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Abstract. In this work, we first describe all the maximal hyponormal extensions of a
minimal operator generated by a linear differential-operator expression of the first-order in
the Hilbert space of vector-functions in a finite interval. Next, we investigate the discreteness
of the spectrum and the asymptotical behavior of the modules of the eigenvalues for these
maximal hyponormal extensions.
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1. INTRODUCTION

The general and spectral theory of linear bounded hyponormal operators in a Hilbert
space was founded and developed by P.R. Halmos [8], C.R. Putnam [17], J.G. Stampfli
[18,19], C.R. Williams [20], D. Xia [21].

We know that, all normal extensions and discrete spectrum of the minimal opera-
tor generated by a linear differential-operator expression for the first-order in L2 has
been described in terms of boundary conditions in [10–12] and [13]. We work with
hyponormal operators instead of normal operators.

A densely defined closed operator N in a Hilbert space H is called a normal
operator if D(N) = D(N∗) and for all x ∈ D(N) ‖Nx‖H = ‖N∗x‖H (cf. [3]).

A densely defined closed operator T in a Hilbert space H is called hyponormal if
D(T ) ⊂ D(T ∗) and for all x ∈ D(T ), ‖T ∗x‖H ≤ ‖Tx‖H.

If a hyponormal operator in H has no non-trivial hyponormal extension, then it
is called a maximal hyponormal operator. It is clear that for the hyponormality of a
linear closed operator T in a Hilbert space H, it is necessary and sufficient to have
D(T ) ⊂ D(T ∗) and TT ∗ ≤ T ∗T .

This paper contains two sections. In the first section we investigate all maximal
hyponormal extensions of the minimal operator in L2 in terms of boundary conditions.
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In the second section we investigate discreteness of the spectrum and asymptotical
behavior of the modules of the eigenvalues for maximal hyponormal extensions of the
minimal operator L0 in L2.

Let H be a separable Hilbert space and let L2 = L2(H, (a, b)) be the Hilbert space
of vector-functions from the finite interval (a, b) to H (cf. [7, 9]).

1.1. DESCRIPTION OF MAXIMAL HYPONORMAL EXTENSIONS

In the space L2 consider a linear differential-operator expression of first order of the
form

l(u) = u′(t) +Au(t), (1.1)

where A is a linear maximal hyponormal operator, A = AR+ iAI , AR is the real part
of A, AI is the imaginary part of A and AR is a linear lower positive definite operator
in H. For simplicity, we assume that AR ≥ E. E denotes the identical operator in H.

The formally adjoint expression (1.1) in the Hilbert space L2 is of the form

l(v) = −v′(t) +A∗v(t). (1.2)

Let us define the operator L
′

0 on the dense L2 set of vector-functions D
′

0,

D′0 :=
{
u(t) ∈ L2 : u(t) =

n∑
k=1

ϕk(t)fk, ϕk ∈ C∞0 (a, b), k = 1, 2, . . . , n, n ∈ N
}
,

as L
′

0u = l(u). Since the operator AR ≥ E, then the L
′

0 operator is accretive, that is
Re(L

′

0u, u)L2 ≥ 0, u ∈ D′0. Hence the operator L
′

0 has a closure in L2. The closure
of L

′

0 in L2 is called the minimal operator, generated by the differential-operator
expression (1.1) and is denoted by L0.

In a similar way we can construct the minimal operator L+
0 in L2 which is gener-

ated by the differential-operator expression (1.2) in L2. The adjoint operator of L+
0

(resp. L0) in L2 is called the maximal operator, generated by (1.1), (resp. (1.2)) and
is denoted by L (resp. L+) (cf. [1, 7]).

In this section the main purpose is to describe all maximal hyponormal extensions
of the minimal operator in L2 in terms of boundary conditions.

Note that all normal extensions of the minimal operator generated by a linear
differential-operator expression for the first-order in L2 has been described in terms
of boundary conditions in [12,15].

Lemma 1.1. T is a hyponormal operator in a Hilbert space H if and only if the
following two condition hold:

(i) D(T ) ⊂ D(T ∗),
(ii) Im(TRx, TIx) ≥ 0,

where TR = 1
2 (T + T ∗) and TI = 1

2i (T − T ∗).
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Proof. Let us consider T , a hyponormal operator in H. Hence for all x ∈ D(T )

Tx = TRx+ iTIx ∈ H,
T ∗x = TRx− iTIx ∈ H,

then TRx ∈ H, TIx ∈ H. On the other hand, for all x ∈ D(T ),

‖T ∗x‖H ≤ ‖Tx‖H.

From this inequality, we can easily show that

Im(TRx, TIx) ≥ 0.

Conversely, if D(T ) ⊂ D(T ∗) and Im(TRx, TIx) ≥ 0 for all x ∈ D(T ), then it
follows immediately from the obvious relation,

4Im(TRx, TIx)H = ‖Tx‖2 − ‖T ∗x‖2 for all x ∈ D(T ).

This completes the proof of the theorem.

Theorem 1.2. If the minimal operator L0 has at least one hyponormal extension
in L2, then the minimal operator L0 is hyponormal in L2.

Proof. Let Lh be a hyponormal extension of, that is, L0 ⊂ Lh ⊂ L, then from the
condition D(Lh) ⊂ D(L∗h) and following relation

D(L0) ⊂ D(Lh) ⊂ D(L∗h) ⊂ D(L+) = D(L∗0)

we obtain D(L0) ⊂ D(L∗0).
On the other hand, from the inequality ‖L∗hx‖ ≤ ‖Lhx‖, x ∈ D(Lh) for any

u(t) ∈ D(L0) we have

‖L∗hu‖L2 = ‖L∗0u‖L2 ≤ ‖Lhu‖L2 = ‖L0u‖L2 ,

that is, ‖L∗0u‖L2 ≤ ‖L0u‖L2 , u(t) ∈ D(L0).

Theorem 1.3. Let A be a linear closed densely defined operator in H. If the minimal
operator L0 generated by the differential-operator expression l(u) = u′(t)+Au(t) in L2

is a hyponormal operator, then the operator A is hyponormal in H.

Proof. Existence of the minimal operator L0 in L2 follows from the result in [7]. On
the other hand, since D(L0) ⊂ D(L∗0) = D(L+) and for vector-functions

u(t) = ϕ(t)f, ϕ(t) ∈
0

W 1
2 , f ∈ D(A),

0

W 1
2 (H, (a, b)) := {u(t) : u(t) ∈ L2, u′(a) = u′(b) = 0},

belonging to D(L0) and u(t) ∈ D(L+), we have

L+
0 u = −ϕ′(t)f + ϕ(t)A∗f ∈ L2(H, (a, b)).
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It follows that f ∈ D(A∗). Hence

D(A) ⊂ D(A∗). (1.3)

From the second condition of hyponormality of the operator L0, we have

‖L∗0u‖L2 ≤ ‖L0u‖L2 , u(t) ∈ D(L0).

For the special case of vector-valued functions

u(t) = ϕ(t)f, ϕ(t) ∈
0

W 1
2 (a, b);

f ∈ D(A) in D(L0) from the last inequality, we have

‖A∗f‖2H

b∫
a

| ϕ(t) |2 dt ≤ 2(f,ARf)[

b∫
a

[ϕ′(t)ϕ(t) + ϕ(t)ϕ′(t)]]dt+

+ ‖Af‖2H

b∫
a

| ϕ(t) |2 dt

and

‖A∗f‖2H

b∫
a

| ϕ(t) |2 dt ≤ 2(f,ARf)

b∫
a

(ϕ(t)ϕ(t))′dt+ ‖Af‖2H

b∫
a

| ϕ(t) |2 dt ≤

≤ 2(f,ARf)(ϕ(t)ϕ(t)) |ba +‖Af‖2H

b∫
a

| ϕ(t) |2 dt ≤

≤ 2(f,ARf)[| ϕ |2 (b)− | ϕ |2 (a)] + ‖Af‖2H

b∫
a

| ϕ(t) |2 dt

for ϕ(t) ∈
0

W 1
2 (a, b). Then

b∫
a

|ϕ(t)|2dt‖A∗f‖2H ≤
b∫
a

|ϕ(t)|2dt‖Af(t)‖2H.

Choosing function ϕ(t) ∈
0

W 1
2 (a, b) with property

∫ b
a
|ϕ(t)|2dt 6= 0, from the last

relation we obtain,
‖A∗f‖H ≤ ‖Af‖H, f ∈ D(A). (1.4)

Hence from (1.3) and (1.4), it is established that operator A is hyponormal in H.

Corollary 1.4. If the minimal operator L0 generated by the differential-operator
expression l(u) = u′(t) + Au(t) with a linear closed densely defined operator in H is
a normal operator in L2, then the operator A is normal in H (see also [10, 11,16]).
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Note that furthermore we will take the operator A as a normal operator in H.
In a similar manner, we can construct the minimal M0 and the maximal operator

M corresponding to the differential-operator expression

m(u) = u′(t) +ARu(t),

in the Hilbert space L2 of vector functions.
Let us introduce the following operator.{

U
′

t (t, s) f + iAiU (t, s) f = 0,
U (s, s) f = f, f ∈ D (A) , t, s ∈ [a, b] .

The operator U(t, s), t, s ∈ [a, b], is linear continuous bounded invertible unitary
operator in H and U∗(t, s) = U(s, t), U−1(t, s) = U(s, t) (for detailed analysis of
these operators see [2] and [14]).

Uz(t) := U(t, a)z(t), U : L2 → L2.

In this case it is easy to see that, for the differentiable vector-function z(t) ∈ L2

with z(t) ∈ D(A), t ∈ [a, b], the following relation holds:

l(Uz) = (Uz)
′
(t) +A(t)Uz(t) = U(z′(t) +ARz(t) + (U

′

t + iAI(t)U)z(t)
= Um(z) ∈ L2.

From this, then we have
U−1lU(z) = m(z).

It is clear that, if the operator L̃ is an extension of the minimal operator L0, that
is, L0 ⊂ L̃ ⊂ L, then

U−1L0U = M0, M0 ⊂ U−1L̃U = M̃ ⊂M, U−1LU = M. (1.5)

For example we will prove the validity of relation (1.5).
It is known that

D(M) = {u(t) ∈ L2 : u(t) absolutely continuous on (a, b), m(u) ∈ L2}

and
D(M0) = {u(t) ∈ D(M) : u(a) = u(b) = 0}.

If u(t) ∈ D(M), then in this case Uu(t) is absolutely continuous on (a, b) and

l(Uz) = (Uz)
′
(t) +A(t)Uz(t) = Um(z) + (U

′

t + iAI(t)U)z(t) = Um(z) ∈ L2, (1.6)

that is, Uu(t) ∈ D(L). Furthermore, from the relation (1.6) we infer that M ⊂
U−1LU .

Contrary, if the vector-function v(t) ∈ D(L), then the element U−1v(t) is abso-
lutely continuous on (a, b) and

m(U−1v(t)) = (U−1v(t))
′
+AR(U−1v(t)) =

= U−1[v′(t) +ARv(t) + iAIv(t)] = U−1l(v(t)) ∈ L2,
(1.7)
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that is, U−1v(t) ∈ D(M), and from the relation (1.7)

U−1L ⊂MU−1, U−1LU ⊂M.

Hence U−1LU = M . Therefore, operator U is a one to one map of D(M) onto D(L).
Here we define a Hilbert scale Hj(T ),−∞ < j < +∞ of the spaces constructed

via the operator T j . Let H = H0 be a Hilbert space over the field of complex numbers
with inner product (·, ·)H0 and norm

‖f‖H0 = (f, f)1/2H0
, f ∈ H0.

Let T be a linear self-adjoint operator on the Hilbert space H such that

‖Tf‖H0 ≥ ‖f‖H0 .

The set D(T j), 0 < j < +∞, under an inner product

(f, g)H+j := (T jf, T jg)H0 , f, g ∈ D(T j)

is a Hilbert space. We define H+j := H+j(T ), 0 < j < +∞, and it is called a positive
space. In a similar way we have H−j := H−j(T ), 0 < j < +∞, and this is called a
negative space. It is clear that

H+τ ⊂ H+j , 0 < τ < j <∞, H+j ⊂ H = H0 ⊂ H−j , H∗+j = H−j , 0 < j <∞,

and H+j , 0 < j < ∞ is dense in H (for a more detailed analysis of the spaces Hj ,
−∞ < j < +∞, see [6] and [7]).

Let W 1
2 (H, (a, b)) (

0

W 1
2 (H, (a, b))) be the Sobolev space of vector-functions from

the finite interval (a, b) into H (see [7]).

Theorem 1.5. If the minimal operator M0 is a hyponormal operator in L2, then

D(M0) ⊂
0

W 1
2 (H, (a, b)),

ARD(M0) ⊂ L2(H, (a, b)).

Proof. Indeed, in this case for any vector-functions u(t) from D(M0) we have

u′ +ARu ∈ L2(H, (a, b)),
−u′ +ARu ∈ L2(H, (a, b)).

From these relations

u′(t) ∈ L2(H, (a, b)),
ARu(t) ∈ L2(H, (a, b)), u(t) ∈ D(M0) and u(a) = u(b) = 0,

we obtain

u(t) ∈
0

W 1
2 (H, (a, b)),

ARD(M0) ⊂ L2(H, (a, b)).
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Theorem 1.6. If the minimal operator A is normal in H and the following condition
holds

AR
0

W 1
2 (H, (a, b)) ⊂ L2(H, (a, b)),

then the minimal operators M0 and L0 are hyponormal in L2.

Proof. First, we will prove hyponormality of M0 in L2. Under these conditions for

each u(t) ∈ D(M0) ⊂
0

W 1
2 (H, (a, b)), we have

M∗0u = −u′(t) +ARu(t) =

= −(u′(t) +ARu(t)) + 2ARu(t) ∈ L2(H, (a, b)).

That is, D(M0) ⊂ D(M∗0 ).
On the other hand, for each u(t) ∈ D(M0), we have

‖M0u‖2L2 − ‖M∗0u‖2L2 = (u′(t) +ARu, u
′(t) +ARu)L2−

− (−u′(t) +ARu,−u′(t) +ARu)L2 =

= ‖u′‖2L2 + (u′, ARu)L2 + (ARu, u′)L2 + ‖ARu‖2L2 − ‖u′‖2L2+

+ (u′, ARu)L2 + (ARu, u′)L2 − ‖ARu‖2L2 =

= 2[(u′, ARu)L2 + (ARu, u′)L2 ] = 2(u,ARu)HIba = 0,

that is, ‖M∗0u‖ ≤ ‖M0u‖ for each u(t) ∈ D(M0). Hence, the operator M0 is hy-
ponormal in L2. Now we will prove hyponormality of L0 in L2. From the following
properties

L0 = UM0U
−1, L∗0 = UM∗0U

−1

and
D(L0) = D(UM0U

−1) ⊂ D(UM∗0U
−1) = D(L∗0)

we have D(L0) ⊂ D(L∗0). Furthermore, for each u(t) ∈ D(L0)

‖L∗0u‖2L2 = ‖UM∗0U−1‖2L2 = (UM∗0U
−1u, UM∗0U

−1u)L2 =

= (M∗0U
−1u, U∗UM∗0U

−1u)L2 =

= (M∗0 (U−1u),M∗0 (U−1u))L2 = ‖M∗0 (U−1u)‖2L2 ≤
≤ ‖M∗0 (U−1u)‖2L2 = (M(U−1u),M0(U−1u))L2 =

= (U∗UM0U
−1u,M0U

−1u)L2 = (UM0U
−1u, UM0U

−1u)L2 ≤ ‖L0u‖2L2 .

Therefore, operator L0 is hyponormal.

Theorem 1.7. Let A1/2
R [D(L) ∩ D(L+)] ⊂ W 1

2 (H, (a, b)). Each hyponormal exten-
sion Lh of the minimal operator L0 in L2 is generated by the differential-operator
expression (1.1) with the following boundary condition,

u(a) = V U(a, b)u(b), (1.8)
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where V is isometric and A
1/2
R V A

−1/2
R is also a contraction operators in H. The

isometric operator V is determined uniquely by the extensions Lh, i.e. Lh = LV .
Contrary, the restriction of the maximal operator L to the manifold of

vector-functions u(t) ∈ D(L) ∩D(L+) that satisfies condition (1.8) for some isome-
tric operator V, where A1/2

R V A
−1/2
R is also contraction operator in H, is a maximal

hyponormal extension of the minimal operator L0 in the space L2.

Proof. First, we will describe all maximal hyponormal extensions Mh of the minimal
operator M0 in L2 in terms of boundary values.

Let Mh be a maximal hyponormal extension of M0. In this case, for every u(t) ∈
D(Mh), we have

Mhu = u′(t) +ARu(t) ∈ L2,

M∗hu = −u′(t) +ARu(t) ∈ L2.

From this relation we find that u′(t) ∈ L2 and ARu(t) ∈ L2. In other words, D(Mh) ⊂
W 1

2 (H, (a, b)) and ARD(Mh) ⊂ L2.
On the other hand, if u(t) ∈ D(Mh) ⊂ D(M∗h), then we have representations,

u(t) = e−AR(t−a)f +

t∫
a

e−AR(t−s)(Mhu)(s)ds,

u(t) = eAR(t−b)g +

b∫
t

eAR(t−s)(M∗hu)(s)ds,

where f, g ∈ H−1/2(AR). Hence every u(t) ∈ D(Mh) has the property
u(t) ∈ C(H+1/2, [a, b]) (see [7]). Furthermore, from the relation

(Mhu, v)L2 = (u(b), v(b))H − (u(a), v(a))H + (u,M∗hv)L2 ,

which holds for every u(t) ∈ D(Mh) and v(t) ⊂ D(M∗h), we have

‖u(b)‖H = ‖u(a)‖H.

Then there exists an isometric operator V in H such that

u(a) = V u(b). (1.9)

On the other hand, for any u(t) ∈ D(Mh) from the second condition of hyponor-
mality of the extensions Mh we have

‖M∗hu‖2L2 − ‖Mhu‖2L2 = (−u′ +ARu,−u′ +ARu)L2 − (u′ +ARu, u
′ +ARu)L2 =

= −2[(u′, ARu)L2 + (ARu, u′)L2 ] = −2(u,ARu)HIba =
= −2[(u(b), ARu(b))H − (u(a), ARu(a))H] =

= 2[‖A1/2
R u(a)‖2H − ‖A

1/2
R u(b)‖2H] ≤ 0,
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that is,
‖A1/2

R u(a)‖2H ≤ ‖A
1/2
R u(b)‖2H, u(t) ∈ D(Mh).

Hence there exists a contraction operator K in H such that

A
1/2
R u(a) = KA

1/2
R u(b), u(t) ∈ D(Mh). (1.10)

Now we will prove that, if a hyponormal extension M̃, M0 ⊂ M̃ ⊂ M is maximal,
then

Hb(M̃) := {u(b) ∈ H : u(t) ∈ D(M̃)} = H+1/2(AR).

To prove this, we assume that there exists f ∈ H+1/2(AR) such that for each
vector-function u(t) ∈ D(M), u(b) 6= f . Now we will look at the vector-function
u∗(t) = f, a ≤ t ≤ b.

It is clear that

f ∈ D(M) ∩D(M+), ARf ∈ L2, f /∈ Hb(M̃)

and
‖u∗(a)‖H = ‖u∗(b)‖H, ‖A1/2

R u∗(a)‖H ≤ ‖A1/2
R u∗(b)‖H.

Now we consider an extension M̃∗ , M̃∗ ⊂M of the operator M̃ to the linear manifold

D(M̃∗) = span{D(M̃), u∗}.

On the other hand, if we denote by

x =

{
V x, x ∈ D(V ) or V∗(λx+ f): = λV x+ f,

f x = f x ∈ D(V ), λ ∈ C,

then V∗ : D(V∗)→ H, V ⊂ V∗ and an operator V∗ is an isometric operator in H. For
the vector-functions z(t) of the manifoldD(M̃∗) holds. That is, there exists a hyponor-
mal extension of the operator M̃ to u∗(t). This cannot happen since the extension
M̃ is maximal. Furthermore, from the relation (1.9), (1.10) and H+1/2(AR) = H we
have

V = A
−1/2
R KA

1/2
R , that is, K = A

1/2
R V A

−1/2
R .

It is clear that, an isometric operator V is determined uniquely by the extension
of Mh

Now let Lh be a maximal hyponormal extension of the minimal operator L0 in L2.
It is clear thatMh = U−1LhU, M0 ⊂Mh ⊂M, is a maximal hyponormal extension of
M0. Then in the first part of the proofMh is described by the differential-operator ex-
pression m(u) and boundary condition (1.9) with some isometric operator V in H i.e.

v(a) = V v(b), v(t) ∈ D(Mh), (1.11)

where the operator K = A
1
2
RV A

−1
2
R is also a contraction operator in H. Since

v(t) = U(a, t)u(t), v(t) ∈ D(Mh),
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then the boundary condition (1.11) will be of the form

u(a) = V U(a, b)u(b), u(t) ∈ D(Lh).

Now let LV be an operator generated by the differential-operator expression l(u)
with boundary condition (1.8) in L2, that is,

LV u = l(u),
u(a) = V U(a, b)u(b), u(t) ∈ D(LV ),

where V andK = A
1
2
RV A

−1
2
R are isometric and contraction operators inH respectively.

In this case the adjoint operator L∗V is generated by the differential-operator ex-
pression l∗(v) with the boundary condition

v(b) = U(b, a)V ∗v(a), v(t) ∈ D(L∗V ).

It is easy to see that D(LV ) ⊂ D(L∗V ) and the second condition of the hyponor-
mality extension in L2 holds.

Proposition 1.8. In order for a densely defined closed operator T to be hyponormal
in H, the necessary and sufficient condition is the hyponormality of T + λE, λ ∈ C,
in H.

Proof. It is clear that for any λ ∈ C

D(T + λE) = D(T ),
D(T ∗ + λE) = D(T ∗).

In addition, it can be verified that for x ∈ D(T )

((T+λE)(T ∗+λE)x, x)H−((T ∗+λE)(T+λE)x, x)H = (TT ∗x, x)H−(T ∗Tx, x)H.

Remark 1.9. If in (1.1) AR ≥ 0, then writing (1.1) in the form

l(u) = u′(t) +Au(t) = u′(t) + (A+ E)u(t)− u(t) =
= [u′(t) + (AR + E)u(t) + iAI(t)u(t)]− u(t),

using Proposition 1.8 and Theorem 1.7 we may describe all maximal hyponormal
extension of minimal operator L0 in L2 generated by (1.1) and boundary condition
(1.8), where V is an isometric and

(AR + E)1/2V (AR + E)−1/2

is a contraction operators in H.
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2. ASYMPTOTICAL BEHAVIOR OF THE MODULES
OF THE EIGENVALUES FOR MAXIMAL HYPONORMAL EXTENSIONS

In this section we will investigate discreteness of the spectrum and asymptotical
behavior of the modules of the eigenvalues for maximal hyponormal extensions of
minimal operator L0 in L2. For the convenience of the reader we give all the proofs
which are similar to those used in [13].

First of all it is easy to see that the following result holds.

Theorem 2.1. If Lh is a maximal hyponormal extension of the minimal operator L0

and Mh = U−1LhU is the maximal hyponormal extension of the minimal operator
M0 corresponding to Lh, then on the spectrum of these extensions in L2, we have
σ(Lh) = σ(Mh). We denote by Cp(H), p ≥ 1, the Schatten – von Neumann class
of operators in the Hilbert space H (see [5]) and B(H) is a class of linear bounded
operators in H (see [4]).

Now we prove the following theorem about the spectrum of maximal hyponormal
extensions.

Theorem 2.2. The spectrum of maximal hyponormal extensions LV has the form

σ(LV ) =
{
λ ∈ C : λ = λ0 +

2kπi
b− a

, where λ0 is a set

of solutions on λ for the equation e−λ(b− a)− µ = 0, µ ∈ σ(V e−AR(b−a)), k ∈ Z
}
.

Proof. Since σ(LV ) = σ(MV ), MV = U−1LV U , then we investigate the spectrum of
maximal hyponormal extension MV in L2. Now let us consider a problem for the
spectrum of maximal hyponormal extension MV ,

u′(t) +ARu(t) = λu(t) + f(t),
u(a) = V u(b),

where λ ∈ C, f(t) ∈ L2, V is an isometric operator and A1/2
R V A

−1/2
R is a contraction

operator in H. It is clear that a general solution of a differential equation in L2 has
the form

uλ(t) = e−(AR−λ)(t−a)f +

t∫
a

e−(AR−λ)(t−s)f(s)ds, f ∈ H−1/2(AR).

In this case from the boundary condition, we get the following relation

(V e−AR(b−a) − e−λ(b−a))f = −V
b∫
a

e−AR(b−s)f(s)ds.

From this we see that, λ ∈ C has a point of spectrum of extension MV it is necessary
and sufficient for the following relation to hold:

e−λ(b−a) = µ ∈ σ(V e−AR(b−a)).

Therefore, λ = λ0 + 2kπi
b−a , where λ0 ∈ σ

(
V e−AR(b−a)) and k ∈ Z.
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Theorem 2.3. Since V e−AR(b−a) ∈ B(H), then σ(LV ) 6= ∅ and is infinite.

It is easy to see that following result holds.

Theorem 2.4. If dimH < +∞, then each maximal hyponormal extension LV has
a pure point spectrum and the modules of the eigenvalues of extensions LV have the
same asymptotics |λn(LV )| ∼ 2πn

b−a , as n→∞.

Theorem 2.5. If A−1
R ∈ C∞(H) and the operator LV is any maximal hyponormal

extension of the minimal operator L0, then L−1
V ∈ C∞(L2).

Proof. Let LV be any maximal hyponormal extension of the operator L0 and MV be
a maximal hyponormal extension of the minimal operator M0 corresponding to L2,
that is,

MV = U−1LV U.

It can be verified that, for f(t) ∈ L2

M−1
V f(t) = e−AR(t−a)(E − V e−AR(b−a))−1V

b∫
a

e−AR(b−s)f(s)ds+

+

t∫
a

e−AR(t−s)f(s)ds.

Now we prove that, if A−1
R ∈ C∞(H), then

Kf(t) :=

t∫
a

e−AR(t−s)f(s)ds ∈ C∞(L2).

In order to prove this, for ε > 0 we define a new operator Kε : L2 → L2 of the form

Kεf(t) :=

t−ε∫
a

e−AR(t−s)f(s)ds, f(t) ∈ L2, ε > 0.

For each ε > 0, the operator Kε can be represented in the form

Kεf(t) :=

b∫
a

Kε(t, s)f(s)ds,

where f(t) ∈ L2 and for each (t, s) ∈ [a, b]× [a, b],

Kε(t, s) =

{
e−AR(t−s), if a ≤ s < t− ε,
0, if t− ε ≤ s ≤ b.

Since for each pair (t, s) ∈ [a, b]× [a, b], a ≤ s < t− ε, satisfies the following property

ARe
−AR(t−s) ∈ B(H), e−AR(t−s) =

[
ARe

−AR(t−s)
]
A−1
R ∈ C∞(H),
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then Kε ∈ C∞
(
L2
)
, ε > 0. On the other hand, the following estimate holds:

‖(Kε −K) f‖L2 =

∥∥∥∥∥∥
t∫

t−ε

e−AR(t−s)f(s)ds

∥∥∥∥∥∥
L2

≤
t∫

t−ε

∥∥∥e−AR(t−s)
∥∥∥ · ‖f(s)‖H ds ≤

≤
t∫

t−ε

‖f(s)‖H ds ≤

 t∫
t−ε

‖f(s)‖2H ds

1/2 t∫
t−ε

12ds

1/2

≤

≤

 b∫
a

‖f(s)‖2H ds

1/2

ε1/2 = ε1/2 ‖f‖L2 , f(t) ∈ L2,

that is,
‖Kε −K‖ ≤ ε1/2.

Therefore, Kε → K, as ε→ 0.
Hence from the important theorem [5], we have K ∈ C∞(L2). Thus the represen-

tation of MV implies that M−1
V ∈ C∞(L2). Hence L−1

V ∈ C∞(L2).

Corollary 2.6. Let LV be any maximal hyponormal extension of the minimal operator
L0 and λ ∈ ρ(LV ). Then Rλ(LV ) ∈ C∞(L2).

This result follows from the relation

Rλ(LV ) = L−1
V − λRλ(LV )L−1

V .

Using the method in the proof of Theorem 2.5 the following result can be proved.

Corollary 2.7. If A−1
R ∈ Cp(H), p ≥ 1 and LV is any maximal hyponormal extension

of L0, then L−1
V ∈ Cp(L2).

Furthermore, from the representation of resolvent Rλ(LV ), λ ∈ ρ(LV ), of the
operator LV we have the following corollary.

Corollary 2.8. Let LV1 , LV2 be two maximal hyponormal extensions of the minimal
operator L0 in L2 and λ ∈ ρ(LV1) ∩ ρ(LV2). Then we have

Rλ(LV1)−Rλ(LV2) ∈ Cp(L2), 1 ≤ p,

if and only if
V1 − V2 ∈ Cp(H), p ≥ 1.

Now we prove a result on the structure of the spectrum of the maximal extension of
the minimal operator L0.

Theorem 2.9. If A−1
R ∈ C∞(H) and LV is any maximal hyponormal extension of

the minimal operator L0 in L2, then the spectrum of LV has the form

σ(LV ) =
{
λn(AR) +

i

a− b
(arg λn(V e−AR(b−a)) + 2kπi), n ∈ N, k ∈ Z

}
.
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Proof. Since σ(LV ) = σ(MV ) = σp(MV ), then we will investigate the structure of the
spectrum of MV . From Theorem 2.2 we obtain

σ(LV ) =
{
λ ∈ C : λ =

1
a− b

(ln |µ|+ i argµ+ 2kπi), µ ∈ σ(V e−AR(b−a)), k ∈ Z
}
.

Since A−1
R ∈ C∞(H), then V e−AR(b−a) = V (ARe−AR(b−a))A−1

R ∈ C∞(H). For any
eigenvector xλ ∈ H corresponding to the eigenvalue λ ∈ σp(V e−AR(b−a)), we have
V e−AR(b−a)xλ = λ(V e−AR(b−a))xλ. This implies that

e−AR(b−a)V ∗V e−AR(b−a)xλ = λ(V e−AR(b−a))e−AR(b−a)V ∗x =

= λ(V e−AR(b−a))λ(V e−AR(b−a))xλ,

that is,
e−2AR(b−a)xλ = |λ(V e−AR(b−a))|2xλ.

Hence |λ(V e−AR(b−a))|2 = λ(e−2AR(b−a)) = e−2λAR(b−a), that is,

|µ| = |λ(V e−AR(b−a))| = e−λ(AR)(b−a).

From this relation we have ln |µ| = λ(AR)(a− b). Thus

σ(LV ) =
{
λ ∈ C : λ = λn(AR)+

i

a− b
(arg λn(V e−AR(b−a))+2kπ), n ∈ N, k ∈ Z

}
.

Now we can prove the main theorem of this section.

Theorem 2.10. If A−1
R ∈ C∞(H), λn(AR) ∼ cnα, 0 < c, α < ∞, as n → ∞, then

L−1
V ∈ C∞(L2) and

|λn(LV )| ∼ dnβ , 0 < d <∞, β =
α

1 + α
, as n→∞.

Proof. Since A−1
R ∈ C∞(H), then M−1

V , L−1
V = U−1M−1

V U ∈ C∞(L2) and λn(LV ) =
λn(MV ), n ∈ N. It is clear that

|λm(LV )| = |λn(AR) +
i

a− b
(arg λn(V e−AR(b−a)) + 2kπ)| =

= |λn(AR) +
i

a− b
(δn + 2kπ)| =

=
[
c2n2α +

1
(b− a)2

(δn + 2kπ)2
]1/2

,

where m = m(n, k) ∈ N, n ∈ N, k ∈ Z, δn = arg λn
(
V e−AR(b−a)). Since 0 ≤ δn ≤ 2π

for each n ∈ N, then from the last equality we have[
c2n2α +

4π2

(b− a)2
k2

]1/2

≤ |λ (LV )| ≤

[
c2n2α +

4π2

(b− a)2
(k + 1)2

]1/2

, n ∈ N, k ∈ Z.
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Therefore, |λ(LV )| ∼
√
c2n2α + h2k2, n ∈ N, k ∈ Z, where h = 4π

b−a . On the other
hand, we note that (c2n2α+h2k2)1/2, n ∈ N, k ∈ Z, are modules of eigenvalues of the
periodical boundary condition (for the Dirichlet problem), i.e.

|λ(LE)| = (c2n2α + h2k2), n ∈ N, k ∈ Z.

Therefore, asymptotical behavior of the modules of eigenvalues of each maximal hy-
ponormal extension LV and Dirichlet extension are the same, that is,

|λm(LV )| ∼ |λm(LE)|, as m→∞.

Using the method established in [6, 7] (in our case k ∈ Z). It can be found that

|λm(LE)| ∼ dm
α

1+α , 0 < d <∞, m→∞,

which completes the proof.
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