)(t), Thzψ(t,x(m))) and

S0(P̄ ) =
∑
i,j∈J

1
hihj

∣∣fij(P̄ )
∣∣− 2

n∑
i=1

1
h2
i

fii(P̄ ),

S+
i (P̄ ) =

1
2hi

gi(P̄ ) +
1
h2
i

fii(P̄ )−
n∑
j=1
j 6=i

1
hihj

∣∣fij(P̄ )
∣∣ ,

S−i (P̄ ) = − 1
2hi

gi(P̄ ) +
1
h2
i

fii(P̄ )−
n∑
j=1
j 6=i

1
hihj

∣∣fij(P̄ )
∣∣ , Sij =

1
2hihj

∣∣fij(P̄ )
∣∣ ,

where i, j = 1, . . . , n. It follows from (3.4) and from the definitions of δ and δ(2) that

D−w̄(t) ≤ σ(t, w̄(t), w̄χ(t)) + S0(P̄ )z(m)(t)+

+
n∑
i=1

z(m+ei)(t)S+
i (P̄ ) +

n∑
i=1

z(m−ei)(t)S−i (P̄ )+

+
∑

(i,j)∈J+

Sij(P̄ )
[
z(m+ei+ej)(t) + z(m−ei−ej)(t)

]
−

−
∑

(i,j)∈J−
Sij(P̄ )

[
z(m+ei−ej)(t) + z(m−ei+ej)(t)

]
.

(3.8)

It follows easily that

S0(P̄ ) +
n∑
i=1

[S+
i (P̄ ) + S−i (P̄ )] +

∑
(i,j)∈J

Sij(P̄ ) = 0. (3.9)

Since S+
i (P̄ ) ≥ 0, S−i (P̄ ) ≥ 0, Sij(P̄ ) ≥ 0, i, j = 1, . . . , n, relations (3.8) and

(3.9) show that

D−w̄(t) ≤ σ(t, w̄(t), w̄χ(t)) < σ(t, w̄(t), w̄χ(t)) + ε.

Applying Lemma 3.1 we obtain (3.6) on [0, ã). The other case can be proved similarly.
Letting ε→ 0 we obtain (3.5) on Qh∩ ((0, ã)×Rn). Since 0 < ã < a is arbitrary then
we obtain (3.5) on Qh.

4. METHOD OF LINES FOR INITIAL BOUNDARY VALUE PROBLEMS

Let Γ : F(B,R)→ C(I,R+) be defined by

Γ[w](t) = max{|w(t, x)| : x ∈ [−2b, 2b]}, t ∈ I.
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For functions z, u, v ∈ FC(Q0.h ∪Qh,R) we put

P [z, u, v](m)(t, τ) = (t, x(m), z(m)(t), (Thz)ψ(m)(t), δv
(m)(t)+

+ τδ(u− v)(m)(t), δ(2)v(m)(t) + τδ(2)(u− v)(m)(t)),

where 0 ≤ τ ≤ 1 and

W [z, u, v](m)(t) = F (t, x(m), z(m)(t), Thzψ(m)(t), δu
(m)(t), δ(2)u(m)(t))−

− F (t, x(m), v(m)(t), Thvψ(m)(t), δu
(m)(t), δ(2)u(m)(t)),

W̃ [z, u, v](m)(t) = F (t, x(m), z(m)(t), Thzψ(m)(t), δu
(m)(t), δ(2)u(m)(t))−

− F (t, x(m), z(m)(t), Thzψ(m)(t), δv
(m)(t), δ(2)v(m)(t)).

Assumption H∗[σ]. The function σ : [0, a)×R+×C(I,R+)→ R+ satisfies Assump-
tion H[σ] and the maximal solution of (3.2) with η(t) = 0 for t ∈ [−b0, 0] is ω̂(t) = 0
for t ∈ [−b0, a).
Assumption H∗[F ]. The function F : Ξ → R of the variables (t, x, p, w, q, r), q =
(q1, . . . , qn), r = [rij ]i,j=1,...,n satisfies the conditions:

1) there exist the derivatives

∂qF = (∂q1F, . . . , ∂qnF ), ∂rF = [∂rijF ]i,j=1,...,n

and the functions ∂qF (t, x, p, w, ·), ∂rF (t, x, p, w, ·) are continuous for each
(t, x, p, w) ∈ Q× R× C(B,R),

2) the matrix ∂rF is symmetric and

−1
2
|∂qiF (P )|+ 1

hi
∂riiF (P )−

n∑
j=1
j 6=i

1
hj

∣∣∂rijF (P )
∣∣ ≥ 0, i = 1, . . . , n, (4.1)

∂rij
F (P ) ≥ 0 for (i, j) ∈ J+, ∂rij

F (P ) ≤ 0 for (i, j) ∈ J−, (4.2)

where P ∈ Ξ,
3) Assumption H∗[σ] is satisfied and the estimate

|F (t, x, u, w, q, r)− F (t, x, ũ, w̃, q, r)| ≤ σ(t, |u− ũ| ,Γ[w − w̃])

holds on Ξ.

Assumption H[Th]. The operator Th : FC(Q0.h ∪ Qh,R) → C(Q0 ∪ Q,R) satisfies
the conditions:

1) for any functions z, z̃ ∈ FC(Q0.h ∪Qh,R) we have

‖Th[z]− Th[z̃]‖t ≤ ‖z − z̃‖h.t, 0 ≤ t < a,
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2) if z : Q0 ∪Q→ R is of class C2 then there is γ∗ : H → R+ such that

‖Th[zh]− z‖t ≤ γ∗(h), 0 ≤ t < a, and lim
h→0

γ∗(h) = 0,

where zh is the restriction of z to the set Q0.h ∪Qh.

Remark 4.1. The condition 1) of Assumption H[Th] states that Th satisfies the
Lipschitz condition with the constant L = 1. It follows from condition 2) that Th[zh]
is an approximation of z and the error of the approximation is estimated by γ∗(h).

Remark 4.2. We have assumed that the functions

Gij(t, x, p, w, q, r) = sign ∂rij
F (t, x, p, w, q, r), (i, j) ∈ J,

are constants. Relations (4.2) can be considered as the definitions of J+ and J−.

Assumption H[z0]. The function z0 ∈ F(Q0.h ∪Qh,R) satisfies the conditions:

1) z(m)
0 (t) = ϕ

(m)
h (t) on Q0.h, and for 1 = 1, . . . , n we have

Λ+
h.i[z0](m)(t) = φ

(m)
h (t) on ∂0E

+
i , Λ−h.i[z0](m)(t) = φ

(m)
h (t) on ∂0E

−
i ,

2) there exists the derivative ∂tz0 on Qh and∣∣∣∂tz(m)
0 (t)− Fh[z0](m)(t)

∣∣∣ ≤ γ0(t) on Qh,

where γ0 ∈ C([0, a),R+),
3) the maximal solution ω0 of the Cauchy problem

ω′(t) = σ(t, ω(t), ωχ(t)) + γ0(t), ω(t) = 0 for t ∈ [−b0, 0]

is defined on [−b0, a).

Theorem 4.3. Suppose that Assumptions H∗[F ], H[z0] and condition 1) of Assump-
tion H[Th] are satisfied. Under these assumptions there exists exactly one solution of
problem (2.1)–(2.3). The solution is defined on Q0.h ∪Qh.

Proof. The proof will we divided into three steps.
Step 1. Let us define the sequence {ωk}∞k=0, ωk : [−b0, a) → R+, k ≥ 0, in the
following way:

(i) the function ω0 is given by Assumption H[z0],
(ii) if ωk is given then ωk+1(t) = 0 for t ∈ [−b0, 0] and

ωk+1(t) =

t∫
0

σ(τ, ωk(τ), (ωk)χ(τ))dτ for t ∈ [0, a).
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We have that
ωk+1(t) ≤ ωk(t) for t ∈ [−b0, a), k ≥ 0. (4.3)

and from the Dini theorem we have lim
k→∞

ωk(t) = 0 uniformly on [0, ã], for each

ã ∈ (0, a). We omit the simple proof of the above properties of {ωk}.
Step 2. Now we define the sequence {zk}∞k=0, zk : Q0.h ∪ Qh → R, k ≥ 0, in the
following way:

(i) z0 is given in Assumption H[z0],
(ii) if zk : Q0.h∪Qh → R is a known function then zk+1 is the solution of the problem

∂tz
(m)(t) = F (t, x(m), z

(m)
k (t), Th(zk)ψ(m)(t), δz

(m)(t), δ(2)z(m)(t)),

−M + 1 ≤ m ≤M − 1, with initial boundary conditions

z(m)(t) = ϕ
(m)
h (t) on Q0.h,

Λ+
h.i[z]

(m)(t) = φ
(m)
h (t) on ∂0E

+
i , Λ−h.i[z]

(m)(t) = φ
(m)
h (t) on ∂0E

−
i ,

i = 1, . . . , n.

Step 3. We prove that∣∣∣z(m)
k+l (t)− z

(m)
k (t)

∣∣∣ ≤ ωk(t) on Q0.h ∪Qh for k, l ∈ N. (4.4)

First we prove (4.4) for k = 0 and l ∈ N. It is easy to show that (4.4) is satisfied for
k, l = 0. Now we assume (4.4) for k = 0 and some l ∈ N. We prove that∣∣∣z(m)

l+1 (t)− z(m)
0 (t)

∣∣∣ ≤ ω0(t) on Q0.h ∪Qh.

It is easy to show that ∣∣∣z(m)
l+1 (t)− z(m)

0 (t)
∣∣∣ ≤ ω0(t) on Q0.h,∣∣∣Λ+

h.i[zl+1 − z0](m)(t)
∣∣∣ ≤ ω0(t) on ∂0E

+
i ,∣∣∣Λ−h.i[zl+1 − z0](m)(t)

∣∣∣ ≤ ω0(t) on ∂0E
−
i .

We prove that the function zl+1 − z0 satisfies the differential difference inequalities∣∣∣∂t(zl+1 − z0)(m)(t)− G̃[zl+1 − z0](m)(t)
∣∣∣ ≤ σ(t, ω0(t), (ω0)χ(t)) + γ0(t) (4.5)

for (t, x(m)(t)) ∈ Q0.h ∪Qh, where

G̃[z](m)(t) =
n∑
i=1

1∫
0

∂qiF (P [z0, zl+1, z0](m)(t, τ))
[
δiz

(m)(t)
]
dτ+

+
n∑

i,j=1

1∫
0

∂rij
F (P [z0, zl+1, z0](m)(t, τ))

[
δ
(2)
ij z

(m)(t)
]
dτ.

(4.6)
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It follows that

∂t[zl+1−z0](m)(t)=W [zl, zl+1, z0](m)(t)+W̃ [z0, zl+1, z0](m)(t)+Fh[z0](m)(t)−∂tz(m)
0 (t).

Applying the Hadamard mean value theorem and Assumption H[σ] and Assumption
H[Th] we have ∣∣∣W [zl, zl+1, z0](m)(t)

∣∣∣ ≤ σ(t, ω0(t), (ω0)χ(t)),

W̃ [z0, zl+1, z0](m)(t) = G̃[zl+1 − z0](m)(t),

where G̃[z] is given by (4.6). The above relations and Assumption H[z] imply (4.5).
It follows from Theorem 3.2 that∣∣∣z(m)

l+1 (t)− z(m)
0 (t)

∣∣∣ ≤ ω0(t) for (t, x(m)) ∈ Q0.h ∪Qh.

Now let us assume (4.4) for certain k ∈ N and every l ∈ N. We prove that∣∣∣z(m)
k+1+l(t)− z

(m)
k+1(t)

∣∣∣ ≤ ωk+1(t)

for (t, x(m)) ∈ Q0.h ∪Qh. It is easy to show that∣∣∣z(m)
k+l+1(t)− zk+1(t)

∣∣∣ ≤ ωk+1(t) on Q0.h,∣∣∣Λ+
h.i[zk+l+1 − zk+1](m)(t)

∣∣∣ ≤ ωk+1(t) on ∂0E
+
i ,∣∣∣Λ−h.i[zk+l+1 − zk+1](m)(t)

∣∣∣ ≤ ωk+1(t) on ∂0E
−
i .

We prove that the function zk+1+l−zk+1 satisfies the differential difference inequalities∣∣∣∂t(zk+1+l − zk+1)(m)(t)−G∗[zk+1+l − zk+1](m)(t)
∣∣∣ ≤ σ(t, ωk(t), (ωk)χ(t)), (4.7)

where

G∗[z](m)(t) =
n∑
i=1

1∫
0

∂qi
F (P [zk, zk+1+l, zk+1](m)(t, τ))

[
δiz

(m)(t)
]
dτ+

+
n∑

i,j=1

1∫
0

∂rijF (P [zk, zk+1+l, zk+1](m)(t, τ))
[
δ
(2)
ij z

(m)(t)
]
dτ.

(4.8)

It follows from (2.1) that

∂t(zk+1+l − zk+1)(m)(t) = W [zk+l, zk+1+l, zk](m)(t) + W̃ [zk, zk+1+l, zk+1](m)(t).

Applying Hadamard mean value theorem and Assumptions H[σ] and H[z0] we have∣∣∣W [zk+l, zk+1+l, zk](m)(t)
∣∣∣ ≤ σ(t, ωk(t), (ωk)χ(t)),

W̃ [zk, zk+1+l, zk+1](m)(t) = G∗[zk+1+l − zk+1](m)(t),
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where G∗[z] is given by (4.8). The above relations imply (4.7). It follows from
Theorem 3.2 and by induction that (4.4) is satisfied. Hence we have that the sequence
{zk}∞k=0 is a Cauchy sequence. By the definition of the sequence {zk}∞k=0 it follows
that

z
(m)
k+1(t) = ϕ

(m)
h (0) +

t∫
0

F
(
τ, x(m), z

(m)
k (τ), Th(zk)ψ(m)(τ), δz

(m)
k+1(τ), δ(2)z(m)

k+1(τ)
)
dτ

for (t, x(m)) ∈ Qh. From this and (4.4) we conclude that there exists a solution for
(2.1)–(2.3) and it is defined on Q0.h ∪Qh.

If zh and z̃h satisfy (2.1)–(2.3) then the function zh− z̃h satisfies the initial bound-
ary condition

(zh − z̃h)(m)(t) = 0 on Q0.h,

Λ+
h.i[zh − z̃h](m)(t) = 0 on ∂0E

+
i , Λ−h.i[zh − z̃h](m)(t) = 0 on ∂0E

−
i

for = 1, . . . , n and differential difference inequalities∣∣∣∂t(zh − z̃h)(m)(t)− Ĝ[zh − z̃h](m)(t)
∣∣∣ ≤ σ(t, ∣∣∣(zh − z̃h)(m)(t)

∣∣∣ , Uh(zh − z̃h)ψ(m)(t)

)
,

where

Ĝ[z](m)(t) =
n∑
i=1

1∫
0

∂qi
F (P [z̃h, zh, z̃h](m)(t, τ))

[
δiz

(m)(t)
]
dτ+

+
n∑

i,j=1

1∫
0

∂rijF (P [z̃h, zh, z̃h](m)(t, τ))
[
δ
(2)
ij z

(m)(t)
]
dτ.

It follows from Theorem 3.2 that zh = z̃h. This completes the proof.

Theorem 4.4. Suppose that Assumptions H[β, γ], H∗[F ] and H[Th] are satisfied
and:

1) v : Q0 ∪ Q → R is a solution of (1.1)–(1.4) and v is of class C∗ and vh is
a restriction of v to the set Q0.h ∪Qh,

2) uh : Q0.h ∪ Qh → R is a solution of problem (2.1)–(2.3), and there is c̃ > 0 such
that hi ≤ c̃hj for i, j = 1, . . . , n,

3) there is γ∗ : H → R+ such that∣∣∣ϕ(m)(t)− ϕ(m)
h (t)

∣∣∣ ≤ γ∗(h) on Q0.h,∣∣∣φ(m)(t)− φ(m)
h (t)

∣∣∣ ≤ γ∗(h) on ∂0E,

and lim
h→0

γ∗(h) = 0.
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Under these assumptions for each ã∈(0, a) there exists ε>0 and ω(·, h) :[−b0, ã]→R+

such that for h ∈ H, ‖h‖ < ε we have∣∣∣(uh − vh)(m)(t)
∣∣∣ ≤ ω(t, h) on Qh ∩ ([0, ã]× Rn)

and lim
h→0

ω(t, h) = 0 uniformly on t ∈ [0, ã].

Proof. Let Γh : Qh → R be defined by the relation

∂tv
(m)
h (t) = Fh[vh](m)(t) + Γ(m)

h (t) on Qh.

It follows that there is γ̃ : H → R+ such that∣∣∣Γ(m)
h (t)

∣∣∣ ≤ γ̃(h) on Qh and lim
h→0

γ̃(h) = 0.

An easy computation shows that vh−uh satisfies the differential difference inequalities∣∣∣∂t(vh − uh)(m)(t)−G[vh − uh](m)(t)
∣∣∣ ≤

≤ σ
(
t,
∣∣(vh − uh)(m)(t)

∣∣, Uh(vh − uh)ψ(m)(t)

)
+ γ̃(h) on Qh,

where

G[z](m)(t) =
n∑
i=1

1∫
0

∂qiF (P [vh, uh, vh](m)(t, τ))
[
δiz

(m)(t)
]
dτ+

+
n∑

i,j=1

1∫
0

∂rij
F (P [vh, uh, vh](m)(t, τ))

[
δ
(2)
ij z

(m)(t)
]
dτ.

It is clear that there is γ : H → R+ such that∣∣∣(vh − uh)(m)(t)
∣∣∣ ≤ γ(h) on Q0.h

and∣∣∣Λ+
h.i[vh − uh](m)(t)

∣∣∣ ≤ γ(h) on ∂0E
+
i ,

∣∣∣Λ−h.i[vh − uh](m)(t)
∣∣∣ ≤ γ(h) on ∂0E

−
i ,

where i = 1, . . . , n. Let us consider the Cauchy problem

ω′(t) = σ(t, ω(t), ωχ(t)) + γ̃(h), ω(t) = γ(h) on [−b0, 0]. (4.9)

Suppose that ã ∈ (0, a) is fixed. There is ε > 0 such that the maximal solution ω(·, h)
of (4.9) is defined on [−b0, ã] for ‖h‖ < ε and lim

h→0
ω(t, h) = 0 uniformly on t ∈ [0, ã].

It follows from Theorem 3.2 that∣∣∣u(m)
h (t)− v(m)

h (t)
∣∣∣ ≤ ω(t, h) on Qh ∩ ([0, ã]× Rn).

This is the derived conclusion.
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Remark 4.5. Suppose that all the assumptions of Theorem 4.4 are satisfied and
σ : [0, a)× R+ × C(I,R+)→ R+ is given by

σ(t, p, η) = L(p+ ‖η‖I),

where ‖ · ‖I is the maximum norm in C(I,R+). Then∣∣∣u(m)
h (t)− v(m)

h (t)
∣∣∣ ≤ α̃(h) on Qh

where

α̃(h) = γ(h)e2La +
γ̃(h)
2L

(e2La − 1) if L > 0, (4.10)

α̃(h) = γ(h) + aγ̃(h) if L = 0. (4.11)

Now we give a result on the error estimate for the numerical method of lines. Let
us consider the interpolating operator Th : FC(Q0.h ∪Qh,R)→ C(Q0 ∪Q,R) defined
in the following way. Suppose that w ∈ FC(Q0.h ∪ Qh,R). For each (t, x) ∈ Q0 ∪ Q
there exists m ∈ Zn such that x(m) ≤ x ≤ x(m+1) where m+1 = (m1 +1, . . . ,mn+1)
and (t, x(m)), (t, x(m+1)) ∈ Q0.h ∪Qh. Write

Th[w](t, x) =
∑
s∈S+

w(m+s)(t)
(x− x(m)

h

)s(
1− x− x(m)

h

)1−s
, (4.12)

where
S+ = {s = (s1, . . . , sn) : si ∈ {0, 1}, 1 ≤ i ≤ n},(x− x(m)

h

)s
=

n∏
i=1

(xi − x(mi)
i

h

)si

,

(
1− x− x(m)

h

)1−s
=

n∏
i=1

(
1− xi − x(mi)

i

h

)1−si

and we put 00 = 1 in the above definitions. It is easy to see that Th[w] ∈ C(Q0∪Q,R).
We consider problem (2.1)–(2.3) with Th defined by (4.12).

Lemma 4.6. Suppose that Assumption H[β, γ] holds and:

1) the functions F : Ξ→ R satisfies Assumption H∗[F ] with σ(t, p, η) = L(p+ ‖η‖I),
where L ∈ R+, and there is L̃ ∈ R+ such that

‖∂qF (P̃ )‖ ≤ L̃, ‖∂rF (P̃ )‖∞ ≤ L̃, on Ξ,

2) v : Q0 ∪ Q → R is a solution of (1.1)–(1.4) and v is of class C∗ and for each
t ∈ [0, a) the function v(t, ·) : [−b, b]→ R is of class C3,

3) there is C̃ > 0 such that ‖ṽi(t, x)‖∞ ≤ C̃ on Q, i = 1, . . . , n, where

ṽi(t, x) = ∂xi
V (t, x), V (t, x) = ∂xxv(t, x), i = 1, . . . , n, (4.13)
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4) conditions 2), 3) of Theorem 4.4 are satisfied.

Then there are C1, C2 ∈ R+ such that estimates (4.10), (4.11) are satisfied with∣∣∣(uh − vh)(m)(t)
∣∣∣ ≤ C1‖h‖+ C2‖h‖2 on Qh. (4.14)

Proof. We apply (4.10), (4.11) to prove (4.14). It follows that there is C0 ∈ R+ such
that ∣∣∣Λ+

h.i[vh − uh](m)(t)
∣∣∣ ≤ γ∗(h) + C0‖h‖ on ∂0E

+
i ,∣∣∣Λ−h.i[vh − uh](m)(t)

∣∣∣ ≤ γ∗(h) + C0‖h‖ on ∂0E
−
i ,

where i = 1, . . . , n. Write

Γ(m)
h (t) = F (t, x(m), v(m), vψ(m)(t), ∂xv

(m)(t), ∂xxv(m)(t))−

− F (t, x(m), v
(m)
h , (Thvh)ψ(m)(t), δv

(m)
h (t), δ(2)v(m)

h (t)).

There is C̃ ∈ R+ such that

‖∂xv(m)(t)− δv(m)
h (t)‖ ≤ C̃‖h‖2, ‖∂xxv(m)(t)− δ(2)v(m)

h (t)‖∞ ≤ C̃‖h‖

on Qh. It follows from Theorem 5.27 in [4] that there is C̄ ∈ R+ such that

‖vψ(m)(t) − (Thvh)ψ(m)(t)‖D[ψ(m)(t)] ≤ C̄‖h‖2, on Qh.

The above relations imply∣∣∣Γ(m)
h (t)

∣∣∣ ≤ L̃C̃‖h‖+ (LC̄ + L̃C̃)‖h‖2 on Qh.

Then we obtain (4.14) from (4.10), (4.11).

Remark 4.7. Let us consider problem (2.1)–(2.3) with γ(t, x) = 0 on ∂0E and
Th given by (4.12). Then we have parabolic functional differential equations with
initial boundary conditions of the Dirichlet type. Suppose that all the assumptions
of Lemma 4.6 are satisfied and assume additionally that:

(i) ϕh(t, x) = ϕ(t, x) on Qh and Φh(t, x) = Φ(t, x) on ∂0E,
(ii) for each t ∈ [0, a) the function v(t, ·) : [−b, b]→ R is of class C4 and the functions

∂xj
ṽi, i, j = 1, . . . , n where ṽi are given by (4.13), are bounded on Q.

Then there is C∗ ∈ R+ such that∣∣∣u(m)
h − v(m)

h

∣∣∣ ≤ C∗‖h‖2 on Qh. (4.15)

Note that we have in this case the relations:∣∣∣Λ+
h.i[vh − uh](m)(t)

∣∣∣ = 0 on ∂0E
+
i ,

∣∣∣Λ−h.i[vh − uh](m)(t)
∣∣∣ = 0 on ∂0E

−
i ,

where i = 1, . . . , n and there is C̃ ∈ R+ such that

‖∂xxv(m)(t)− δ(2)v(m)
h (t)‖∞ ≤ C̃‖h‖2 on Qh.

Then we obtain (4.15) from (4.10), (4.11).
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5. NUMERICAL EXAMPLES

Suppose that we apply a difference method for (2.1)–(2.3). The superposition of the
numerical method of lines and difference method for ordinary differential functional
equations leads to a difference scheme for the original problem. It is not our aim to
show results on such difference schemes. We give examples and a short comment only.

Suppose that we apply the explicit Euler method to solve numerically (2.1)–(2.3).
Then we get an explicit difference scheme for (1.1)–(1.4) which is not convergent.
Corresponding examples are not published because the observation is very natural.
Suppose additionally that γ(t, x) = 0 on ∂0E. Then we have a parabolic differential
functional equation with an initial boundary condition of the Dirichlet type. In this
special case there are explicit difference schemes of the Euler type which are convergent
(see [8, 12]).

Note that we consider general initial boundary conditions and that the derivatives
∂xi

z, 1 ≤ i ≤ n, appear in (1.3)–(1.4).
We show by examples that there are difference schemes for (1.1)–(1.4) which are

convergent. We apply the implicit Euler method for (2.1)–(2.3) and we get an implicit
difference scheme for the original problem. As far as we are aware theorems on the
convergence of such difference schemes are not known. We do not formulate hypothesis
on error estimates for implicit difference schemes.

Example 5.1. Write Q = [0, 1)× [−1, 1]× [−1, 1]. Consider the differential equation
with deviated variables

∂tz(t, x, y) = ∂xxz(t, x, y) + ∂xyz(t, x, y) + ∂yyz(t, x, y)+

+ z
(
t,
x+ y

2
,
x− y

2

)
+ f(t, x, y)z(t, x, y)

(5.1)

and the initial boundary conditions

z(0, x, y) = 1, (x, y) ∈ [−1, 1]× [−1, 1], (5.2)

∂xz(t,−1, y) = −2tet(1−y
2), ∂xz(t, 1, y) = 2tet(1−y

2), t ∈ [0, 1], y ∈ [−1, 1], (5.3)

∂yz(t, x,−1) = 2tet(x
2−1), ∂yz(t, x, 1) = −2tet(x

2−1), t ∈ [0, 1], x ∈ [−1, 1], (5.4)

where
f(t, x, y) = x2 − y2 − 4t2(x2 + y2 − xy)− exy−x

2+y2
.

The solution of (5.1)–(5.4) is known, it is

v(t, x, y) = et(x
2−y2).

We have transformed the above problem into a system of ordinary differential func-
tional equations. The system such obtained is solved numerically by using the implicit
Euler method. We use the interpolating operator Th defined in [4].

Let us denote by ε(r)h the arithmetical mean of the errors with fixed t = t(r). In
Table 1 we give experimental values for ε(r)h and h0 = h1 = h2 = 1

300 where (h0, h1, h2)
are step-sizes with respect to (t, x, y) respectively.
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Table 1. Errors (εh)

t 0.10 0.20 0.30 0.40 0.50 0.60 0.70
εh 0.001 974 0.002 038 0.002 303 0.002 767 0.003 417 0.00 423 0.005 174

Example 5.2. Write
Q = [0, 1)× [0, 1]× [0, 1].

Consider the differential equation with deviated variables

∂tz(t, x, y) = ∂xxz(t, x, y)− 1
10
∂xyz(t, x, y) + ∂yyz(t, x, y)+

+ ∂xz(t, x, y) + ∂yz(t, x, y) + π2

x∫
0

z(t, s, y)ds+

+ π2

y∫
0

z(t, x, s)ds+ 2π2z(t, x, y) + f(t, x, y)

(5.5)

and the initial boundary conditions

z(0, x, y) = 0, (x, y) ∈ [0, 1]× [0, 1], (5.6)
∂xz(t, 0, y) = 0, ∂xz(t, 1, y) = 0, t ∈ [0, 1], y ∈ [0, 1], (5.7)
∂yz(t, x, 0) = 0, ∂yz(t, x, 1) = 0, t ∈ [0, 1], x ∈ [0, 1], (5.8)

where
f(t, x, y) = cos t cosπx cosπy +

1
10
π2 sin t sinπx sinπy.

The solution of (5.5)–(5.8) is known, it is

v(t, x, y) = sin t cosπx cosπy.

We apply the theory presented in Section 4 to the above problems. A system of
ordinary differential equations is solved by using implicit Euler method. We use the
interpolating operator Th given in [4]. In Table 2 we give experimental values for the
arithmetical means of the errors ε(r)h with fixed t = t(r). We put h0 = h1 = h2 = 1

800
in our calculations.

Table 2. Errors (εh)

t 0.10 0.15 0.20 0.25 0.30 0.35
εh 0.001 069 0.001 674 0.002 394 0.003 433 0.005 406 0.008 935

Note that we have somewhat better results for the differential equation with devi-
ated variables than for the differential integral problem. This is due to the fact that
in the first example we calculate the function Thz(t, ·) at the points x+y

2 , x−y2 and we
use interpolation on the intervals [0, x] and [0, y] in the second example.

Our calculations were performed on a PC computer.
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